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Tensor networks provide a useful tool to describe low-dimensional complex many-body systems. Finding
efficient algorithms to use these methods for finite-temperature simulations in two dimensions is a continuing
challenge. Here, we use the class of recently introduced isometric tensor network states, which can also be
directly realized with unitary gates on a quantum computer. We utilize a purification ansatz to efficiently
represent thermal states of the transverse field Ising model. By performing an imaginary-time evolution starting
from infinite temperature, we find that this approach offers a different way with low computational complexity
to represent states at finite temperatures.
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I. INTRODUCTION

Quantum many-body systems can form fascinating phases
of matter with exotic emergent properties [1]. Discovering
these phases and characterizing their stability to thermal
fluctuations is a pertinent challenge, especially since any ex-
periment will naturally be conducted at finite temperature.
To obtain finite-temperature properties of generic interact-
ing quantum many-body systems, numerical techniques are
typically required. Quantum Monte Carlo (QMC) sampling
of finite-temperature states is extremely efficient for many
systems. However, fermionic and frustrated models cannot be
sampled due to the infamous sign problem [2]. For these sys-
tems exact diagonalization can be applied, which is restricted
to very small systems because of the exponential growth of
the Hilbert space. An alternative approach is provided by ten-
sor network states (TNS) [3–8]. These variational states can
capture low-entanglement regions of the full Hilbert space.
Proven rigorously for gapped Hamiltonians in one dimen-
sion [9] and for general thermal states [10], the area law
claims that the entanglement for the ground state of such
a Hamiltonian is only proportional to the area between two
subsystems.

For one-dimensional systems TNS have been very suc-
cessful [11–14]. There the area law translates to a constant
entanglement between two subsystems independent of their
size. Several algorithms for matrix product states (MPS) can
be used to efficiently obtain not only ground states, but also
thermal states by an imaginary-time evolution of purified
[15–17] or minimally entangled typical thermal states [18,19].
Key insight comes from the gauge degree of freedom of MPS,
which allows one to write them in a canonical form. This
imprints an isometry condition on the MPS. That in turn
enables for an efficient computation of local observables. In
two dimensions, TNS are difficult to handle numerically as
the contraction of these networks is in general exponentially
hard [20,21], so one usually has to resort to approximate
contraction schemes [4,22–25]. Recently, a subclass of two-
dimensional (2D) TNS has been introduced which obeys a
similar isometry condition as one-dimensional (1D) MPS and

are hence called isometric tensor network states (isoTNS)
[26–30]. In [26] it was shown how to generalize the well-
known time-evolving block decimation (TEBD) algorithm
from MPS to isoTNS and [31] adapts the density matrix
renormalization group (DMRG) to approximate ground states
with isoTNS. Very recent works also extend the isometric
concept to fermionc [32] and semi-infinite tensor networks
[33]. Another convenient property of these states is that they
can be directly implemented via unitary gates and hence can
be represented on quantum computers [34,35]. Currently, it is
actively explored how useful the restricted variational isoTNS
manifold is as a new set of variational states compared to full
TNS. Another prevailing question is to extend TNS methods
to finite temperatures, which has recently successfully been
done for several models in 2D [36–41].

In this work, we show that isoTNS can be used to effi-
ciently compute finite-temperature properties for 2D systems.
In particular, we focus on the transverse field Ising model,
which undergoes a thermal (T > 0) as well as a quantum
phase transition (T = 0). Since this model is sign-problem
free, we benchmark our results with QMC simulations. Yet,
we emphasize that TNS methods are not affected by any sign
problem and can therefore be used to simulate frustrated or
fermionic systems as well.

This work is structured as follows. In Sec. II we review
the basic properties of isoTNS and an adapted version of the
TEBD2 algorithm used for the imaginary-time evolution to
simulate thermal states via a purification ansatz. To test the
capabilities of the algorithm we apply the algorithm to the
2D transverse field Ising model and compare our results with
QMC data in Sec. III. We conclude in Sec. IV and discuss
the complexity of variational isoTNS represented on quantum
computers.

II. IMAGINARY-TIME EVOLUTION FOR PURIFIED isoTNS

We now summarize the defining properties of isoTNS and
describe the algorithm used to obtain thermal states in the
purification picture.
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FIG. 1. Purified isometric tensor networks. (a) The isometry con-
dition for left- and right-normalized tensors [see Eqs. (2) and (3)]
gives identities upon contraction of all ingoing legs of the state and
its conjugate. (b) The local Hilbert space is doubled, illustrated by
an ancilla leg (gray), to obtain a purified thermal state. (c) Two-
dimensional purification of isoTNS with an orthogonality center (red
tensor) and orthogonality hypersurface on the corresponding row and
column (red shaded region). We label the left- and right-normalized
columns A[i] and B[i] and the orthogonality column � [i].

The tensors of isoTNS are restricted to isometries, i.e.,
for W ∈ Cn×p, n � p, we have W †W = Ip and WW † = Pn,
where Ip is the identity on the smaller subspace and Pn is
a projection from the larger subspace into the smaller one.
To include these properties in the graphical notation for the
tensor networks we will write W as a map W : Cn(= Cn1 ⊗
Cn2 . . . ) → Cp(= Cp1 ⊗ Cp2 . . . ) and denote the domain
(image) with ingoing (outgoing) arrows, respectively (see
Fig. 1). Using the isometric form we can exactly contract
the whole tensor network with its conjugate to a single site,
which has only ingoing arrows. This site is referred to as
orthogonality center.

In one dimension the celebrated canonical form of the MPS
automatically implies these isometry constraints, such that we
can write a state |ψ〉 in a general isometric form

|ψ〉 =
∑

j1,..., jL
α1,...,αL+1

A[1] j1
α1α2

A[2] j2
α2α3

. . . �[Rc] jRc
αRc αRc+1

. . . B[L] jL
αLαL+1

| j1 . . . jL〉.

(1)

The physical sites are denoted by ji ∈ {1, . . . , d} for a
d-dimensional local Hilbert space, while the virtual bond
indices are labeled αi ∈ {1, . . . , χ} with the maximal bond
dimension χ . The isometric conditions for the left- and right-
normalized A/B tensors are∑

ji,αi

A[i] ji
αi,αi+1

A
[i] ji
αi,αi+1

= δαi+1,αi+1 , (2)

∑
ji,αi+1

B[i] ji
αi,αi+1

B
[i] ji
αi,αi+1

= δαi,αi , (3)

which are also depicted in Fig. 1(a). In general we can
write an MPS in a form as in Eq. (1) with the orthogonality

center �[Rc] jRc at site Rc. We can move the orthogonality
center to a neighboring site and remain in isometric form
by a QR decomposition or similar decompositions. Because
of the isometric conditions for all tensors left and right of
Rc, any local observable can be computed by contracting
just the orthogonality center with the corresponding oper-
ator ORc :

〈ψ |ORc |ψ〉 =
∑

jRc , jRc
αRc ,αRc+1,

O
jRc , jRc
Rc

�
[Rc] jRc
αRc ,αRc+1

�
[Rc] jRc
αRc ,αRc+1

. (4)

It is precisely the isometric form that allows for very efficient
algorithms. Updates of the local orthogonality center � are
optimal since all surrounding tensors in the environment can
be contracted analytically. Note that in one dimension we can
always use the gauge degree of freedom to bring any MPS
with fixed bond dimensions into isometric form.

In two dimensions the situation is different. In general
the exact contraction of TNS is exponentially hard [20,21],
which makes it also very difficult to find the optimal up-
date of local tensors in time evolution or ground-state search
algorithms. The isometric conditions then help to contract
the full tensor network in order to perform optimal ten-
sor updates for two-dimensional versions of the DMRG and
TEBD algorithm, named accordingly DMRG2 and TEBD2

[26,31]. To resemble the MPS notation, one keeps the form
of the wave function as in Eq. (1), but now �[i] denotes
an orthogonality column and the left- and right-normalized
columns we label A[i] and B[i], respectively [see Fig. 1(c)].
Below we will use the TEBD2 algorithm for imaginary-time
evolution of an infinite-temperature state. Compared to the
algorithm originally introduced in [26], we use a slight vari-
ation, which was also applied in other recent works [32,33],
and is schematically shown in Fig. 2. Here, we summarize the
most important steps and refer for a more detailed description
to Refs. [26,31]:

(1) We start with an isoTNS with orthogonality center in
the top left corner. This defines an orthogonality row and
column where all arrows are ingoing. If we focus only on the
column, we can think of it as an MPS, where the additional
legs are included into the physical leg. Moving the orthogo-
nality center from the top to the bottom corresponds in the
MPS language to changing between a left- and right-canonical
form. Before applying the Trotter gates for the imaginary-time
evolution, we combine the orthogonality column with the next
one. This leads to a new orthogonality column �B = � ′′, with
increased virtual and physical bond dimensions.

(2) Using this double-column representation, depicted by
two parallel lines in the tensor network graph, we can apply
the nearest-neighbor Trotter gates in horizontal and vertical
directions at the same time. By updating the double-column
tensors in a staircase fashion, the orthogonality center is
brought from the top-left to the bottom-left corner. This
scheme guarantees a second-order Trotterization error after
sweeping back. Compared to the usual TEBD update scheme,
where even and odd bonds are updated alternately, the
staircase update brings the orthogonality center automatically
to the proper site for proceeding with the next step of the
algorithm.
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FIG. 2. TEBD2 algorithm for purification. We use a slight variation of the TEBD2 algorithm, presented in earlier studies [26,32,33], where
we combine two columns before applying the Trotter unitaries (blue). Steps (i)–(iv) illustrate the updates of the isoTNS within one sweep and
are described in more detail in the main text. The inset shows the Moses Move, used to shift the orthogonality center from one column to the
next one. The unitary gauge degree of freedom, used to disentangle the state, is depicted in green.

(3) To split the double column � ′′ again into two legs
and to simultaneously bring the orthogonality center to
the top of the next column, a “Moses Move” (MM) was
proposed in [26]. This Moses Move corresponds to finding a
left-normalized column A and a new orthogonality center �,
such that the overlap with the initial � ′′ is maximized,

argmin
A,�

||� ′′ − A�||. (5)

To preserve the isometric form this can be done by either
sequentially splitting up � ′′ from the bottom to top or by vari-
ationally optimizing Eq. (5). In practice it was found that the
sequential splitting followed by some variational optimization
steps gives the best results. During the sequential MM we
can optimize the splitting to minimize the entanglement by
utilizing a unitary disentangler (see inset in Fig. 2). This
was systematically investigated in [31] to optimize different
entanglement measures. Here we will always use a nonlin-
ear disentangler, which optimizes the Rényi- 1

2 entropy over
the corresponding Riemannian manifold, as implemented in
the YMANOPT package [42]. Moreover, it was found in [26]
that keeping an enlarged bond dimension η on the vertical
bonds of the new orthogonality column decreases the error of
the Moses Move substantially. Throughout this work we use
η = 2 χ .

(4) After splitting with the MM, we now combine the
new orthogonality column with the next right-normalized col-
umn again to get a new double-column orthogonality center.
Then we proceed by alternating TEBD, Moses and combining
moves, until the orthogonality center has reached the top right
of the isoTNS. To reach the initial isometry configuration
again, we perform all steps the other way around and therefore
sweep the orthogonality column from the right back to the left.
To do so we again use the double-column scheme to update
horizontal and vertical bonds at the same time.

In the original TEBD2 algorithm the horizontal gates are
applied by rotating the whole isoTNS 90◦ four times and
therefore sweeping though the isoTNS twice as often, which
can lead to more errors during the MMs. Our variation on the

other hand increases the numerical costs from O(d2χ7 + χ7)
to O(d3χ8 + dχ9) for the MM and from O(d2χ5 + d2χ3)
to O(d4χ8 + d6χ6) for the TEBD step. For both options it
is favorable to apply the Trotter gates to the reduced ten-
sors after judicious QR decompositions [24]. We find that
the double-column algorithms give better results, while the
complexity is still better than for other two-dimensional TNS
algorithms with approximate contractions of the environment.
For instance, the full update in PEPS requires a cost of
O(dχ6χ2

MPO + χ4χ3
MPO) to construct a boundary MPO with

bond dimension χMPO, where empirically χMPO ∝ χ2 suf-
fices. For the tensor update the construction of the reduced
tensors then has an additional complexity of O(d4χ4χ2

MPO +
d2χ6χ2

MPO + d2χ4χ3
MPO) and O(d6χ6) for its decomposition

[25].
In Ref. [26] the TEBD2 algorithm was successfully applied

with isoTNS to find ground states with imaginary-time evo-
lution and in Ref. [31] for spectral functions with real-time
evolution. In this work we use imaginary-time evolution to-
gether with a purification ansatz to simulate thermal states.

The purification ansatz is a well-known tool from MPS,
where it was used for thermal state simulations [15–17]. Let
us consider any mixed (thermal) state described by the density
matrix ρ. If we enlarge the physical Hilbert space Hp with a
copy called the ancilla Hilbert space Ha, we can regain our
physical density matrix by tracing out the ancilla legs of a
pure state |ψ〉 ∈ Hp ⊗ Ha:

ρ = Tra|ψ〉〈ψ |. (6)

In terms of a TN we can think of the purification |ψ〉 as adding
an additional leg on each tensor, that corresponds to the ancilla
space [see Fig. 1(b)]. When computing observables, we trace
out that leg by contracting with the corresponding ancilla leg
of the conjugated tensor.

To obtain thermal states, we start with a purified state
at infinite temperature. For a spin- 1

2 model it is given as a
product of local Bell states entangling spin-up and -down of
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FIG. 3. Energy densities of isoTNS. The energy densities are obtained for the transverse field Ising model. A sketch of the phase diagram
from a ferromagnet (FM) to a paramagnet (PM) shown as inset of (c). For the classical (g = 0, blue lines) and quantum (g = 2.5, orange lines)
case we compare to (quantum) Monte Carlo results (QMC). For g = 0 energies obtained from TEBD2 with χ = 4 are shown in comparison
with the exact TNS representation [inset in (a)] following an “isometrization” with Moses Move sweeps to an isoTNS with χ = 4. For g = 2.5
we plot results for different maximal bond dimensions χ . (a), (d) Show the thermal energy density and (b), (e) depict the error density
ε = |〈E〉 − EQMC|/L2 compared to QMC results. Shown error bars arise from QMC sampling. By cubic spline interpolation of the thermal
energy and computing the derivative numerically, we obtain the specific heat (c), (f). All data are for L = 10.

the physical and ancilla degrees of freedom,

|ψ (β = 0)〉 =
[

1√
2

(|↑〉p|↓〉a − |↓〉p|↑〉a)

]⊗N

(7)

such that ρ(β = 0) = Id.
For any other temperature β > 0 the thermal state is

then given by the imaginary-time evolution of the infinite-
temperature state:

|ψ (β )〉 = e− β

2 H |ψ (β = 0)〉. (8)

Here H is only acting on the physical legs and we therefore
obtain ρ(β ) ∝ Tra|ψ (β )〉〈ψ (β )| ∝ e−βH , up to a normaliza-
tion constant. By using the TEBD2 algorithm with imaginary-
time evolution we can thus construct thermal isoTNS using
purification. The cost of using a purification ansatz is a
larger local Hilbert space dimension d → d2. For the double-
column Moses Move this will increase the complexity to
O(d6χ8 + d2χ9), while for the TEBD a previous QR decom-
position [24] gives a scaling O(d6χ8 + d6χ6).

Note that the trace in Eq. (6) allows us to apply additional
unitary operators to the ancilla legs of the pure state, without
changing the thermal density matrix. This unitary degree of
freedom can be utilized to decrease the entanglement of the
state [43]. In practice, we find that obtaining the optimal dis-
entangler on the ancilla legs is a challenging task. We compare
different disentangling schemes in Appendix A, but do not
find much improvement for our results. Thus, in the following
we do not exploit this unitary degree of freedom on the ancilla
legs.

III. RESULTS

We use the previously described algorithm to obtain ther-
mal states for the transverse field Ising model

H = −J

⎛
⎝∑

〈i, j〉
σ x

i σ x
j − g

∑
i

σ z
i

⎞
⎠, (9)

where 〈i, j〉 denotes the nearest neighbors on a square lattice
with open boundary conditions and σα

i are the usual Pauli
matrices for spin 1

2 .
The finite-temperature phase diagram for this model is

known from quantum Monte Carlo simulations [44] [see inset
Fig. 3(c) for a sketch]. At g = 0 we have a classical Ising
model with a thermal phase transition at Tc = 2J/ ln(1 +√

2) ≈ 2.269J from a ferromagnetic to paramagnetic phase,
while for T = 0 there is a quantum phase transition around
gc ≈ 3.044. We will analyze the finite-temperature behavior
along two cuts in the phase diagram corresponding to g = 0
and 2.5 and directly compare all results to quantum Monte
Carlo (QMC) results, obtained with the ALPS package [45].
Since our model is sign-problem free, the QMC results can
be seen as exact. The small error bars are obtained from the
standard deviation of 5×106 samples. Here we focus on a
fixed system size L = 10; results for other L are shown in
Appendix B.

For the classical case at g = 0 there is also another route to
obtain a purified thermal state, aside from the earlier described
TEBD2 algorithm. In that limit, only σ x operators are involved
in the Hamiltonian and all terms commute. Therefore, we
do not have to rely on a Trotter decomposition to construct
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the operator e−βH/2, but can directly apply the imaginary-
time evolution to β on all bonds, starting again from the
infinite-temperature state (7). Each of the bond gates can
then be decomposed via an SVD to local tensors with virtual
bond dimension two. Hence, we can construct a 2D tensor
network with maximal bond dimension χ = 2 that exactly
represents the thermal state at any temperature β [see also
inset of Fig. 3(a)]. However, this tensor network is not in
an isometric form. To bring a general TNS into isometric
form, we have to perform sweeps similar to the TEBD2 al-
gorithm, but without the unitary updates. During the sweep
the isometric form is established, but will accumulate errors
from the MM, which will depend on the maximal bond di-
mension of the resulting isoTNS; here χ = 4 for all cases.
Therefore, starting from an exact TNS representation and
iteratively “isometrizing” the tensor network, we can draw
conclusions about the representability of thermal states with
isoTNS. Note that this scheme works in the classical limit and
cannot be generalized to finite transverse field g �= 0, where a
cluster expansion of the corresponding TN operators would be
necessary [46].

A. Energy density and specific heat

We start our analysis by evaluating the energy density
〈E〉/L2. Since the Hamiltonian only has local terms, we can
readily measure this quantity during the TEBD2 sweeps. The
results are shown in Fig. 3. Let us first evaluate the classical
g = 0 case. We find that the energy density agrees well with
the Monte Carlo data for both the imaginary-time purifica-
tion (blue lines) and the isometrization from the exact TNS
(gray lines) [Fig. 3(a)]. Only around the critical temperature
small deviations are visible for the TEBD2 curve. To quantify
those we show the difference between isoTNS and Monte
Carlo energy densities in Fig. 3(b). The maximal deviations
occur close to the critical point, where the correlation length
diverges and therefore correlations cannot be captured with
isoTNS of low bond dimensions anymore. This is in contrast
to a generic TNS which is capable of capturing power-law
correlations and hence the critical point of the classical Ising
transition with a low bond dimension of χ = 2. Due to the
isometry condition, by contrast, only exponentially decaying
correlations can be captured for an orthogonality center �[i]

with finite bond dimension. Hence, the isoTNS with fixed
bond dimension χ = 4 cannot represent the thermal state
near the phase transition exactly. This is most directly seen
from the exact TNS to isoTNS conversion. For temperatures
below and above the critical point, however, we find very good
agreement of the energies, indicating that the thermal states in
those regions can be faithfully represented.

Likewise, when constructing the isoTNS with the TEBD2

algorithm, we see a clear peak in the energy density error
around βc, which extends to a broader region at lower temper-
atures than the one from the exact TNS. While for the latter
each data point corresponds to an independent simulation of
the thermal state, during the TEBD2 algorithm each state in
the imaginary-time evolution depends on the previous one
and therefore errors from Trotterization, truncation, and the
Moses Move accumulate. Nevertheless, eventually the en-
ergy approaches the ground-state energy at low temperatures,

where both curves show the same energy error again. The
error bars shown in Fig. 3(b) are the ones from the Monte
Carlo simulations. The good agreement between the direct
conversion of the TNS and the TEBD2 algorithm shows that
the latter efficiently explores the variational isoTNS manifold
and properly constructs the thermal state without accumulat-
ing too serious errors.

The next question we address is how well the energy den-
sity can be computed if we also consider quantum fluctuations
by turning on the transverse field g = 2.5. In Fig. 3(d) we
can clearly see some deviations for a small maximal bond
dimension χ = 2, indicating that this bond dimension is not
sufficient to capture the quantum and thermal correlations
correctly. By contrast, for χ = 4 and 6 the orange curves agree
very well with the QMC energy. A closer look at the energy
difference [Fig. 3(e)] reveals that similarly to the classical
case, the largest discrepancy can be found around the critical
temperature Tc ≈ 1.274J [44]. However, we find that the peak
is much broader than in the g = 0 case and the error only
saturates at much lower temperatures. This is already expected
from the slower approach of the energy to the ground-state en-
ergy for increasing β. Hence, the isoTNS also approaches the
well representable ground state at higher β and the influence
of the accumulated Trotterization, truncation, and MM error
prevails for larger temperature ranges.

Although a direct comparison of energy densities gives a
good first impression of how well the purification algorithm
with TEBD2 works, we are ultimately interested in observ-
ables that are easier accessible experimentally. Therefore, we
now focus on the specific heat that can be directly obtained
from numerical derivatives of the energy.

As already argued in [26], there is a competition of Trot-
terization and the Moses Move, when finding the optimal time
step for the imaginary-time evolution. On the one hand, a
smaller δτ reduces the Trotter error. On the other hand, this
requires more iterations of the Moses Move, where in each
step an additional error is introduced. We find the optimal
time step that leads to the least energy deviations from QMC
at around δτ ≈ 0.1/J . Since this time step is quite large,
we cannot directly numerically evaluate the derivative of the
energy as a function of temperature. Instead we first inter-
polate our energy results with cubic splines. From that we
compute the derivatives to obtain the specific heat [Figs. 3(c)
and 3(f)]. The curves agree well with the measurements ob-
tained from (quantum) Monte Carlo simulations. For g = 0
[Fig. 3(c)], the peaks for both the imaginary-time evolution
and the isometrization are already very close to the actual
critical temperature despite the finite-system size. As seen
before in the energy the results from the TEBD2 algorithm
differ a little from the Monte Carlo data, especially close after
the critical point. For the interacting case g = 2.5 [Fig. 3(f)],
we also find a very similar picture as for the energies. For
χ = 2 (not shown) the energy variations are too big to ob-
tain reliable results. By contrast, the data for χ = 4 and 6
agree reasonably well with the QMC, only showing some
deviations for temperatures below the critical point. Note that
due to strong finite-size effects the peak of the specific heat
is shifted substantially compared to βc of the infinite sys-
tem, which is also consistent with the finite-size QMC data
(red dots).
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FIG. 4. Correlation functions. With isoTNS we can efficiently compute 〈σ x
r0
σ x

r0+nŷ〉 along the orthogonality column. Here, r0 is chosen to
be the fifth column and third row of a 10×10 system. We compare (a), (d) nearest neighbor n = 1, as well as (b), (e) n = 3, and (c), (f) n = 5
correlations along the y direction with (quantum) Monte Carlo results. The upper row shows data for g = 0 from the TEBD2 algorithm and
from exact TNS to isoTNS conversion, each with χ = 4. For g = 2.5 data for maximal bond dimensions χ = 4 and 6 is compared in the
bottom row. The system size is L = 10.

B. Correlation functions

So far we only investigated properties that were obtained
from the energy measurements. Now let us also focus on
correlation functions, which are measured independently. For
general TNS, the exact computation of correlation functions is
an exponentially hard problem since it requires the contraction
of the whole TN. The isometric conditions for isoTNS help
to simplify these computations. Especially for measuring cor-
relations within the orthogonality column the efficient MPS
scheme can be used. Here we measure correlation functions
along the y direction 〈σ x

r0
σ x

r0+nŷ〉, where r0 is a site in the
middle of the system, specifically for the presented 10×10
system r0 is the site in the fifth column and third row. Figure 4
compares the correlations for n = 1, 3, and 5. For the classical
case, we find again very good agreement with the Monte
Carlo correlations. In the same way as for energy and specific
heat, the deviations are largest around the critical temperature,
but eventually approach the ground-state value again at low
temperatures.

In contrast, for g = 2.5 the correlations even show differ-
ences to the QMC results for T → 0. While these deviations
are small for the nearest-neighbor correlations, they increase
when considering sites that are further apart. Higher bond
dimensions reduce these deviations [see Figs. 4(c) and 4(f)].
Additionally, we find that the deviations around the critical
point increase significantly, when going to larger systems
indicating the absence of convergence for our accessible bond
dimension (see Appendix B).

These findings indicate that the correlations, especially at
long distances, are in general harder to capture accurately than
the local energies. While the accumulation of the errors during

the TEBD2 algorithm still leads to locally accurate results, the
longer-range correlations become imprecise.

IV. CONCLUSION AND OUTLOOK

In this work, we have investigated isometric tensor network
representations for thermal states of quantum many-body sys-
tems in two spatial dimensions. To this end, we apply the
TEBD2 algorithm to a purified isoTNS with doubled physi-
cal and ancilla space. We benchmark the algorithm with the
two-dimensional transverse field Ising model, which hosts a
thermal as well as a quantum phase transition. In the absence
of the transverse field, we furthermore make use of the fact
that the thermal state can be exactly represented as a low-
bond dimension tensor network without isometry condition.
Isometrizing this network provides us with insights on the
variational power of the isoTNS ansatz. We found that away
from the thermal phase transition at which the correlation
length diverges, the isoTNS ansatz captures various proper-
ties of the state, such as the energy, specific heat, and local
correlations. These results agree with the TEBD2 algorithm,
which is applicable for generic transverse fields. We also
find that correlations at larger distances cannot be captured
accurately with low-bond dimensions, but increasing the bond
dimensions leads to more accurate results. One shortcoming
of the purification algorithm is that the low-temperature states
are obtained from cooling an infinite-temperature state, which
leads to an accumulation of errors. This could be circum-
vented by variationally optimizing the Rényi free energy for
each temperature of interest, as has been recently demon-
strated for one-dimensional tensor networks [47].
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FIG. 5. Quantum circuit for isoTNS. (a) By sequentially apply-
ing gates on a two-dimensional qubit grid, one can generate an
isoTNS [34]. (b) The number of required two-qubit gates for isoTNS
with bond dimension χ is shown compared to representing an MPS
with unitary gates, when winding the MPS around a two-dimensional
lattice, which requires exponentially growing bond dimension to
capture the 2D area law.

Although in this work we focus on finite square lattices,
it was also shown recently how to generalize the concept of
isoTNS to infinite strips [33]. Our purification ansatz could
readily be generalized to those geometries. However, the ex-
tension of isoTNS to the full two-dimensional thermodynamic
limit is still an open question for future work. Other TN
methods such as iPEPS or iPEPO have been explored in
recent years. Although methods for these TNS have a higher
complexity and the contractions of the environment can only
be done approximately, they yield good results for finite-
temperature simulations [36–41].

Another important property of isoTNS is that they can be
directly prepared with sequential unitary gates on quantum
computers [29,34,35,48]. The sequential structure allows one
to apply many local gates simultaneously, leading to a circuit
depth O(L) [see Fig. 5(a) for an illustration]. Furthermore, due
to the structure of the isoTNS only small bond dimensions are
required to capture the 2D area law. This should be contrasted
to a possible MPS realization of the 2D state as a quantum
circuit. In order to capture a 2D geometry, the MPS is wind-
ing around the lattice. Thus, the required bond dimension to
capture an area law grows exponentially with the number of
sites in one spatial direction. This leads to an exponential cost

when translating this MPS state to a unitary circuit. Hence,
when expressing this tensor network in terms of two-qubit
gates, isoTNS are suitable candidates for an efficient circuit
representation as O(L2) gates are required [see Fig. 5(b)].
Therefore, isoTNS are potentially useful variational manifolds
to encode thermal states on quantum computers.

Raw data and data analysis are available on Zenodo [49].

ACKNOWLEDGMENTS

We thank J. I. Cirac, S.-H. Lin, and L. Vanderstraeten
for insightful discussions. F.P. thanks in particular M. Za-
letel for various collaborations and discussions related to
isometric tensor networks. We acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy–EXC–
2111–390814868 and DFG Grants No. KN1254/1-2 and No.
KN1254/2-1, the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (Grant Agreements No. 771537 and No. 851161),
as well as the Munich Quantum Valley, which is supported by
the Bavarian state government with funds from the Hightech
Agenda Bayern Plus.

APPENDIX A: DISENTANGLERS ON THE ANCILLA LEGS

In the TEBD2 algorithm we have the option to utilize an
additional gauge degree of freedom of the purified state. Ap-
plying unitary operators to the ancilla legs will not change the
physical thermal state, but can be used to disentangle the wave
function [see Fig. 6(a)]. In the main text, we start with a prod-
uct state for infinite temperature β = 0. The imaginary-time
evolution then builds up entanglement between the physical
and ancilla legs throughout the whole system. However, when
approaching the ground state β → ∞, the system is again a
pure state. Thus, the purified state can be written as a ten-
sor product of the ground state (GS) with any product state
(PS) on the ancilla legs |ψ〉β→∞ = |GS〉p ⊗ |PS〉a. However,
the imaginary-time evolution will in general also build up
entanglement between the ancilla legs, which in turn limits
the representability for a fixed bond dimension. Therefore,
unitaries on the ancilla legs can be used to disentangle the
ancillas of the purified state.

For MPS this idea was systematically investigated in [43],
where it was shown that a lower entanglement entropy of
the state at large β can be achieved by applying disentan-
glers. There, two-site and global disentanglers were studied
for different optimization measures. Here we focus on two-
site disentanglers that optimize the second Rényi entropy.
The disentangling unitaries are applied on the orthogonality
column during the TEBD2 algorithm. We compare two dif-
ferent types of disentangling schemes [see Fig. 6(b)]. For the
staircase pattern we apply the disentanglers to the ancilla legs
similarly to the Trotter gates for the imaginary-time evolution.
Additionally, we also try disjoint disentanglers, which only act
on every second bond of the orthogonality column.

To compare the results with and without disentangler, we
consider the same observables as before and choose a trans-
verse field g = 2.5 on a 10×10 system and a maximal bond
dimension of χ = 4. For the energy density we find very
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FIG. 6. Disentanglers on the ancilla legs of the purified state.
(a) A unitary degree of freedom Udis on the ancilla legs can be utilized
during imaginary-time evolution Uδτ on the physical legs. (b) We
employ two-site disentanglers in a staircase pattern or a pattern
where they are only applied on disjoint bonds. As in the main text
we compare the error density (c) and nearest-neighbor correlations
(d) with and without disentanglers to quantum Monte Carlo results.
We focus on system size L = 10, maximal bond dimension χ = 4,
and set the transverse field to g = 2.5.

similar errors for all cases [see Fig. 6(c)]. Although the data
with disentangler show slightly better agreement with the
QMC results around the critical point and for higher values
of β, we observe larger errors at small β. The similarities
of all error densities can be explained by the fact that during
the Moses Move, we already use a unitary degree of freedom
between virtual legs to disentangle the state. In contrast, for
the nearest-neighbor correlations [Fig. 6(d)], deviations be-
tween the data with disentanglers and without are substantial.
In particular, the correlations become worse if disentanglers
are used. In general, finding the optimal disentangler is a
difficult problem that becomes exponentially hard if we want
to optimize for more than two sites. Therefore, the errors in
the correlations might indicate that we are not able to find the
optimal disentangler and even introduce additional correlation
errors by applying the nonoptimal disentangling gates.

In summary, we find that the unitary disentanglers on the
ancilla legs can in principle be useful, but do not provide any
advantage in practice for our case. We attribute this on the one
hand to the Moses Move which is already disentangling the
degrees of freedom and on the other hand to the difficulty of
finding the optimal (global) disentangler.

APPENDIX B: RESULTS FOR DIFFERENT SYSTEM SIZES

In the main text, we focus on results for system sizes
of 10×10. Here, we present data also for other values of
system size L×L. Compared to an MPS winding on a 2D
lattice, isoTNS can capture the area law with a constant bond
dimension, which does not need to be scaled with L. Here

FIG. 7. Error density and correlations for different system sizes. For several system sizes between L = 6 and 16 we compare the error
density ε = |〈E〉 − EQMC|/L2 to (quantum) Monte Carlo results for g = 0 (blue) and g = 2.5 (orange) as a function of inverse temperature (a),
(d) as well as a function of system size L for fixed β = 0.1/J < βc, β = 0.5/J ≈ βc (β = 0.8/J for g = 2.5), and β = 2.5/J > βc (b), (e).
(c), (f) Show n = 1 and 5 correlation functions along the y direction 〈σ x

r0
σ x

r0+nŷ〉 for L = 16 and r0 in the eighth column and fifth row. All data
shown are for fixed bond dimension χ = 4.
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we fix the maximal bond dimension to χ = 4. Moreover,
we note that the number of Moses Moves required to move
the orthogonality center through the system increases with L,
which has a constant contribution to the error density.

Figures 7(a) and 7(d) show the error density for L = 6, 10
and 16 for g = 0 and 2.5, respectively. We can see that close
to the critical points the error increases with L since there
the correlation length diverges and cannot be captured with
isoTNS of constant bond dimension. Nevertheless, at temper-
atures below and above βc the errors all approach the same
values, indicating that indeed the error density is independent
of the system size.

The system-size dependence of the error density can also
be described more precisely by looking at fixed values of β

below, at, and above the critical point while tuning the system
size. What can be seen in Figs. 7(b) and 7(e) is a constant error
density for β < βc and β > βc except for finite-size effects
for L = 6. Near the critical temperature, however, we observe
a steady growth with L.

When looking at correlations along the y direction
〈σ x

r0
σ x

r0+nŷ〉, we observe a similar behavior as for the energy.
Figures 7(c) and 7(f) depict the correlation function for n = 1
and 5, respectively for a 16×16 system. The site r0 is chosen
to be in the bulk of the system. Concretely we chose the
eighth column and fifth row. At low and high temperatures the
correlations agree well with (quantum) Monte Carlo results.
Around the critical temperatures, the deviations are much
larger than for the L = 10 results from the main text, which is
especially large for the g = 2.5 (orange) data. We also observe
that the error increases for larger distances n. This indicates
that local observables can still be captured well with isoTNS,
while for longer-range correlations larger bond dimensions
may be required. Alternatively to the purification algorithm
which may accumulate errors while cooling the state, the
Rényi free energy could be optimized [47] to see whether
the large deviations for finite transverse fields are a result
of the restricted variational manifold or are arising from the
purification algorithm itself.
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