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The chiral vortical effect is a chiral anomaly-induced transport phenomenon characterized by an axial current
in a uniformly rotating chiral fluid. It is well understood for Weyl fermions in high energy physics, but its
realization in condensed matter band structures, including those of Weyl semimetals, has been controversial.
In this work, we develop the Kubo response theory for electrons in a general band structure subject to space-
and time-dependent rotation or vorticity relative to the background lattice. For continuum Hamiltonians, we
recover the chiral vortical effect in the static limit and the transport or uniform limit when the fluid, strictly, is
not a Fermi liquid. In the transport limit of a Fermi liquid, we describe an effect that we dub the gyrotropic
vortical effect. The latter is governed by Berry curvature of the occupied bands while the former contains an
additional contribution from the magnetic moment of electrons on the Fermi surface. The two vortical effects
can be understood as kinematic analogs of the well-known chiral and gyrotropic magnetic effects in chiral band
structures. We address recent controversies in the field and conclude by describing device geometries that exploit
Ohmic or Seebeck transport to drive the vortical effects.
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I. INTRODUCTION

Chiral transport phenomena in three dimensions have gar-
nered tremendous interest in condensed matter physics since
the discovery of Weyl semimetals (WSMs), three-dimensional
topological materials defined by the presence of accidental
intersections between nondegenerate bands [1–18]. Near these
intersections, or Weyl nodes, the Hamiltonian resembles that
of massless, relativistic Weyl fermions. Weyl nodes have a
well-defined handedness or chirality, defined as the absence
of all improper symmetries such as reflection and inversion
(I), and behave like that of unit magnetic monopoles for
Berry flux in momentum space. Chiral transport phenomena
in WSMs are characterized by distinct responses of right- and
left-handed Weyl fermions to external perturbations such as
electromagnetic fields, and can invariably be traced to the
chiral anomaly, defined as the violation of the classical U (1)
chiral gauge symmetry by the quantum path integral [19]. Al-
though the anomaly, first discovered in high-energy physics,
is strictly absent in WSMs as they necessarily contain equal
numbers of right- and left-handed Weyl nodes [20,21], clever
ways of resolving the nodes have led to a myriad of anomalous
behaviors of WSMs subject to electromagnetic fields [22–40].

Fundamentally, the anomaly manifests as a non-
conservation of chiral charge in the presence of parallel
electric and magnetic fields even though the low energy Weyl
Hamiltonian naively predicts chiral charge conservation.
Alternately, it generates the chiral magnetic effect (CME),
defined as an equilibrium, dissipationless current along a
constant magnetic field: jCME ∝ B [41,42]. Such a current
is allowed in the continuum, where purely left-handed (or
purely right-handed) Weyl fermions can exist. However,
similarly to the anomaly, the CME too is forced to vanish
in WSMs due to lattice regularization. The core difference
between the continuum and the lattice versions of the

CME generated great debate during its adaptation from
high-energy to condensed matter physics [26,27,43–47].
The controversies were eventually resolved by extending
the response to nonzero frequency (ω) and momentum (q)
and distilling subtleties of the DC limit. The static limit
(ω → 0 before q → 0) leads to a nonzero CME only if
the system is held in a nonequilibrium steady state and
directly measures the Berry monopole charge enclosed by
the occupied states [48,49]. In contrast, the uniform limit
(q → 0 before ω → 0) was termed the gyrotropic magnetic
effect (GME) [48] and was shown to describe the equilibrium
response to a time-dependent magnetic field, or equivalently,
a circulating electric field: jGME ∝ ∇ × E. Interestingly, it
can exist even in band structures that lack Weyl nodes but
break time-reversal (T ) and I symmetries.

The chirality, however, is an intrinsic property of the Weyl
Hamiltonian that does not rely on coupling to electromagnetic
fields. A natural question is, “what chiral transport phenomena
do neutral Weyl fermions exhibit?” A striking such response
is the chiral vortical effect (CVE), defined as the appearance
of a dissipationless axial current in a rotating Weyl fluid,
jCVE ∝ �, where � is the angular velocity. It was initially
predicted for neutrino fluxes from rotating black holes and
other chiral relativistic field theories [39,41,50–61] and has
been observed in heavy-ion collisions [62,63]. Historically,
it was usually described as a CME where the Coriolis force
in a rotating frame simulates B. However, it differs from the
CME in key ways. First, it is arguably more fundamental as
it is a strictly kinematic effect that does not rely on gauge
fields. Second, it is much less understood in condensed matter;
its historical derivations using Boltzmann and hydrodynamic
equations have yielded elegant solutions in the static limit,
especially for Lorentz invariant Weyl fermions [39,54–61,64–
67], but its generalization to arbitrary band structures at finite
q and ω remains an open problem. Third, electrons under a
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static B are within the purview of Bloch’s theorem that forbids
an equilibrium current in an infinite system [68–70], but the
theorem is inapplicable for a fluid rotating at constant angular
velocity. We will return to this point later. Finally, both lattice
and continuum realizations of the CME can be triggered in
practice by merely applying a suitable B. In contrast, a con-
tinuous fluid can be physically rotated to trigger the CVE,
but crystalline solids do not provide a mechanical handle
for rotating the electrons in their bands. A practical route to
rotate the electrons in a solid is essential for harnessing the
phenomenon for device applications.

In this work, we develop the theoretical framework for
describing the current response of electrons in a general band
structure rotated relative to a stationary lattice at a space-
and time-dependent angular velocity �(r, t ). Alternately, the
current can be interpreted as a response to space and time-
dependent vorticity V (r, t ) = ∇ × u(r, t )/2, where u(r, t ) is
the velocity field of the electron fluid. This is because, for
smooth and slow dependence on r and t , u(r, t ) = �(r, t ) × r
immediately yields V (r, t ) = �(r, t ). In other words, the vor-
ticity locally mimics angular velocity about the vortex axis.

We will focus on the static and uniform limits, which
respectively describe the response to time-independent and
time-dependent spatially uniform vorticity or angular velocity.
The static limit corresponds to the CVE; interestingly, the
uniform limit yields the same response function provided
the quasiparticle lifetime τ remains finite as the frequency
ω → 0. In contrast, precisely in the uniform or transport
limit of a Fermi liquid, defined by ωτ → ∞ as ω → 0, we
discover a response that we term the gyrotropic vortical ef-
fect (GVE). The GVE can be viewed as an axial current in
response to angular acceleration, jGVE ∝ α(r, t ) = ∂t�(r, t ),
but its gyrotropic nature becomes transparent when viewed
as the response to circulating acceleration ∇ × a(r, t ) ≡ ∇ ×
∂t u(r, t ). Thus, just as the CVE is usually interpreted as the
rotational analog of the CME, the GVE proposed here can
be understood as the rotational or vortical counterpart of
the GME.

Classically, the GME can be thought of as a solenoid where
a time-varying magnetic field induces a current parallel to the
magnetic field. The GVE can also be thought of classically
using the propagation of circularly polarized (CP) light that
can be described as a chiral object where the rotation of the
electric field is coupled to the propagation direction. Changing
the rotation speed of the electric field vector by changing the
light frequency, analogous to introducing a nonzero angular
velocity for the chiral fluid, will change the magnitude of the
Poynting vector, analogous to the chiral fluid developing an
axial current.

Microscopically, we show that the GVE stems from purely
interband virtual processes in the clean limit whereas the CVE
relies on both interband and intraband processes. In other
words, we show that the (isotropic parts of the) relevant linear
response functions are

χGVE = χ inter
iso , (1a)

χCVE = χ intra
iso + χ inter

iso , (1b)

Equations (7) summarize our main results. Explicit expres-
sions for χ inter

iso and χ intra
iso are given later in Eqs. (9) and (10),

FIG. 1. Schematic of microscopic processes causing the vortical
effects in a WSM with left- and right-handed Weyl nodes at dif-
ferent energies. The GVE arises from nonresonant (Em

k − En
k �= ω)

interband (m �= n) virtual processes at q = 0 (vertical arrows) and
survives as ω → 0 provided EL �= ER. The CVE appears in the
static limit ω = 0, q → 0, and contains an additional contribution
from intraband (m = n) resonant (En

k = En
k+q) processes (horizontal

arrow).

while Fig. 1 depicts the corresponding microscopic processes
for a pair of Weyl nodes.

II. VORTICAL RESPONSE THEORY

We now develop the vortical response theory and derive
expressions for χ intra and χ inter. We begin by imagining elec-
trons governed by a Bloch Hamiltonian H0(k) driven in such
a way that they rotate by a space- and time-dependent an-
gular velocity �(r, t ). This is a non-equilibrium system; to
apply the Kubo formalism, we must first recast this prob-
lem into one of equilibrium perturbation theory. To that
end, we note that rotation induces an additional time depen-
dence into the time evolution of any wave function ψ (r, t ):
ψ (r, t ) = T [ei

∫ t
0 L·�(r,t ′ )−iH0(k)t ]ψ (r, 0) in units h̄ = 1, where

T [· · · ] denotes time ordering and L is the spatial angular
momentum that generates rotations on length scales large
compared to the lattice constant. Unlike usual perturbative
calculations where the Hamiltonian is known, and the wave
function is determined perturbatively, the time dependence
of the wave function is physically given here, and the per-
turbation must be inferred. Suggestively defining ψI (r, t ) =
eiH0(k)tψ (r, t ), we see that i∂tψI (r, t ) = −L · �(r, t )ψI (r, t ).
In other words, ψI (r, t ) behaves like an interaction picture
wave function corresponding to an unperturbed Hamilto-
nian H0(k) and perturbation −L · �(r, t ), implying a total
Hamiltonian

H (k, r, t ) = H0(k) − L · �(r, t ) (2)

while the appropriate equilibrium many-body state is the
equilibrium Fermi sea of H0(k). Now, the full machinery of
equilibrium perturbation theory can be deployed. In particular,
the Kubo formula can be used to compute the linear current
response to the perturbation −L · �(r, t ).

A few subtleties arise here, however, since L is not trans-
lationally invariant, yet the corresponding vertex conserves
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FIG. 2. (a) The angular momentum vertex. (b) The first-order
Feynman diagram for the response.

momentum. In the Bloch basis,〈
ψm

k

∣∣ − L · �(r, t )
∣∣ψn

k+q′
〉 = (2π )3i∇q′δ(q′ − q)

× 〈
um

k

∣∣(k − i∇r)
∣∣un

k+q′
〉 · �(q, t )

(3)

where |ψn
k 〉 is the Bloch wave function in the nth band and

|un
k〉 is its periodic part. Thus, an angular velocity field with

momentum q can produce currents j(q′) distributed around
q through the δ(q′ − q) function. Since measurement probes
have a finite resolution, the physical current is given by the
integrated weight

〈 jα (q, iωn)〉 =
∫

q′
χ̃αβ (q′, q, iωn)�β (q, iωn) (4)

as a function of Matsubara frequencies, where, from Fig. 2

χ̃αβ (q, q′, iωn) = −T
∑
k,iνn

tr[ jα (k + q′)G(k, iνn)

× Lβ (q′; q)G(k + q′, iνn + iωn)] (5)

and G(k, iνn) = [iνn − H0(k) + isgn(νn)/2τ ]−1 as usual. The
physical, retarded response function is given by χαβ (q, ω) =∫

q′ χ̃αβ (q, q′, iωn → ω + i0+) for which we provide an ex-
plicit expression in Appendix B that is valid at arbitrary T, ω,
and q and for general lattice models.

III. RESULTS

Henceforth, we focus on the isotropic part of the response,
χiso(q, ω) = 1

3χαα (q, ω). It is useful to separate it into inter-
band and intraband terms, χiso:

χiso = χ inter
iso + χ intra

iso . (6)

Some algebra, described in Appendix A, leads to

χ inter
iso = i

3

∫
k

∑
n �=m

〈
um

k

∣∣Qk

∣∣un
k+q

〉
· 〈

um
k

∣∣∇kun
k

〉 × 〈un
k

∣∣ j(k)
∣∣um

k

〉
Snm(k),

χ intra
iso = i

3

∫
k

∑
n

〈
um

k

∣∣Qk

∣∣un
k+q

〉
· 〈

un
k

∣∣( jn
k − vk

) × ∣∣∇kun
k

〉
Snn(k), (7)

where

Snm(k) =
∫

ν

Im

[
2

ν + i
2τ

]
f
(
Em

k + ν
) − f

(
En

k+q − ν
)

ν + Em
k − En

k+q + ω + i
2τ

(8)

evaluated in the desired limit of q, ω, τ . Here, f (ν) is the usual
Fermi function that reduces to a step function at T = 0.

A peculiar quantity in the above expressions is Qk = k −
i∇ρ, a momentumlike object containing two parts: the crys-
tal momentum k and spatial derivative within the unit cell
i∇ρ. Together, they respect the periodicity of the Brillouin
zone. Alternately, Qk can be viewed as a gauge invariant mo-
mentum corresponding to the “gauge symmetry” k → k + K,
where K is a reciprocal lattice vector, and “gauge field”
Amn

k (q′) = i〈un
k|∇ρ|um

k+q′ 〉 that captures the freedom in choos-
ing the Brillouin zone. In certain physical regimes described
in Appendix A 2, such as the nearly free electron limit with
k far from the Brillouin zone edges, Qk reduces to the usual
continuum momentum k.

Qk appears in our expressions because we are calculating
the response to angular velocity, which couples to spatial an-
gular momentum. Q is analogous to the lattice charge current
that couples and captures the response to Peierls electro-
magnetic fields. In other words, just as continuum current
is well defined independently of any lattice but acquires in-
teresting structure and inherits the lattice periodicity when
projected onto Bloch states, the continuum momentum should
be replaced by the k periodic quantity Qk that contains contri-
butions from Bloch functions.

Equations (7) and (8) describe the response of Bloch elec-
trons in a general lattice to rotation at arbitrary q and ω. To
proceed further analytically, we (i) set T = 0, (ii) take the
continuum limit and replace Qk → k, (iii) assume no band
intersections near the Fermi level, and (iv) focus on the regime
of small of q, ω, and 1/τ . Although τ was introduced phe-
nomenologically, we allow it to have an implicit dependence
on q and ω. Thus, we study the uniform limit, q = 0 followed
by ω → 0, in two regimes: |ωτ | → 0 and |ωτ | → ∞, the
latter defining a Fermi liquid due to a diverging quasiparticle
lifetime as ω → 0. Similarly, we investigate the static limit,
ω = 0 followed by q → 0, in the two regimes qτ → 0 and
qτ → ∞. We emphasize that the large τ regimes of the uni-
form and static limits include the cases where τ → +∞ from
the outset. Thus, the six permutations for the orders of q, ω,
and 1/τ define four distinct physical regimes. We now provide
results for the interband and intraband contributions to χiso in
the limits q → 0, ω → 0, and 1/τ → 0 in each of the four
regimes.

A. GVE in the uniform, Fermi liquid limit

At q = 0 and in the Fermi liquid limit, defined by long-
lived quasiparticles with lifetime τ 
 1/|ω| as ω → 0, the
intraband term Snn(k) → 0 while the interband terms are
nonzero. Some algebraic manipulations yield an expression

χ inter
iso = −2

3

∑
n

∫
k



(− En
k

)
Fn

k · k, (9)

where Fn
k = i〈∇kun

k| × |∇kun
k〉 is the Berry curvature of the

nth band. The term itself is insensitive to the order in which
q, ω, and 1/τ were taken to zero, and is the only one that
survives in the Fermi liquid limit defined above. In analogy
with the GME, we term this effect the GVE.

The GVE, defined completely by χ inter
iso according to

Eq. (1a), is purely real, which implies a dissipationless cur-
rent that arises purely from interband processes between
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TABLE I. Summary of results at q → 0, ω → 0, and 1/τ → 0 in various orders. v is a typical band velocity. The interband susceptibility
is the same in all cases. In contrast, the intraband term vanishes in the uniform, clean limit but is the same in all other limits.

Limit Definition χ inter
iso χ intra

iso

Uniform, clean vq � |ω|, 1/τ � |ω|, arbitrary vqτ − 2
3

∫
k

∑
n 
(−En

k )k · Fn
k 0

Uniform, dirty vq � |ω| � 1/τ − 2
3

∫
k

∑
n 
(−En

k )k · Fn
k − 2

3

∫
k

∑
n

mn
k ·k
e δ(En

k )

Static, clean |ω| � vq, 1/τ � vq, arbitrary ωτ − 2
3

∫
k

∑
n 
(−En

k )k · Fn
k − 2

3

∫
k

∑
n

mn
k ·k
e δ(En

k )

Static, dirty |ω| � vq � 1/τ − 2
3

∫
k

∑
n 
(−En

k )k · Fn
k − 2

3

∫
k

∑
n

mn
k ·k
e δ(En

k )

nondegenerate Bloch states. It vanishes in systems with an
improper symmetry. For instance, a mirror plane normal to z
transforms kz → −kz, k(x,y) → k(x,y) and F n

kz → F n
kz, F n

k(x,y) →
−F n

k(x,y), while I transforms k → −k and F n
k → F n

k . How-
ever, it is generically nonzero in chiral, T -symmetric systems,
which obey Fn

k = −Fn
−k. Naively, χ inter

iso seems poorly regular-
ized as it receives contributions from all occupied states. How-
ever, the total contribution from a filled band vanishes at T =
0 in the continuum limit, when the Brillouin zone can be com-
pactified to a sphere and all points at k → ∞ are identified.
Specifically,

∫
BZ Fn

k · k = ∫
∂BZ (Ann

k × k) · ds using Gauss’s
divergence theorem, but the last expression vanishes since |un

k〉
must be constant on ∂BZ due to the above boundary condition.
Thus, only partially occupied bands contribute to χ inter

iso .

B. CVE in all other limits

In contrast to χ inter
iso , χ intra

iso depends strongly on the order of
limits. It vanishes in the Fermi liquid limit, while the other
three limits lead to

χ intra
iso = −2

3

∑
n

∫
k
δ
(
En

k

)k · mn
k

e
, (10)

where mn
k = ie

2 〈∇un
k| × (Hk − En

k )|∇un
k〉 denotes the orbital

moment of the Bloch state |un
k〉. Similarly to χ inter

iso , χ intra
iso is

also purely real and hence generates a dissipationless current.
Moreover, mn

k transforms the same way as Fn
k under symmetry

operations, so χ intra
iso , similarly to χ inter

iso , is generically nonzero
for chiral band structures. The results for χ inter

iso , χ intra
iso , and χiso

are summarized in Table I.
The static, clean limit, defined as ω → 0 followed by

q → 0 with vqτ → ∞ where v is a typical band velocity, has
been well studied and is referred to as the CVE. Interestingly,
we find that various other limits also yield susceptibilities that
match the CVE susceptibility since the latter is given by the
sum of χ intra

iso and χ inter
iso according to Eq. (1b). Thus, the CVE

susceptibility should be easier to observe in experiments as it
is robust to the order of limits as long as we are not in the
Fermi liquid transport regime.

C. Application to Weyl fermions

We now evaluate the susceptibilities for an isotropic
Weyl fermion of chirality C = ±1 described by H0(k) =
Cvk · τ − μ, where τ are Pauli matrices. Its energies, Berry
curvatures and magnetic moment for the n = ±1 bands are
En

k = nvk − μ, Fn
k = −Cn k̂

2k2 , and mn
k = −eCn k̂

2k . Thus, for
a WSM with Weyl nodes of chirality Ci and velocity vi at
energy Ei, i = 1, . . . , 2N , and chemical potential μ, Eq. (9)

reduces at T = 0 to

χGVE
WSM = 1

3

2N∑
i=1

Ci

(
μ − Ei

2πvi

)2

(11)

In deriving the above, we have subtracted the contribution of
undoped Weyl nodes since filled bands do not contribute, as
argued earlier. Similarly,

χ intra
WSM = 2

3

2N∑
i=1

Ci

(
μ − Ei

2πvi

)2

. (12)

Including χ inter
iso ≡ χGVE

WSM, we obtain the CVE for WSMs,

χCVE
WSM =

2N∑
i=1

Ci

(
μ − Ei

2πvi

)2

. (13)

Equation (13) is the well-known expression for the CVE in
relativistic Weyl fermions [39,54–61].

The results for a single Weyl node are summarized in
Table II. While the effects are nonzero for individual Weyl
nodes, they vanish in a WSM unless all improper symmetries
are broken. If I or any improper symmetry is present, the
chiralities Ci would appear in equal and opposite pairs while
the energies Ei and speeds vi would be equal for nodes within
each such pair.

IV. COMPARISONS

The past decade has seen growing interest in vortical ef-
fects in both relativistic and nonrelativistic chiral fermions as
well as in their magnetic counterparts. We now contrast our
approach and results with the existing ones in each context.

Reference [56] calculated the CVE in Lorentz invariant
kinetic theories and showed that

jCVE =
( μ

2πv

)2
� (14)

at T = 0 for a single right-handed isotropic Weyl fermion,
where v is the Weyl velocity and μ is measured relative
to the Weyl node energy. While this result is well known,
Ref. [56] showed that jCVE consists of two parts: a Liouville
current jCVE

I = 1
3 jCVE from the group velocity of all occu-

pied (unoccupied) states above (below) the Weyl node and
a magnetization current jCVE

II = 2
3 jCVE from the magnetiza-

tion of states near the Fermi surface. Moreover, the above
separation of terms was shown to arise purely from Lorentz
invariance. Interestingly, our results for a single right-handed
Weyl fermion show precisely the same separation between in-
terband and intraband terms. In particular, interband processes
contribute to the Liouville current while intraband processes
determine the magnetization current. Both terms exist in the
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TABLE II. Summary of results at q → 0, ω → 0 and 1/τ → 0 in various orders for an isotropic Weyl fermion with velocity v, chiral
charge C, and chemical potential μ relative to the Weyl node. Here, χ0 = ( μ

2πv
)2.

Limit Definition χ inter
Weyl χ intra

Weyl χWeyl

Uniform, clean vq � |ω|, 1/τ � |ω|, arbitrary vqτ C
3 χ0 0 C

3 χ0

Uniform, dirty vq � |ω| � 1/τ C
3 χ0

2C
3 χ0 Cχ0

Static, clean |ω| � vq, 1/τ � vq, arbitrary ωτ C
3 χ0

2C
3 χ0 Cχ0

Static, dirty |ω| � vq � 1/τ C
3 χ0

2C
3 χ0 Cχ0

static and dirty, uniform limits and yield the CVE. In contrast,
the clean, uniform limit gives rise to the GVE and receives
contributions from interband processes only, thus consisting
purely of a Liouville current. Our Kubo formula approach
provides microscopic insight into the CVE that complements
the arguments in Ref. [56] based on Lorentz invariance.

For nonrelativistic systems, recent works have triggered a
debate regarding the correct description of vortical effects.
Reference [65] described hydrodynamic transport in noncen-
trosymmetric materials and included the effect of vorticity
through a coupling −L · V to the spatial angular momentum.
In contrast, Ref. [64] also included a spin-vorticity coupling,
−S · V . In writing Eq. (2), we have effectively adopted the
former approach. Physically, this choice describes a fluid ro-
tating relative to a stationary lattice in such a way that its
internal degrees of freedom such as spin and orbital do not
directly couple to the external force driving the rotation. For
instance, for flow driven by an electric field, spin-vorticity
coupling is negligible because it is suppressed by the ratio of
the fluid speed to the speed of light. On the other hand, if the
crystal is mechanically rotated, the approach of Ref. [64] is
appropriate as rotation of the underlying lattice couples to all
degrees of freedom of the electron gas that lives in it. If spin-
vorticity coupling is neglected, our results match with those of
Ref. [64] provided our uniform and static limits are identified
with their transport and magnetization currents, respectively,
with an extra minus sign for the latter because we calculate the
paramagnetic current whereas orbital magnetization current is
diamagnetic.

Finally, we compare and contrast the results for the vor-
tical effects with their magnetic counterparts. The magnetic
and vortical effects all require broken I as well as broken
T I symmetries. However, the CME explicitly requires the
presence of Weyl nodes while the GME as well as both
the vortical effects can exist for general chiral band struc-
tures devoid of Weyl nodes. The microscopic contributions
to the various effects are also different: the CME and the
GME are governed by the net chirality of the occupied
bands and the Fermi surface magnetization, respectively. In
contrast, the GVE depends on the Berry curvature of the
occupied bands whereas the CVE contains additional contri-
bution from the orbital magnetization of states on the Fermi
surface.

V. IMPLICATIONS FOR BLOCH’S THEOREM

Bloch’s theorem states that the current density vanishes in
the thermodynamic limit in an arbitrary system at equilibrium.
In WSMs, it manifests as a vanishing equilibrium CME. To

activate a CME, chiral charge first needs to be pumped across
Weyl nodes to create a nonequilibrium steady state. It is of-
ten stated that the CVE evades Bloch’s theorem because the
thermodynamic limit here violates causality. Specifically, if
a fluid rotates at constant �, particles far enough from the
rotation axis will be forced to travel faster than light, so the
system must necessarily have a finite size. However, a recent
refinement of Bloch’s theorem for finite systems shows that
the current density is bounded only by the inverse system size
in the current direction, i.e., |〈 jz〉| < O(1/lz ) [71]. Therefore,
a generic equilibrium system must have vanishing |〈 jz〉| as
lz → ∞ regardless of its transverse dimensions. This contra-
dicts Eq. (13), which clearly predicts a nonzero CVE.

The resolution to the paradox can be understood in two
equivalent ways. From the laboratory perspective, the energy
of a fluid rotating at constant � can always be lowered by
slowing down its rotation, whereas Bloch’s theorem assumes
that the fluid is already in its lowest energy state. Alternately,
the rotating frame Hamiltonian in Eq. (2) violates a key as-
sumption of Bloch’s theorem, namely, an energy spectrum
that is bounded below, since L is unbounded. Specifically, the
upper bound on |L| = |r × k| is of order l⊥/a⊥, where a⊥ is
the lattice constant in the i direction, which diverges in both
continuum (a⊥ → 0) and thermodynamic (l⊥ → ∞) limits in
the transverse directions.

VI. DEVICE GEOMETRIES

We close by sketching various device geometries that rely
on the vortical effects. In these devices, carriers are forced
to traverse curved paths by a combination of device geom-
etry and electromagnetic or thermal fields and hence are
endowed with a nonzero � relative to the background lat-
tice. As a result, they develop a voltage perpendicular to
the plane of motion. Figs. 3(a)–3(c) illustrate the basic ideas
for vortical effects driven by an electric field, thermal gra-
dient, and time-dependent magnetic flux, respectively. If the
mobility is μmob and the radius of the curved path is R,
an electric field E induces a drift velocity vd = μmobE and
hence � = μmobE/R. Assuming typical values for a WSM,
E = 0.1 V/m, R = 1 µm, μmob = 105 cm2V/s, vF = 105 m/s,
(μ+ + μ−)/2 = 0.5 eV, μ+ − μ− = 50 meV, where μ± is
the Fermi energy relative to the right/left-handed Weyl node,
we get a large vortical current density of j = 100 mA/mm2.
For q ∼ 1/R, the above numbers result in the CVE (GVE)
for ω � 1011 Hz (ω 
 1011 Hz) Figure 3(b) depicts a chiral
Nernst effect, defined as j(r, t ) ∝ ∇ × ∇T (r). Note, ∇ × ∇T
is guaranteed to vanish only if T (r) is twice continuously dif-
ferentiable on all space, a condition violated by the geometry
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FIG. 3. Device geometries for utilizing the vortical effects. In
(a), (b), and (c), respectively, a current is driven along a curved path
by a voltage, a temperature gradient and a time-dependent magnetic
field, which produces a vertical potential difference due to the vor-
tical effects. (c) is equivalent to the GME, but here we adopt the
perspective that B(t ) triggers fluid rotation. In (d), top, Vvort �= 0 if a
current is driven between AB or AC because it is forced to go around
a corner, but Vvort = 0 for a current between AC. (d), bottom, shows a
more complex geometry with more terminals and corners that offers
richer manipulation. Geometries in (d) can serve as building blocks
for scalable circuits.

of Fig. 3(b). Once again, we expect a large effect in WSMs
owing to their large mobility. For ∇T ∼ 1 K/µm and See-
beck coefficient S = 100a µV/K , the resultant electric field is

E = 0.1 V/m, which leads to j = 100 mA/mm2. Figure 3(d)
shows examples of geometries that can form building blocks
of larger circuits. Here, the vortical effects are invoked when
the carriers have to turn a corner on their way from a source
to a drain.
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APPENDIX A: ANGULAR MOMENTUM ON A LATTICE

In the continuum, basic quantum mechanics dictates L̂ =
r̂ × p̂, where 〈r| p̂|r′〉 = −i∇rδ(r − r′) and we are using hats
to distinguish operators from states. In lattice systems such as
a rotating optical lattice, one typically recasts L̂ into a tight-
binding hopping operator by evaluating its matrix elements
in the basis of Wannier orbitals. Since we need to evaluate a
Kubo formula, which is easier in Fourier space, we project the
perturbation −L̂ · �(r̂, t ) onto Bloch states instead.

1. Projection onto Bloch states

The Bloch wave function for the nth band is generically of
the form ψn

k (r) ≡ ψn
k (R + ρ) = N−1/2eik·(R+ρ)un

k(ρ), where N
is the number of unit cells, R is a discrete index that la-
bels them, ρ denotes position within a unit cell, and un

k(ρ)
is periodic in r with the same periodicity as the underlying
Hamiltonian. In this basis,

〈
ψm

k

∣∣ − L̂ · �(r̂, t )
∣∣ψn

k+q′
〉 =

∫
r,r′

ψm∗
k (r)r × i∇rδ(r − r′)ψn

k+q′ (r′) · �(r′, t ). (A1)

Suppose �(r′, t ) = e−iq·r′
�(q) is monotonic in space. Approximating r ∼ R and ∇r = ∇ρ, the matrix element becomes

〈
ψm

k

∣∣ − L̂ · �(r̂, t )
∣∣ψn

k+q′
〉 = 1

N

∑
R

ei(q′−q)·R
∫

ρ,ρ′
e−ik·ρ+i(k+q′−q)·ρ′[

um∗
k (ρ)R × i∇ρδ(ρ − ρ′)un

k+q′ (ρ′)
] · �(q, t )

= − (2π )3

N

∑
K

i∇q′δ(q′ − q + K ) ×
[∫

ρ,ρ′
e−ik·ρ+i(k+q′−q)·ρ′

um∗
k (ρ)i∇ρδ(ρ − ρ′)un

k+q′ (ρ′)
]

· �(q, t ),

(A2)

where K are reciprocal lattice vectors. Integrating by parts over ρ and integrating over ρ′,

〈
ψm

k

∣∣ − L̂ · �(r̂, t )
∣∣ψn

k+q′
〉 = (2π )3

N

∑
K

i∇q′δ(q′ − q + K ) ×
∫

ρ

ei(q′−q)·ρ[kum∗
k (ρ) + i∇ρum∗

k (ρ)
]
un

k+q′ (ρ) · �(q, t ). (A3)

Since un
k+q′+K (ρ) = e−iK·ρun

k+q′ (ρ), each term in the sum over K gives the same contribution and cancels the factor of N .
Thus, we can safely assume q and q′ to be within the first Brillouin zone and write〈

ψm
k

∣∣ − L̂ · �(r̂, t )
∣∣ψn

k+q′
〉 = (2π )3i∇q′δ(q′ − q) × 〈

um
k

∣∣(k − i∇ρ )
∣∣un

k+q′
〉 · �(q, t ). (A4)
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Thus, the angular momentum vertex is the prefactor of �(q, t )
as used in Eq. (4) in the main text.

L(q′; q) = i(2π )3∇q′δ(q′ − q) × (k − i∇ρ ). (A5)

We have adopted a notation for L(q′; q) where the momen-
tum to the right of the semicolon is that of the boson line.

2. Reduction to the continuum

In an appropriate continuum limit, the matrix elements of
the perturbation on a lattice reduce to the appropriate con-
tinuum values, i.e., k − i∇ρ should reduce to the ordinary
continuum momentum. Below, we describe how this occurs in
the nearly-free-electron limit. Interestingly, such a reduction
also occurs in a deep tight-binding limit, which may be more
relevant to d- and f -electron compounds.

a. Nearly-free-electron limit

Let us Fourier expand the periodic part of the Bloch wave
function in terms of the reciprocal lattice vectors, un

k(ρ) =∑
K eiK·ρun

k(K ). The desired matrix element can then be writ-
ten as〈

un
k

∣∣(k − i∇ρ )
∣∣um

k′
〉 =

∑
K

(k + K )un∗
k (K )um

k′ (K ) (A6)

Now, consider the Hamiltonian for electrons in a peri-
odic potential, H = −h̄2∇2/2m + V (r). Inserting Bloch wave
functions ψn

k (r) into the equation gives[
(k − i∇ρ )2

2m
+ V (ρ)

]
un

k(ρ) = En
k un

k(ρ). (A7)

Fourier expanding V (ρ) = ∑
K �=0 V (K )eiK·ρ and integrating

over ρ gives a set of linear equations, indexed by K, for each
band:

(k + K )2

2m
un

k(K ) +
∑

K ′
V (K − K ′)un

k(K ′) = En
k un

k(K )

⇒ un
k(K ) =

∑
K ′ V (K − K ′)un

k(K ′)

En
k − (k+K )2

2m

. (A8)

Suppose the periodic potential and eigenenergy are weak
compared to the free electron kinetic energy at the edge of the
first Brillouin zone:

|V (ρ)|, ∣∣En
k

∣∣ � h̄2(Kmin/2)2

2m
∼ h2

8ma2
, (A9)

where Kmin is the shortest nonzero reciprocal lattice vector
and has length O(2π/a) with a being the length scale of the
lattice constant. For k � Kmin, the denominator of Eq. (A8)
is large for any K �= 0, so the corresponding un

k(K ) must be
small. Specifically,

|un(K �= 0)| �
∑

K ′ |V (K − K ′)||un
k(0)|∣∣En

k − (k+K )2

2m

∣∣ ∼ |V |
h2/8ma2

.

(A10)

Thus, we can approximate〈
un

k

∣∣(k − i∇ρ )
∣∣um

k′
〉 ≈ kun∗

k (0)um
k′ (0), (A11)

thereby recovering the continuum behavior of the momentum
operator, p̂ → k.

b. Deep tight-binding limit

Interestingly, the continuum behavior also arises in a useful
opposite “deep tight-binding” limit. Suppose V (ρ) consists of
a sum of Dirac delta function wells within the unit cell:

V (ρ) =
∑

i

Viδ(ρ − ρi ). (A12)

For E < 0 and 1/
√−2mE � |ρi − ρ j | ∀ i, j, the local spec-

trum consists of nearly decoupled exponentially decaying
waves around each well,

φi(ρ) ∼ e−√−2mE |ρ−ρi|, (A13)

and the Bloch functions un
k(ρ) are superpositions of φi(ρ):

un
k(ρ) =

∑
i

un,i
k φi(ρ). (A14)

Importantly, for k within the first Brillouin zone, the only ρ

dependence of un
k(ρ) is through φi(ρ); there are no factors of

eiK·ρ in the coefficients above. The inner product 〈un
k|i∇ρ|um

k′ 〉
is now exponentially small as 〈φi|i∇ρ|φ j〉 ∼ e

√−2mE |ρi−ρ j | �
1 if i �= j and 〈φi|i∇ρ|φi〉 = 0 since φi(ρ) have definite parity.
Thus, p̂ → k is recovered in this limit as well. Now, we will
calculate the response to this rotation using the Kubo formula
to first order in �. First, we will show the expression for
generic band structure in terms of the Berry curvature and then
use it to derive explicit results for Weyl fermions.

APPENDIX B: GENERAL RESULTS

1. Response function

Since L violates translational invariance, a spatially monotonic angular velocity �(r, t ) = e−iq·r�(q) gives rise to currents
j(q′) with a range of momenta q′. On the other hand, momentum nonconservation due to L is delicate—through a ∇q′δ(q′ − q)
function—so the resultant j(q′) will still be sharply peaked around q. Thus, the physical current corresponds to the integrated
weight of the current distribution. Physically, the integration captures the fact that momentum-resolved measurement probes
necessarily have a nonzero width and, thus, can only detect the integrated weight.

At the level of linear response, the physical current is given by the Kubo formula

〈 jα (q, iωn)〉 =
∫

q′
χ̃αβ (q′, q, iωn)�β (q, iωn), (B1)

where χ̃αβ is the response function.
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Depicted by the Feynman diagram Fig. 1(b), it is given at temperature T by

χ̃αβ (q′, q, iωn) = −T
∑
iνn

∫
k

tr[ jα (k + q′)G(k, iνn)Lβ (q′; q)G(k + q′, iνn + iωn)],

where G(k, z) = [z − H0(k) + i sgn(Im z)/2τ ]−1 with a phenomenological quasiparticle relaxation time τ . In the following, we
will refer to regimes of relatively small and large τ as “dirty” and “clean” for convenience, which is appropriate for impurity
scattering, but stress that τ is a phenomenological timescale whose origin could be other scattering processes too. As usual,
j(k) = ∇kH0(k) is the number current; the charge current is e j(k).

To proceed, we insert complete sets of states um
k and un

k+q′ as written below:

χ̃αβ (q′, q, iωn) = −T
∑
iνn

∫
k

〈
un

k+q′
∣∣ jα (k + q′)G(k, iνn)

∑
m

∣∣um
k

〉〈
um

k

∣∣ Lβ (q′; q)G(k + q′, iνn + iωn)
∣∣un

k+q′
〉

= −T
∑

iνn,n,m

∫
k

〈
un

k+q′
∣∣ jα (k + q′)

∣∣um
k

〉〈
um

k

∣∣Lβ (q′; q)
∣∣un

k+q′
〉

[
iνn − Em

k + i sgn(νn )
2τ

][
iνn + iωn − En

k+q + i sgn(νn+ωn )
2τ

]
=

∑
n,m

∫
k

〈
un

k+q′
∣∣ jα (k + q′)

∣∣um
k

〉〈
um

k

∣∣Lβ (q′; q)
∣∣un

k+q′
〉
Snm(k, q′, iωn), (B2)

where

Snm(k, q′, iωn) = −T
∑
iνn

1[
iνn − Em

k + i sgn(νn )
2τ

][
iνn + iωn − En

k+q′ + i sgn(νn+ωn )
2τ

] (B3)

is evaluated in the next section. Integrating by parts over q′ and analytically continuing iωn → ω + i0+ gives the physical,
retarded response function χαβ (q, ω) = ∫

q′ χ̃αβ (q′, q, iωn → ω + i0+):

χαβ (q, ω) = εβμν

∫
k

∑
n,m

i∂qν

[〈
un

k+q

∣∣ jα (k + q)
∣∣um

k

〉 〈
um

k

∣∣kμ − i∂ρμ

∣∣un
k+q

〉
Snm(k, q, ω)

]
. (B4)

This is a general expression valid for lattice models at arbitrary T , q, and ω. Its real and imaginary parts define the reactive
and dissipative responses, respectively. It can be calculated precisely if the Bloch Hamiltonian H0(k) and the basis states for the
Bloch functions [φi(ρ) in Eq. (A14)] are known. The factor Snm(k, q, ω) will be calculated generally in the next section.

2. Matsubara sum

We now evaluate the Matsubara sum Snm(k, q, iωn) in Eq. (B3). Similar sums appear in textbook calculations of transport.
Here, we recap the calculation for completeness and tailor it for the goals of this work.

The summand in Eq. (B3) contains no poles but has two branch cuts in the complex frequency plane along Im z = 0 and
Im z = −ωn, where z is the complex generalization of iνn. As a result, the Matsubara sum transforms into integrals over the real
axis as

Snm(k, q, iωn) = −i
∫

ν

f (ν)

[
1

ν − Em
k + i

2τ

− 1

ν − Em
k − i

2τ

]
1

ν + iωn − En
k+q + i sgn ωn

2τ

− i
∫

ν

f (ν)

[
1

ν − En
k+q + i

2τ

− 1

ν − En
k+q − i

2τ

]
1

ν − iωn − Em
k − i sgn ωn

2τ

(B5)

where f (ν) = 1/(eν/kBT + 1) is the Fermi function. Upon analytic continuation, iωn → ω + i0+,

Snm(k, q, ω) =
∫

ν

2 f (ν)

{
Im

[
1

ν − Em
k + i

2τ

]
1

ν + ω − En
k+q + i

2τ

+ Im

[
1

ν − En
k+q + i

2τ

]
1

ν − ω − Em
k − i

2τ

}
. (B6)

Shifting ν by Em
k and En

k+q in the two terms and changing ν → −ν in the second term yields

Snm(k, q, ω) =
∫

ν

2Im

[
1

ν + i
2τ

]
f
(
ν + Em

k

) − f
(− ν + En

k+q

)
ν + Em

k − En
k+q + ω + i

2τ

. (B7)
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The above expression is valid for general q, ω, τ , and T . At T = 0, it can be evaluated analytically, and gives

Snm(k, q, ω) = i

2π

ln

[
Em

k + i
2τ

Em
k +ω+ i

2τ

En
k+q− i

2τ

En
k+q−ω− i

2τ

]
Em

k − En
k+q + ω + i

τ

− i

2π

ln

[
Em

k − i
2τ

Em
k +ω+ i

2τ

En
k+q+ i

2τ

En
k+q−ω− i

2τ

]
Em

k − En
k+q + ω

. (B8)

APPENDIX C: SIMPLIFICATIONS AND LIMITS

Ultimately, we will be interested in the limits of q → 0 and ω → 0. For small q, Snm(k, q, ω) for En
k �= En

k is well-behaved,
whereas Snn(k, q, ω) and Snm(k, q, ω) for En

k = Em
k are not. Thus, we can apply i∂qν

on the matrix elements and safely take
q → 0 in these factors. This yields

χαβ (q, ω) = iεβμν

∫
k

∑
n,m

〈
∂νun

k

∣∣ jα (k)
∣∣um

k

〉 (
kμδmn − Amn

kμ

)
Snm(k, q, ω)

+ iεβμν

∫
k

∑
n,m

〈
un

k

∣∣∂ν jα (k)
∣∣um

k

〉(
kμδmn − Amn

kμ

)
Snm(k, q, ω)

+ iεβμν

∫
k

∑
n,m

〈
un

k

∣∣ jα (k)
∣∣um

k

〉 〈
um

k

∣∣kμ

∣∣∂νun
k

〉
Snm(k, q, ω)

+ iεβμν

∫
k

∑
n,m

〈
un

k

∣∣ jα (k)
∣∣um

k

〉 (
kμδmn − Amn

kμ

)
vn

k+qν

dSnm(k, q, ω)

dEn
k+q

(C1)

where ∂ν ≡ ∂kν
and Amn

kμ = 〈um
k |i∂ρμ

|un
k〉. In the third integral, we have used the smoothness of un

k(ρ) in k and ρ to drop
εβμν〈um

k |i∂ρμ
|∂νun

k〉. In the fourth integral, we have exploited the fact that Snm(k, q, ω) depends on q only through En
k+q We no

longer need the basis functions φi(ρ); instead, momentum matrix elements Amn
kμ , which are routinely computed by first principles

or determined experimentally by measuring optical transitions, suffice.
Next, we assume a limit where the “gauge field” 〈um

k |i∂ρμ
|un

k〉, proportional to the optical matrix element, is negligible, such
as the nearly-free-electron or deep tight-binding limits described in Sec. A 2. Then,

χαβ (q, ω) = iεβμν

∫
k

∑
n

〈
∂νun

k

∣∣ jα (k)
∣∣un

k

〉
kμSnn(k, q, ω) + iεβμν

∫
k

∑
n

〈
un

k

∣∣∂ν jα (k)
∣∣un

k

〉
kμSnn(k, q, ω)

+ iεβμν

∫
k

∑
n,m

〈
un

k

∣∣ jα (k)
∣∣um

k

〉 〈
um

k

∣∣∂νun
k

〉
kμSnm(k, q, ω) + iεβμν

∫
k

∑
n

vn
kαkμvn

kν

dSnn(k, q, ω)

dEn
k+q

. (C2)

This further simplifies if we focus on the isotropic part of the response, χiso = 1
3

∑
α χαα . Verifying that dSnn(k, q, ω)/dEn

k+q is
finite, the fourth integral does not contribute to χiso thanks to the factor εαμνvn

kαvn
kν . Using

εαμν∂ν

〈
un

k

∣∣ jα (k)
∣∣un

k

〉 = εαμν∂ν∂αEn
k = 0 (C3)

we get

χiso(q, ω) = iεαμν

3

∫
k

kμ

∑
n

〈
un

k

∣∣(vn
kα − jkα

)∣∣∂νun
k

〉
Snn(k, q, ω) + iεαμν

3

∫
k

kμ

∑
n �=m

〈
un

k

∣∣ jα (k)
∣∣um

k

〉〈
um

k

∣∣∂νun
k

〉
Snm(k, q, ω)

= χ intra
iso + χ inter

iso , (C4)

where we have separated the intraband (n = m) and interband (n �= m) contributions. We now study the uniform (q → 0 before
ω → 0) and static (ω → 0 before q → 0) limits for the two types of contributions.

1. Interband, away from band intersections (En
k �= Em

k )

In this case, the uniform and static limits commute and we can set q = 0 and ω = 0 directly. Equation (B8) reduces to

Snm(k, 0, 0) = −arg
(
Em

k + i
2τ

) − arg
(
En

k + i
2τ

)
π

(
Em

k − En
k

)
≈ −


( − Em
k

) − 

( − En

k

)
Em

k − En
k

+ 1

2πτEm
k En

k

(C5)

205107-9



SWADEEPAN NANDA AND PAVAN HOSUR PHYSICAL REVIEW B 107, 205107 (2023)

for |Em
k τ |, |En

k τ | 
 1, where the 
(· · · ) terms come from branch cuts in arg(· · · ). If one of the energies is zero, then

Snm(k, 0, 0) ≈

⎧⎪⎪⎨
⎪⎪⎩

1/2−


(
−Em

k

)
Em

k
+ 1

2πτEm2
k

, En
k = 0, Em

k �= 0,

1/2−


(
−En

k

)
En

k
− 1

2πτEn2
k

, Em
k = 0, En

k �= 0.

(C6)

With 
(0) = 1/2, we can compactly write

Snm(k, 0, 0) ≈ −

(− Em

k

) − 

(− En

k

)
Em

k − En
k

(C7)

to leading order in 1/τEm,n
k . Inserting this into the response function gives

χ inter
iso = − iεαμν

3

∫
k

kμ

∑
n �=m

〈
un

k

∣∣ jα (k)
∣∣um

k

〉〈um
k

∣∣∂νun
k

〉
(− Em
k

) − 

(− En

k

)
Em

k − En
k

(C8)

as long as there are no band crossings. We can simplify the above by observing that〈
un

k

∣∣∂α

(
H0(k)

∣∣um
k

〉) = 〈
un

k

∣∣∂α

(
Em

k

∣∣um
k

〉) ⇒ 〈
un

k

∣∣ jα (k)
∣∣um

k

〉 = (
Em

k − En
k

)〈
un

k

∣∣∂αum
k

〉 + vn
kαδmn (C9)

and 〈
un

k

∣∣∂αum
k

〉 + 〈
∂αun

k

∣∣um
k

〉 = ∂α

〈
un

k

∣∣um
k

〉 = 0. (C10)

Thus,

χ inter
iso = − iεαμν

3

∫
k

kμ

∑
n �=m

〈
un

k

∣∣∂αum
k

〉〈
um

k

∣∣∂νun
k

〉[



(− Em
k

) − 

( − En

k

)]

= iεαμν

3

∫
k

kμ

∑
n �=m

{〈
∂αun

k

∣∣um
k

〉〈
um

k

∣∣∂νun
k

〉 − 〈
∂νun

k

∣∣um
k

〉〈
um

k

∣∣∂αun
k

〉}



(− En
k

)

= iεαμν

3

∫
k

kμ

∑
n

{〈
∂αun

k

∣∣∂νun
k

〉 − 〈
∂νun

k

∣∣∂αun
k

〉}



(− En
k

)

= −2

3

∫
k

∑
n



(− En

k

)
k · Fn

k, (C11)

where Fn
k = i〈∇kun

k| × |∇kun
k〉 is the Berry curvature of the nth band. Going from the second to the third line, we added the

m = n term to the summation, noting that it vanishes anyway. Thus, χ inter
iso in continuum Hamiltonians is given by the first

moment of the Berry curvature of the occupied Bloch states if there are no band intersections. We will see shortly that the above
result holds even when band intersections are included as long as the intersections are not within O(1/τ ) of the Fermi level.

2. Intraband or at a band intersection (En
k = Em

k )

In this case, the uniform and static limits do not commute, so we must consider them separately. We assume that band
intersections, if any, are not close to the Fermi level. If they are, Bloch functions become nondifferentiable at these points,
and the formalism we have developed so far breaks down. Physically, tuning the Fermi level to a band intersection invalidates
smooth, semiclassical nature of the q → 0 limit and demands a nonperturbative, fully quantum calculation.

a. Uniform limit: q → 0 before ω → 0

At q = 0 and En
k = Em

k , Eq. (B8) becomes

Snm(k, 0, ω) = i

2π
ln

[
Em

k + i
2τ

Em
k − ω − i

2τ

Em
k − i

2τ

Em
k + ω + i

2τ

]
1

ω(iωτ − 1)
. (C12)

For Em
k �= 0, which is true away from the Fermi level, we consider the low-frequency regime, |ω| � |Em

k | and approximate

Snm(k, 0, ω) = 1

π
Im

[
1

Em
k + i

2τ

]
1

iωτ − 1
. (C13)
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Now taking ω → 0 in the two extremes ωτ → ∞ (“clean”) and ωτ → 0 (“dirty”),

Snm(k, 0, ω → 0) =
⎧⎨
⎩

− δ(Em
k )

iωτ
→ 0, |ωτ | 
 1

− 1
π

Im
[

1
Em

k + i
2τ

]
, |ωτ | � 1

(C14)

On the other hand, if Em
k = 0,

Snm(k, 0, ω) = − i ln(1 − 2iτω)

πω(iωτ − 1)
. (C15)

As ω → 0,

Snm(k, 0, ω) =
⎧⎨
⎩

0, |ωτ | 
 1,

2τ

π
, |ωτ | � 1,

(C16)

which is equivalent to Eq. (C14) at Em
k = 0. In other words, the ω → 0 and the Em

k → 0 limits commute. Thus, we can compactly
write

Snm(k, 0, ω → 0) =
{

0, |ωτ | 
 1,

− 1
π

Im
[

1
Em

k + i
2τ

]
, |ωτ | � 1

(C17)

for all Em
k . Thus, the |ωτ | 
 1 regime gives no additional contribution to χ inter

iso even if there are band crossings.
If |ωτ | � 1, χ inter

iso receives an additional contribution from regions where Em
k = En

k :

�χ inter
iso = − iεαμν

3π

∫
k

kμ

∑
n �=m;Em

k =En
k

〈
un

k

∣∣ jα (k)
∣∣um

k

〉〈
um

k

∣∣∂νun
k

〉
Im

[
1

Em
k + i

2τ

]
. (C18)

The factor Im[ 1
Em

k + i
2τ

] stipulates that the above correction is governed by band intersections within O(1/τ ) of the Fermi level—a

situation we excluded from the outset in this section—so the correction will be negligible.
In the uniform limit, χ intra

iso vanishes if |ωτ | 
 1 according to Eq. (C17). If |ωτ | � 1,

χ intra
iso = − iεαμν

3π

∫
k

kμ

∑
n

〈
un

k

∣∣(vn
kα − jkα

)∣∣∂νun
k

〉
Im

[
1

En
k + i

2τ

]

= − iεαμν

3π

∫
k

kμ

∑
n

〈
∂αun

k

∣∣(H − En
k

)∣∣∂νun
k

〉
Im

[
1

En
k + i

2τ

]

= 2

3

∫
k

∑
n

mn
k · k

e

1

π
Im

[
1

En
k + i

2τ

]
, (C19)

where mn
k = ie

2 〈∇un
k| × (Hk − En

k )|∇un
k〉 is the orbital moment of the Bloch state |un

k〉. To leading order in 1/τ ,

χ intra
iso = −2

3

∫
k

∑
n

mn
k · k

e
δ
(
En

k

)
. (C20)

Thus, the contribution is given by the orbital magnetic moment integrated over the Fermi surface.

b. Static limit: ω → 0 before q → 0

At ω = 0,

Snm(k, q, 0) = −arg
(
Em

k + i
2τ

) − arg
(
En

k+q + i
2τ

)
π

(
Em

k − En
k+q

) . (C21)

Now taking q → 0, we find

Snm(k, q → 0, 0) =
⎧⎨
⎩

δ(Em
k ), |vn

k · q|τ 
 1,

− 1
π

Im
[

1
Em

k + i
2τ

]
, |vn

k · q|τ � 1.
(C22)

Inserting this into χ inter
iso for |vn

k · q|τ 
 1 (“clean” limit) gives a correction to χ inter
iso from band intersections at or near the Fermi

level. Since we have excluded such situations, the correction vanishes for |vn
k · q|τ 
 1 and is negligible for |vn

k · q|τ � 1.
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On the other hand, the intraband susceptibility for |vn
k · q|τ 
 1 (“dirty” limit) is given by

χ intra
iso = iεαμν

3

∫
k

kμ

∑
n

〈
un

k

∣∣(vn
kα − jkα

)∣∣∂νun
k

〉
δ(En

k )

= −2

3

∫
k

∑
n

mn
k · k

e
δ
(
En

k

)
(C23)

identical to the result obtained in the uniform limit q = 0, ω → 0, τ → ∞ with |ωτ | � 1. When |vn
k · q|τ � 1, the result to

leading order in 1/τ is

χ intra
iso = −2

3

∫
k

∑
n

mn
k · k

e
δ
(
En

k

)
, (C24)

identical to the expression in the dirty limit.
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