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Emergent soft-gap Anderson models at quantum criticality in a lattice Hamiltonian
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Local quantum criticality in itinerant fermion systems has been extensively investigated through the soft-gap
Anderson impurity model, wherein a localized, correlated impurity hybridizes with a broad conduction band
with a singular, |ω|r , density of states. However, lattice models hosting quantum critical points (QCPs) do not
appear to have such a spectrum emerging at the QCP. In this work, we report the emergence of such a singular
form of the density of states in a three-orbital lattice model, within dynamical mean field theory, precisely at a
quantum critical point, separating a gapless, Fermi liquid (FL) metallic phase from a gapped, Mott insulating
phase. A temperature-dependent exponent, α, defined using the corresponding Matsubara self-energy, is found
to vary from +1 deep in the FL regime, to −1 in the Mott insulator regime. Interestingly, we find that α becomes
temperature-independent, and hence isosbestic, precisely at the QCP. The isosbestic exponent is shown to lead
to an emergent soft-gap spectrum, |ω|r , at the QCP, where r = |αiso|. We discuss the implications of our findings
for non-Fermi-liquid behavior in the quantum critical region of the phase diagram.
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I. INTRODUCTION

Quantum phases and their critical nature continue to be a
leading field of study in condensed-matter physics [1]. Par-
ticularly challenging and interesting is the class of quantum
phase transitions (QPTs) that defy the traditional Landau-
Ginzburg-Wilson framework [2–5]. These include topological
phase transitions [6–9] and QPTs involving the presence
of both locally critical modes and long-wavelength fluctu-
ations [3,5], commonly observed in heavy fermion systems
[10–12]. Other systems hosting local quantum critical points
(QCPs) are correlated impurity systems with a pseudogapped
host [3,13–15] and lattice Dirac systems in two dimen-
sions [16–23]. For example, in the soft-gap Anderson model
(SGAM), the local (boundary) QCP is governed by the in-
trinsic critical local moment fluctuations that are further
sensitized in the presence of the vanishingly small host density
of states [3,24–29]. From a field-theoretical perspective, local
QCPs represent interacting fixed points when the exponent, r,
of the vanishing density of states (DOS) is less than 1 [3,30].
Previous studies have shown that the phase transition in the
single-impurity Kondo problem with a pseudogap host can be
understood within a Ginzburg-Landau framework involving
the locally critical modes describing local moment fluctua-
tions [30]. In the lattice context, a Kondo lattice system can be
self-consistently mapped onto the Bose-Fermi Kondo model
(with a power-law bosonic bath), and the critical nature of the
Kondo to local moment phase transition is associated with a
magnetic ordering of the conduction electrons [31,32].
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An intriguing scenario would arise if such gapless
fermionic excitations naturally emerge precisely at the QCP
instead of being existent from the outset. For example, the
deconfined Mott transition is associated with the emergence
of a gapless spin liquid state with a spinon Fermi surface rep-
resentative of neutral spin-1/2 quasiparticles while the charge
excitations are gapped [33]. Disorder-induced power-law gaps
have also been observed across an insulator-metal Mott
transition [34]. Identifying new models and the underlying
universality classes will broaden our current understanding
of QPTs beyond the Landau-Ginzburg-Wilson framework.
Particularly enlightening would be the expansion of this class
of local QPTs representing metal-insulator transitions, across
naturally occurring lattice settings to aid experimental verifi-
cation. In principle, the paramagnetic metal to paramagnetic
insulator Mott transition could represent such fermionic criti-
cality via the emergence of scale-invariant power law spectra
[35–37]. However, as shown in a recent study, a strictly power
law spectrum down to zero temperature has not been observed
in the most basic version of the Hubbard model [36]. Con-
comitantly, the critical nature of the Mott transition is indeed
observable, but only beyond a typical finite-temperature scale
[38]. A recent experiment on a moire lattice also demonstrated
a continuous Mott transition [39]. Theoretically, a strictly zero
temperature, continuous Mott transition was indeed observed
in a three-orbital lattice model consisting of a localized flat
band of interacting ( f ) electrons hybridizing with two in-
dependent bands of itinerant electrons (c) [40]. This model
has recently been studied in other contexts and can also be
viewed as a modified periodic Anderson model in a layered
configuration [41–43].

In this work, we revisit this model to analyze the sig-
natures of quantum criticality at nonzero temperatures. We
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demonstrate the pristine nature of a continuous Mott transition
in this model within dynamical mean field theory (DMFT)
[44] using the numerically exact continuous time quantum
Monte Carlo method [45–51]. The QPT occurs as the quasi-
particle excitations continuously evolve into non-Fermi-liquid
and critical gapless states manifested in the form of a power
law spectrum down to the lowest energy scales. Specifically,
the critical spectra represent emergent soft-gap Anderson
models with a characteristic exponent for the soft-gap density
of states. Interestingly, this exponent is independent of tem-
perature over a given QCP, but it is nonuniversal and varies
over the line of quantum critical points.

The paper is organized as follows: The model and method
are presented in Sec. II, followed by results and discussions
in Sec. III. Here we identify the quantum critical points and
demonstrate the presence of an isosbestic exponent and quan-
tum criticality through the analysis of the low-frequency form
of the self-energy. We also relate these observations to an
emergent soft-gap density of states and hybridization function
at the QCP. In Sec. IV, we conclude and discuss some future
directions.

II. MODEL AND FORMALISM

The three-orbital model system [40] comprises a localized,
correlated f orbital hybridizing with a conduction band (c) of
itinerant electrons via the hybridization energy, V ; the latter
couples to a third, delocalized, noninteracting (M) orbital via
hopping energy, t⊥. The Hamiltonian, H , is thus given by
H = Hf + Hc + HM + Hf c + HcM , and the individual terms
are represented in standard second quantized notation as

Hf = ε f

∑
iσ

f †
iσ fiσ + U

∑
i

n f i↑n f i↓, (1)

Hc + HM =
∑
kσ

εk (c†
kσ

ckσ
+ c†

Mkσ
cMkσ

), (2)

Hf c = V
∑
kσ

( f †
kσ

ckσ
+ H.c.), (3)

HcM = t⊥
∑
kσ

(c†
kσ

cMkσ
+ H.c.). (4)

In the absence of c-M mixing (t⊥ = 0), this is simply a
standard periodic Anderson model, which has been employed
extensively to investigate heavy fermion systems [44,52–56].
In a previous study [40], two of the authors employed the local
moment approach [57] within DMFT at zero temperature,
and they identified a surface of quantum critical points, in
the U -t⊥-V space, separating a gapless Fermi liquid phase
from a Mott insulator phase. For a fixed-V , the line of crit-
ical points was found to be roughly hyperbolic in the t⊥-U
plane, with the asymptotes being t⊥ = 1 and U = 0. How-
ever, the finite-temperature signatures of the critical transition
and underlying mechanism of the QCP were not addressed.
Hence, in this work, we use continuous-time quantum Monte
Carlo, as implemented in the TRIQS open source package
[45–51], to investigate the nature of this quantum criticality
and the manifestation of the zero-temperature QCPs in the
finite-temperature phase diagram. We work in the particle-
hole symmetric, paramagnetic regime, with ε f = −U/2, thus
avoiding the fermion sign problem.

The local f -Green’s function, in this model, is given by

G f (iωn) =
∫

dε ρ0(ε)
1

iωn − V 2

iωn−ε− t2⊥
iωn−ε

− �(iωn)
, (5)

where �(iωn) is the k-independent (within DMFT) self-
energy [40]. We choose a generic, semielliptic conduction-
band density of states, ρ0(ε) = 2

√
1 − ε2/D2/πD, with D

being the half-bandwidth. It is important to note the non-
singular choice of the density of states, which is in contrast
to the choice made in the soft-gap Anderson model (|ε|r).
The Weiss field, 	(iωn), is the self-consistent hybridization
function representing the DMFT bath for the f -electrons, and
it is related to the host Green’s function, G(iωn), by 	(iωn) =
iωn − G−1(iωn), which in turn can be obtained from the self-
energy, � f (iωn), and the f -Green’s function through Dyson’s
equation G−1(iωn) = G−1

f (iωn) + � f (iωn). Thus, for a given
	(iωn), we compute the self-energy and Green’s function
of the impurity using a hybridization-expansion CTQMC as
implemented in TRIQS [45–51]. We use the Padé approximant
method [58] to analytically continue the Matsubara f -Green’s
function to real frequencies, and hence we obtain the real-
frequency f -spectrum. In this work, we use a fixed V = 0.44D
and two representative interaction strengths, namely U =
1.75D, 1.2D, with the unit of energy being D = 1 to analyze
the phase transition as a function of t⊥. In fact, it should be
noted that for each V , this model exhibits a line of quantum
critical points in the t⊥-U plane [40]. The parameter sets used
in this work to study the finite-temperature signatures of the
QPT driven by tuning t⊥ thus represent only two such points
on a surface of QCPs existing in this model.

III. RESULTS AND DISCUSSION

A. Identification of quantum critical points

We utilize the temperature-dependent, Matsubara quasipar-
ticle fraction, Z0(T ) = [1 − Im�(iω0)/ω0]−1, with ω0 = πT
being the lowest Matsubara frequency, for locating the QCP
[59,60]. In the zero-temperature limit, limT →0 Z0(T ) = Z
is simply the zero-temperature quasiparticle renormalization
factor, defined for a conventional, real-frequency, Fermi-
liquid self-energy, as �FL = �(0) + ω(1 − 1/Z ) + O(ω2).
Naturally, at finite temperatures, and over the Mott insulator
regime, the Z0(T ) does not have a direct physical interpre-
tation. Nevertheless, it has proven to be a quick diagnostic
for identifying a QCP [59–62]. Considering U and V to be
1.75 and 0.44 (in units of D), respectively, and for various
values of t⊥, the computed Z0(T ) are shown in Fig. 1. We
have performed calculations for many more t⊥ values, but
we have not displayed the results to avoid cluttering. The
low T Matsubara quasiparticle fraction Z0(T ) clearly changes
its character as t⊥ increases through t⊥/D = 1.033, in a way
that parallels the finding in a two-dimensional Hubbard model
close to optimal doping [59] that had employed the dynamical
cluster approximation framework [63]. The data for t⊥ < t⊥c

have a convex curvature as T → 0 and have a finite positive
intercept at t⊥c, while Z0(T ) for t⊥ > t⊥c bends downwards
displaying a concave curvature approaching a value close to
zero at finite temperature. We identify the QCP as the value of
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FIG. 1. The Matsubara quasiparticle fraction Z0(T ) defined as
Z0(T ) = [1 − Im�(iω0)/ω0]−1, calculated using CTQMC, is plotted
as a function of temperature T for a selection of t⊥ values. The
dashed red line is a power law fit to the t⊥ = 1.033 data. The fit is
seen to be valid over almost two decades.

t⊥ at which such a vivid change in the dependence of Z0 on T
occurs; specifically at the parameter t⊥c/D = 1.033 ± 0.001,
the Z0(T ) ∼ T 1.36±0.005 has a power law form. The behavior
indicates a crossover from a Fermi liquid phase for t⊥ < t⊥c

to a Mott insulator phase for t⊥ > t⊥c [40]. A parallel analysis
for U = 1.2D yields t⊥,c/D = 1.077 ± 0.001 and Z0(T ) ∼
T 1.38±0.004 [64].

To consolidate the finding of a quantum critical point, we
must show that the characteristic scales on the two sides of the
QCP vanish simultaneously, implying the absence of a coex-
istence region. The scale on the Fermi liquid side can be taken
to be the zero-temperature quasiparticle weight Z0(T = 0).
We extract this quantity as a y-axis intercept of a simple fit
of the Z0(T ) data [using a form Z0(0) + CT γ ] for a range of
t⊥ < 1.033D. On the Mott insulator side, a natural choice of
the characteristic scale is the spectral gap, the determination
of which requires analytical continuation, a mathematically
ill-defined problem. As an alternative to analytic continua-
tion from imaginary to real frequencies for determining the
Mott spectral gap, we use a protocol that employs the reverse
route, which is well-defined, albeit approximate. This protocol
is described briefly here, and details have been provided in
Appendix A.

A real-frequency gapped density of states is designed with
certain unknown parameters. Using three constraints, namely
the spectral sum rule, getting the density of states value
at ω = 0 directly from CTQMC as A(ω = 0) = −G f (τ =
β/2)/(πT ), and a geometric constraint between the param-
eters, we reduce the number of unknown parameters to just
two, from which we can obtain the zero-temperature gap,
	g0, and an effective bandwidth, W . We also obtain a finite
temperature spectral gap, which we call 	gT , such that at

FIG. 2. Vanishing of the zero-temperature quasiparticle
weight(Z) and zero- (finite-) temperature Mott gap, denoted as 	g0

(	gT ) as we approach the QCP (t⊥,c ≈ 1.033) plotted on a linear
scale (main panel) and evaluated at U/D = 1.75 and T/D = 0.002.
Inset, bottom panel: The same data in the main panel are shown
on a linear-log scale for the region close to the QCP to highlight
that the scales vanish as a power law, with Z ∼ |t − t⊥c|a1 and
	g0 ∼ |t − t⊥c|a2 (with a1 = 0.97 ± 0.02, a2 = 1.30 ± 0.02). The
power law fit to the CTQMC data is shown as red dashed lines. The
Fermi liquid scale Z and the zero-temperature Mott gap 	g0 vanish
simultaneously, at t⊥c ≈ 1.033D, which thus represents a QCP. Inset,
upper panel: The x-axis is rescaled to |t⊥ − t⊥,c|, and the scales are
plotted on a log-log scale.

T = 0, 	gT = 	g0. The spectral representation may then be
used to transform the above two-parameter real-frequency
density of states to a Matsubara frequency Green’s function,
Gmodel

f , having two fitting parameters, which can be found sim-
ply by comparing against the numerically obtained Green’s
function. In Fig. 9 of Appendix A, we demonstrate a sample
of the fitting of the CTQMC data with the two-parameter
model Green’s function. Utilizing the protocol described in
Appendix A, and data for the lowest temperature reached in
our simulations, i.e., T/D = 0.002, we have computed the
spectral gap scales (	gT and 	g0).

In Fig. 2 we show the quasiparticle weight, Z ≡ Z0(T =
0), and the MI gap scale 	g0 (as well as 	gT ) for U/D = 1.75,
as a function of t⊥ on a linear scale in the main panel and on a
linear-log scale in the inset. The zero- and finite-temperature
Mott gaps (	g0 and 	gT , respectively) are almost identical
for all t⊥ except in the proximity of the QCP, where they do
differ. We have confirmed that the two scales, namely Z and
	g0, vanish simultaneously as a power law with Z ∼ |t⊥ −
t⊥c|a1 and 	g0 ∼ |t⊥ − t⊥c|a2 (a1 = 0.97 ± 0.02, a2 = 1.30 ±
0.02) [64] at t⊥c ≈ 1.033D thus representing a QCP at t⊥c.
Again, for the other parameter set, namely U = 1.2D, t⊥,c =
1.077D, we find a similar vanishing of scales with a1, a2 =
0.89 ± 0.02, 1.01 ± 0.01 [64], confirming that this parameter
set is also a QCP.
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FIG. 3. The imaginary part of the Matsubara frequency self-
energy, �(iωn), as a function of Matsubara frequency, ωn, for various
t⊥ values (in units of D) evaluated at T/D = 0.002, U/D = 1.75, and
V/D = 0.44. The power law (∼|ωn|−|α|) form is observed at the QCP
(t⊥,c ≈ 1.033D) with an exponent α = −0.36 ± 0.005 [64].

B. Isosbestic points and quantum criticality

For an ideal Fermi liquid and a Mott insulator, the
imaginary part of the Matsubara self-energy may be repre-
sented as −Im�(iωn) ∼ (ωn)α for ωn → 0+, with α = +1
and −1, respectively [65]. However, if the respective metal-
insulator transition is a quantum-critical phase transition, then
quantum-critical fluctuations at finite temperatures generally
accompany classic non-Fermi-liquid signatures in the form
of low-frequency power law behavior of the self-energy. As
we move farther away from the QCP, these non-Fermi-liquid
features cross over to the conventional features represent-
ing the stable metallic or insulating ground states on either
side of the QCP. To understand whether our system projects
similar characteristics, we plot −Im�(iωn) as a function of
ωn on a log-log scale for various values of t⊥, evaluated at
U/D = 1.75 and T/D = 0.002. As shown in Fig. 3, and as
expected, a power-law behavior extending over a wide range
of frequencies is observed at t⊥c ≈ 1.033D.

As we move away from this parameter, the −Im�(iωn)
deviates from its power law characteristic, especially at
low frequencies. The magnitude of this deviation signi-
fies the parametric distance from the QCP. We define
a self-energy exponent, α, using a two-parameter fit of
yn = −Im�(iωn, t⊥, T ) at a fixed t⊥ and T fitting only the
first two Matsubara frequencies to A|ωn|α . The exponent
may be obtained in closed form as α = ln(y1/y0)/ ln(3). The
Matsubara quasiparticle fraction Z0(T ) acquires a physical
meaning as the quasiparticle weight only at T = 0. Similarly,
the exponent α acquires a physical meaning as the exponent
of the emergent soft-gap DOS only at the QCP (as will be
shown later). Nevertheless, as the change of curvature in the

FIG. 4. The self-energy exponent α (defined in the text through
the imaginary part of the self-energy) is plotted as a function of t⊥/D
for (a) U/D = 1.75 (left panel) and (b) and U/D = 1.2 (right panel)
for different T/D. The exponent features an isosbestic point, at
t⊥c/D. However, a closer look reveals a small spread along the verti-
cal and horizontal axes. The isosbestic exponent, αiso, reported here is
located at the midpoint of this spread. We find t⊥c ≈ 1.033 ± 0.0005,
αiso = −0.35 ± 0.01 for U/D = 1.75 and t⊥c/D ≈ 1.077 ± 0.001,
αiso = −0.39 ± 0.01 for U/D = 1.2. Left (inset): A data collapse
is achieved by a rescaling of the self-energy exponents shown in
the main panel using the scaling ansatz, Eq. (6), reminiscent of
scaling collapse in critical systems with a correlation length exponent
ν = 1.11 ± 0.001 for U/D = 1.75 (see also Appendix B).

temperature dependence of Z0(T ) leads to an identification of
a QCP, the exponent α, as shown in the following, turns out to
be an excellent diagnostic for identifying the QCP.

We find, as expected, that the exponent is nonintegral in
a wide region around the QCP. In Fig. 4 we plot this ex-
ponent α as a function of t⊥ for different temperatures. As
illustrated in Fig. 4, the self-energy exponent (α) changes
smoothly across the QCP from a positive value to a nega-
tive value close to −1 with increasing t⊥. Furthermore, if
the power-law form of the self-energy at t⊥c is a genuine
quantum effect, then α should be independent of T at this
point; in other words, the exponent at t⊥c should represent an
isosbestic point in the α versus t⊥ plot, as shown in Fig. 4.
We label the isosbestic exponent as αiso, where the expo-
nent is independent of temperature. Indeed, as demonstrated
in Fig. 4, an isosbestic point, αiso = −0.35 ± 0.01, is found
at t⊥ ≈ (1.033 ± 0.0005)D for U = 1.75D (left panel) and
αiso = −0.39 ± 0.01 at t⊥ ≈ (1.077 ± 0.001)D for U = 1.2D
(right panel). The error bar in t⊥c (αiso) indicates the spread
along the horizontal (vertical) axis.

From the Matsubara quasiparticle fraction analysis (as
shown in Fig. 1) and the vanishing of the scales (Fig. 2),
we know that the two parameter sets, namely (U/D, t⊥/D) =
(1.75, 1.033) and (1.2,1.077), represent quantum critical

205104-4



EMERGENT SOFT-GAP ANDERSON MODELS AT QUANTUM … PHYSICAL REVIEW B 107, 205104 (2023)

points. Combining this inference with the self-energy analysis
shown in Fig. 4 yields the observation that the t⊥ values
corresponding to the quantum critical points are also isos-
bestic points. Indeed, it is well known that strongly correlated
systems display isosbestic crossing points as a typical con-
spicuous feature in several observable quantities like the
specific heat or the optical conductivity [66]. In quantum
critical systems, the Binder cumulant obtained from local
magnetization was shown to display such an intersection point
that coincides with the QCP [67]. The identification of the
QCP through an isosbestic point in the exponent that de-
termines the Matsubara frequency dependence of the local,
one-particle self-energy is one of the highlights of this work.

As is well-known for isosbestic points, a rescaling of the
axes should yield a data collapse [68], and indeed, as seen
in the inset of the left panel of Fig. 4, the exponents for
U = 1.75D collapse onto a universal curve for all tempera-
tures, with the following scaling ansatz:

α(t⊥, T ) = fU

(
t⊥ − t⊥c

t⊥cT 1/ν

)
, (6)

where fU is the scaling function. A similar data collapse
is observed for the exponents shown in the bottom right
panel of Fig. 11 for U = 1.2D in Appendix B. Further-
more, the scaling exponent ν that is typically associated with
the correlation length exponent across a phase transition is
found to be ν = 1.11 ± 0.001 (using a procedure discussed
in Appendix B) for the parameter set U/D = 1.75, t⊥c 	
1.033D, and ν = 1.03 ± 0.01 for the second parameter set
U = 1.2D, t⊥c 	 1.077. Perturbative renormalization-group
studies on the pseudogap Anderson and Kondo model predict
ν = 1 for the pseudogap exponent, r � 1, when the solution is
a level crossing transition and is therefore first-order. We will
briefly prove that r = −αiso for the model under investigation.
In our case, we find ν > 1 and 0 < r < 1/2 for which the
transition is known to be second order [3,30].

The CTQMC method is constrained to work at finite tem-
peratures, and it becomes prohibitively expensive at lower
temperatures. However, since the exponent αiso at the quantum
critical point is found to be an isosbestic, i.e., independent
of temperature in the investigated range, we conjecture that
the exponent remains the same down to T = 0, and such an
extrapolation naturally leads to the inference that the self-
energy has a power law form at the QCP, with a fractional
exponent. In fact as Fig. 4 shows, as we traverse the t⊥ axis,
the α versus t⊥ becomes steeper with decreasing tempera-
ture, and extrapolating such behavior down to T = 0, the
exponent should be +1 in the FL phase, changing abruptly
to the isosbestic fractional exponent at the QCP, and then
changing again immediately thereafter to −1 in the Mott insu-
lating phase. This suggests that the low-frequency self-energy
changes from having an analytic form (∼ − iωn) in the FL
phase to a branch point [∼ − i sgn(ωn)|ωn|αiso ] at the QCP to
a simple pole form (1/iωn) in the Mott insulating phase. It
is worth mentioning that further evidence of the interacting
nature of the QCP could be provided via ω/T scaling of
the one- and two-particle correlation functions evaluated on
the real frequency axis. However, such analyses including
the identification of the different critical exponents and their

relation to the critical self-energy exponent αiso will be taken
up in later work.

Until now, we have confined ourselves to the imaginary
frequency axis. In the next two subsections, we will use simple
analytical arguments to deduce the manifestation of the power
law form of the Matsubara frequency self-energy at the QCP,
and the density of states in the corresponding real-frequency
quantities.

C. Self-energy as a function of real frequency:
Behavior at low frequencies

The isosbestic exponent in the frequency dependence of the
Matsubara frequency self-energy must manifest in the real-
frequency dependence of the retarded self-energy. We show
in this section that this is indeed the case. Using the argu-
ments presented in the previous section, we may express the
finite-temperature self-energy at the QCP as �(iωn → i0+) =
−iAω−r

n , where r = −αiso and ωn > 0. The corresponding
real-frequency self-energy may be obtained using analytic
continuation, but here we employ the reverse route. Using an
ansatz of the self-energy on the real-frequency axis, and em-
ploying the spectral representation, we derive the Matsubara
frequency quantity, which matches the corresponding, numer-
ically obtained quantity, thus validating the real-frequency
ansatz.

We consider a power law form as an ansatz for ρ� , namely

ρ� (ω) = − 1

π
Im�(ω) = B|ω|−γ , B > 0, (7)

and we ask if such a form, when substituted in the spectral
representation, can yield the form �(iωn → i0+) = −iAω−r

n
(A > 0), thus avoiding analytic continuation. Indeed this is
possible, as we show below. Consequently, we would also
know the relation between γ and r.

We begin with the spectral representation of the Matsubara
frequency self-energy, specifically for the particle-hole sym-
metric case under consideration here as

�(iωn) = −2iωn

∫ ∞

0

dω′ρ� (ω′)
ω′2 + ω2

n

, (8)

where ρ� (ω) = (−1/π )Im�(ω), and �(ω) is the real fre-
quency retarded self-energy. We can substitute Eq. (7) in
Eq. (8) to get (for ωn > 0)

�(iωn) = −2iBωn

∫ �

0

ω′−γ dω′

ω′2 + ω2
n

= −2iBω−γ
n

∫ �/ωn

0

dx

xγ (1 + x2)
,

where � is a UV-cutoff scale. For T → 0, �/ωn → ∞ and
since the integrand vanishes as x2+γ (γ > 0) for large x, the
upper limit of the integral can be considered to be ∞. Thus,

�(iωn) = −2iB sgn(ωn)|ωn|−γ

∫ ∞

0

dx

xγ (1 + x2)
. (9)

From the numerically evaluated self-energy, we know that, at
the isosbestic point,

�(iωn → 0) = −i sgn(ωn)A|ωn|−r . (10)
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Comparing Eq. (9) with Eq. (10), we get γ = r and
ρ� (ω) = B|ω|−r . Now, given that the imaginary part of
the self-energy has the form ρ� (ω) = B|ω|−r , we can
derive the real part, Re�(ω), through the Kramers-Krönig
transform Re�(ω) = −P

∫
dω′ ρ� (ω′)(ω − ω′)−1, and we

get Re�(ω) 	 −B′sgn(ω)|ω|−r . Combining the real and
imaginary parts, we get the limiting low-frequency self-
energy as

�(ω) = −[B′sgn(ω) + iπB]|ω|−r = −B̄|ω|−r , (11)

with B, B′ > 0. In the following subsection, we will show that
the above form of the self-energy translates to a soft-gap form
of the density of states.

Equation (10) is also seen to be consistent with the re-
sults shown in Fig. 1. To see this, we note that, for n = 0,
�(iω0) = −i|ω0|−r , but since ω0 = πT and Z0(T ) = [1 −
�(iω0)/iω0]−1, we get Z0(T ) = (1 + |ω0|−(r+1)), which, in
the low-temperature limit, reduces to Z0(T ) 	 T −(1+r). As
Fig. 1 shows, the exponent deduced from the power law is
1.36, which is equal to 1 − αiso deduced from the results of
the left panel of Fig. 4. A similar analysis has been carried out
for U = 1.2D, and we find Z0(T ) ≈ T −(1+r), with r = 0.38 ±
0.004, which is consistent with the r = −αiso = 0.39 ± 0.01
obtained for U = 1.2D from the right panel of Fig. 4.

D. Emergent soft-gap density of states at the QCP

We can now use the real-frequency power law form of the
self-energy [Eq. (11)] to derive the low-frequency form of the
f -electron Green’s function on the real axis. Starting from
the Green’s function expression,

G f (ω) =
∫

dε
ρ0(ε)

z − V 2

ω+−ε− t2⊥
ω+−ε

, (12)

and using �(ω) = −B̄|ω|−r , with z = ω+ − �(ω) → B̄|ω|−r

as ω → 0, we get, to leading order,

G f (ω) ≈
∫

dε
ρ0(ε)

B̄|ω|−r
= |ω|r

B̄
,

by considering the most divergent term in the denominator.
Thus, the spectral function of the f -density of states is given
by

ρ f (ω) = − 1

π
ImG f (ω) = ImB̄/π

(ReB̄)2 + (ImB̄)2
|ω|r .

The above expression shows that ρ f (ω) has a soft-gap form
with the exponent r. The arguments presented in Secs. III C
and III D establish the link between the isosbestic expo-
nent and the soft-gap exponent. Namely, if �QCP(iωn → 0) ≈
−i sgn(ωn)|ωn|−r , then ρ f (ω) ≈ |ω|r . The isosbestic expo-
nent and the soft-gap exponent of the spectrum have the same
magnitude but the opposite sign. This emergent soft-gap den-
sity of states at the QCP represents our most important result.
Additionally, the emergent soft-gap model is non-symmetry-
breaking in nature unlike the QCPs in the soft-gap Anderson
models studied earlier [30–32,69].

The inference of a soft-gap density of states can be further
consolidated by analytically continuing the CTQMC Green’s

FIG. 5. The single-particle density of states ρ f (ω) obtained via
analytic continuation of the Matsubara frequency Green’s function
Gf (iω) using the Padé approximation is shown for the Fermi liq-
uid region (left panel) with t⊥/D = 0.8, the quantum critical point
(middle panel) with t⊥/D = 1.033, and the Mott insulator (right
panel) with t⊥/D = 1.08. The parameters used to obtain Gf (iω) are
U/D = 1.75, V/D = 0.44.

function. Here we have used the Páde approximation as imple-
mented in Ref. [58] to get the real frequency spectra, ρ f (ω).
The analytically continued f -spectra are shown in Fig. 5 for
the parameters t⊥ = 0.8 in the left panel, t⊥ = 1.033 = t⊥c

in the middle panel, and t⊥ = 1.08 in the right panel. In the
left panel, ρ f (ω) is peaked around ω = 0, which is the Kondo
resonance, characteristic of the FL phase. The MI phase (right
panel) exhibits a gapped ρ f (ω), representing a Mott insulator.
Particularly at t⊥ = 1.033 = t⊥c, the single-particle density of
states (DOS) ρ f (ω; T = 0.002) ∼ |ω|r + a0 exhibits a power
law, soft-gap DOS in agreement with the previous discussion.
Thus, we have shown that, while the density of states has a
Kondo resonance in the FL phase, and a gap in the MI phase,
it has an emergent soft-gap form at the QCP.

Finally, it is straightforward to show that a soft-gap density
of states of the form ρ f (ω) = |ω|rθ (� − |ω|), with � as a
ultraviolet cutoff, results in a power law form in the Matsubara
time dependence of the Green’s function, namely G f (τ ) ∝
−τ−(1+r) for τ, β  1 (see Appendix C for the derivation).
Such a power law is indeed observed in the numerically
obtained CTQMC results, as shown in Fig. 6, which shows
−G f (τ ) as a function of τ as obtained for U = 1.75D and
temperatures of 0.01 (purple), 0.005 (blue), 0.003 (red), and
0.002 (green). The τ  1 behavior is clearly seen to be a
power law, and the fit (dashed line) is seen to be valid over
more than a decade for all the temperatures. The extracted
exponent r from each of the fits is ∼0.35 ± 0.01, which is
temperature-independent and is seen to be the negative of
the isosbestic exponent found from the self-energy analysis
(Fig. 4). Furthermore, as expected, the power law form does
not fit the results obtained away from the QCP as shown in
Fig. 14 of Appendix C.

E. The self-consistent hybridization function

Within DMFT, the lattice model is mapped onto a self-
consistent impurity Anderson model, and our findings at the
QCP indicate that a soft-gap Anderson model is emergent at
the QCP. We confirm this by showing that the imaginary part
of the self-consistent hybridization is indeed a power law at
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FIG. 6. The imaginary-time Green’s function −Gf (τ ) as a func-
tion of the Matsubara time τ for t⊥ = t⊥,c = 1.033,U = 1.75D and
three different temperatures: (a) T/D = 0.01 (purple), (b) T/D =
0.005 (blue), (c) T/D = 0.003 (red), and (d) T/D = 0.002 (green) at
the QCP. The τ  1 behavior is seen to fit very well to a power law
(∼ − τ−(1+r)) (black dashed line) over more than a decade, and the
extracted exponent, r, as obtained via this comparison is r ≈ 0.35 ±
0.01 ≈ −αiso [64], which is also independent of the temperature.

the QCP. To show this analytically, we need to revisit the
arguments of Sec. III D, and compute subleading corrections
to the Green’s function for T → 0 and ωn → 0+, and connect
that to the DMFT hybridization function.

A detailed derivation is provided below. The main aim
is to derive a relation between the isosbestic exponent (αiso)
and the hybridization exponent at the QCP. Given the Green’s
function,

G f (iωn) =
∫

dερ0(ε)

�n − fn(ε)
, (13)

where �n = iωn − �(iωn) and fn(ε) = V 2[iωn − ε −
t2
⊥/(iωn − ε)]−1, we can substitute the low-frequency form

of �(iωn) to get �n 	 i(ωn + A|ωn|−r ) (with r > 0 and
r = −αiso), which is divergent for T → 0 or ωn → 0. Hence,
we can use Taylor’s expansion to rewrite G f (iωn) as

G−1
f (iωn) = �n − M1 +

(
M2

1 − M2
)

�n
+ O

(
1

�2
n

)
, (14)

where the kth moment is given by Mk = ∫
dερ0(ε) f k

n (ε). The
self-consistent hybridization function is given by

	(iωn) = iωn − �(iωn) − G−1
f (iωn) , (15)

and thus, to lowest order in 1/�n, the hybridization is given
by 	(iωn) = M1 − (M2

1 − M2)/�n.
For ωn → 0+, M1 and M2 are real constants, and it is easy

to show that M1 = 0, and M2 is finite and positive-definite (see
Appendix D). Hence,

	(ωn → 0+) = − iM2|ωn|r
A

, (16)

thus yielding a low-frequency power law form for the
self-consistent hybridization function. We emphasize that a
divergent and dominant form of the self-energy and a vanish-
ing M1 = ∫

dερ0(ε) fn(ε) are important to ensure the validity
of the moment expansion of the Green’s function. Further-
more, the functional form of fn(ε) in our model ensures that
we will always have a vanishing M1, and the low-frequency

FIG. 7. Main: The imaginary part of the self-consistent hy-
bridization, 	(iωn), as a function of Matsubara frequency, for
various t⊥ values (in units of D) and β = 500. Inset: The t⊥ at which
the imaginary part of the hybridization [−Im	(iωn)], at a given
temperature, obeys a power-law at the maximum number of points
is identified as the crossover point. The inset shows the crossover
t⊥ as a function of temperature. The red dashed line shows a linear
extrapolation to zero temperature, where the limiting value is seen to
be the quantum critical value (t⊥,c) within numerical resolution. The
error bar represents the x-axis resolution to which the calculation is
performed.

power-law form of the self-energy [Eq. (11)] will always be
the most singular function in the Hilbert transform. This is
not true for other models like the standard periodic Anderson
model [32,70,71], where the self-energy vanishes as ωn → 0.

We emphasize that the above analysis is correct only in
the zero-temperature limit. In other words, a genuine power
law vanishing (soft-gap) hybridization function is obtained
at sufficiently low temperatures when ωn → 0 makes true
sense. At any nonzero temperature, the moments appearing in
Eq. (14) are dependent on ωn (see Fig. 15 and the discussion
in Appendix D) and contribute to the low-energy frequency
behavior of the hybridization function inducing deviations
from a pristine power-law expected at the QCP, i.e., t⊥ = t⊥c.
Nonetheless, this frequency dependence becomes negligibly
small as T → 0, where M1 → 0 and M2 becomes purely real
and positive-definite, producing a soft-gap hybridization func-
tion, 	(iωn → 0) = −iA−1M2|ωn|r , as T → 0 and ωn → 0
(see Fig. 16 in Appendix D for more details).

In Fig. 7, we plot the numerically obtained −Im	(iωn) as
a function of ωn for different t⊥’s and a fixed U/D = 1.75 and
T/D = 0.002. The data in the main panel clearly demonstrate
a change of curvature as the t⊥ is tuned, similar to the Matsub-
ara quasiparticle fraction (Fig. 1) and the imaginary part of the
self-energy (Fig. 3), indicating a finite-temperature crossover
from a gapped to a metallic bath seen by the electrons as t⊥
is decreased. Taking a closer look at the data suggests that
this crossover occurs at a value of t⊥ that is not equal to the
t⊥c at β = 500. In fact, this crossover value is temperature-
dependent, and only in the limit of T → 0 does it approach
the quantum critical value, t⊥c, as the T → 0 limiting value,
represented by the red dashed line in the inset of Fig. 7 shows.
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The error bars for the crossover t⊥ are estimated by the reso-
lution at which the numerical calculations were performed.

The finding of a power law form in the hybridization
function at a t⊥ �= t⊥c is thus seen to be a finite-temperature
effect, and as argued above, the impurity spectral function,
the self-energy, and the hybridization function acquire the
same exponent only at T → 0. We do not have a complete
physical understanding of this finite-temperature mismatch
between hybridization and self-energy. We emphasize that this
observation should not be interpreted as nonconverged DMFT
self-consistency since we have checked very carefully for
convergence of the self-energy and the hybridization (please
see the discussion in Appendix D and Fig. 17). Instead, it
should be regarded as evidence that temperatures as low as
T/D = 10−4 need to be accessed to find the same exponent
in the hybridization at t⊥,c within numerical resolution. How-
ever, we do not have the resources required to access such low
temperatures at present.

We note that the hybridization as well as the density of
states have a vanishing form as T → 0, namely ∼|ω|r (r >

0) in the three-orbital model considered in this work, a be-
havior that is quite distinct from the SGAM. In the latter,
the hybridization has a vanishing form by choice for any
temperature, and, while the generalized FL phase has a di-
vergent DOS, the local moment phase has a vanishing DOS,
precisely as found here and in the critical Mott insulator in
the single-band Hubbard model close to U +

c1 [36]. We have
also investigated a few other points on the line of QCPs, and
the soft-gap exponent appears to vary monotonically over the
line of QCPs, in the t⊥-U plane, thus giving rise to a family
of soft-gap Anderson models. A detailed investigation of the
emergent family of the soft-gap Anderson models is underway
and will be reported later.

IV. OUTLOOK

Extensive investigations of quantum criticality in the soft-
gap Anderson model (SGAM) over the past two decades
have shown the QCP to be an interacting, non-Fermi-liquid
fixed point with a wide quantum critical scaling (ω/T ) region
[30,72–75], with a nonvanishing local magnetic response. In
contrast, the critical properties of the emergent SGAM derived
through DMFT treatment of the three-orbital model investi-
gated here are non-symmetry-breaking. Thus, an important
future direction would be to extensively investigate the quan-
tum critical scaling (ω/T ) region for the current model.

The emergent nature of the continuous transition is
reminiscent of a deconfined QCP [33], where low-energy
fractional particles that are absent on either side of the
QCP naturally emerge at the QCP. The low-frequency form
of the self-energy having a branch point at the QCP was
also found in a dilaton gravity model using gauge-gravity
correspondence [76], thus yielding a natural explanation of
non-Fermi-liquid behavior emanating from the QCP. It would
be interesting to explore how the emergent low-energy crit-
ical modes interplay with long-range magnetic fluctuations
[41,77], which would be predominantly relevant in lower
dimensions. The particle-hole asymmetric SGAM with r >

1/2 hosts a QCP between a Kondo screened and a lo-
cal moment phase otherwise absent in the symmetric case.

FIG. 8. Model DOS chosen to extract the Mott gap 	g0.

So a question remains as to the fate of the Mott QCP in
the presence of particle-hole asymmetry. We anticipate that
a renormalization-group approach [78,79] may uncover the
Hamiltonian flows of this three-orbital model, and hence lead
to the underlying reasons for the emergence of the soft-gap
Anderson models at quantum criticality.
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APPENDIX A: DETERMINATION OF MOTT GAP

To extract the zero-temperature Mott gap from the Matsub-
ara Green’s function obtained through CTQMC, we design a
model density of states on the real frequency axis having cer-
tain unknown parameters, one of them being the T = 0 Mott
gap. The model DOS is then “Wick-rotated” onto the imag-
inary frequency axis, compared with the CTQMC Green’s
functions, and the Mott gap as well as the other parameters are
obtained through a best fit. The procedure is detailed below.

A model, gapped density of states (DOS) is shown in
Fig. 8, which has semielliptic bands flanking the gap. Such
a model DOS is relevant for this work since our simulations
consider a semielliptic DOS and therefore the Hubbard bands
of the Mott insulator spectral function are semielliptic in form.
Nonetheless, the strategy outlined should be applicable to
any form of the Hubbard bands. This model DOS is used
as an ansatz for the putative real-frequency spectral function
of the Mott insulator at a certain t⊥,U and temperature, T ,
with the T = 0 Mott gap being denoted by 	g0. At T �= 0,
we expect thermal filling of the Mott insulating gap. Let us
denote the finite-temperature “Mott gap” as 	gT . Thus, at
T = 0, 	gT = 	g0. To mimic this finite-temperature effect,
we include a nonzero spectral weight at and around the Fermi
level. Therefore, we modify the model spectral function by
considering a parameter h that mimics the Fermi level spectral
weight. A mathematical representation for the model DOS is
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the following:

ρmodel
f (ε)

⎧⎪⎪⎨
⎪⎪⎩

= h, ∀ |ε| � 	gT /2,

= 4N
πW

[
1 −

( |ε|−(W +	g0 )/2
W/2

)2
]1/2

,

∀ 	gT /2 � |ε| � W + 	g0/2.

(A1)

We note that the model DOS written above has five unknown
parameters: h, N,W,	gT ,	g0. However, there are three con-
straints we can use to reduce the number of unknowns to just
two:

(i) The finite-temperature spectral density h may be ob-
tained directly from CTQMC as h = −G f (τ = β/2)/(πT ).

(ii) The constant N may be determined in terms of the other
parameters through the observation [from Eq. (A1) and Fig. 8]
that at |ε| = 	gT

2 , ρmodel
f (ε) = h representing continuity of the

model DOS:

N = hπW

4 cos θ
, (A2)

where sin θ = 1 − (	gT − 	g0)/W .

(iii) The spectral sum rule, i.e.,
∫

dε ρmodel
f (ε) = 1, repre-

sents the third condition, and yields

2N

π

[
π

2
+ θ + sin(2θ )

2

]
+ h	gT = 1. (A3)

Using Eq. (A2) in (A3), we get W = 4 cos θ
(1/h)−	gT

π+2θ+sin (2θ ) .
Thus, we are left with only two fitting parameters, namely θ

and 	gT .
The strategy for obtaining the unknowns, i.e., 	gT and θ ,

is as follows:
(i) Using the spectral representation, Gmodel

f (iωn) =∫ ∞
−∞ dε

ρmodel
f (ε)

iωn−ε
, the corresponding Matsubara Green’s func-

tion may be calculated.
(ii) The model Green’s function obtained in the first step

above is then compared to the numerically obtained G f (iωn)
through CTQMC to get the two unknown fitting parameters
through a best-fit procedure.

As mentioned in step (i) above, using the spectral represen-
tation, the model Matsubara Green’s function may be obtained
as

Gmodel
f (iωn; 	gT ,W ) = −2ihωn

[
W

2 cosθ

∫ π/2

−θ

cos2θ̄ d θ̄

ω2
n + W 2

4

(
sinθ + sinθ̄ + 	gT

W

)2 + 1

ωn
tan−1

(
	gT

2ωn

)]
. (A4)

Equation (A4) represents a two-parameter model Green’s
function, which may be used for fitting the imaginary
part of the numerically obtained CTQMC Green’s func-
tion, G f (iωn), to get 	gT and θ . For each combination of
	gT and θ , the effective bandwidth is found through W =
4 cos θ (1/h − 	gT )/[π + 2θ + sin(2θ )]. The best fit then
yields the zero-temperature Mott gap 	g0 through sin θ =
1 − (	gT − 	g0)/W . Figure 9 demonstrates the imaginary
part of the f -electron Matsubara Green’s function calculated
within DMFT-CTQMC fitted against the analytical form given
in Eq. (A4) for t⊥ = 1.037 (top panel), t⊥ = 1.04 (middle
panel), and t⊥ = 1.05 (bottom panel). The agreement is seen
to be excellent.

Ideally, the 	g0 obtained from the above fitting should be
independent of temperature, i.e., 	g0(T )/	g0(0.002D) ∼ 1 as
we vary T . In Fig. 10, therefore, we plot 	g0(T )/	g0(0.002D)
as a function of temperature for t⊥ = 1.037 (top panel) and
t⊥ = 1.08 (bottom panel). As observed from these plots, for
t⊥ → t⊥c, 	g0(T )/	g0(0.002D) very quickly deviates from 1
as we vary T , unlike a t⊥ that is far away from the QCP. More
investigations are required to understand this rapid deviation,
close to the QCP.

APPENDIX B: DETERMINATION OF THE
CORRELATION-LENGTH EXPONENT, ν, THROUGH A

SCALING COLLAPSE OF THE ISOSBESTIC (α VERSUS t⊥)

The α versus t⊥ curves shown in Fig. 4 display an isos-
bestic point at a certain t⊥,c. If this point is to be identified as
a quantum critical point, then all the curves passing through
the isosbestic point must collapse onto a single curve when

the t⊥ is rescaled as

Xν (β ) = β1/ν (t⊥/t⊥,c − 1). (B1)

However, the determination of ν, the correlation length ex-
ponent, that determines the best scaling collapse, is not
straightforward. The first step in this direction is to determine
α as a function of Xν , given the known function α(t⊥). The
mapping of t⊥ to Xν is linear, for a fixed β and ν, but the slope
is temperature- and ν-dependent, and care must be taken when
trying to interpolate/extrapolate α(t⊥) to α(Xν ).

For any given ν, when we rescale the t⊥ axis, the window
of the rescaled axis [Xν (t⊥, ν) axis] increases with an increase
in β for ν > 0. Since the smallest window is obtained for
high temperatures, in order to use only interpolation and avoid
extrapolation of the data at lower temperatures, we consider
βr = 100 as the reference inverse temperature. For a given
ν, and (t⊥/t⊥,c − 1) ∈ [−δ, δ] window, we construct an Xν ∈
β1/ν

r [−δ, δ] mesh with Nx points for the reference βr . Given
the one-to-one correspondence between t⊥ and Xν for a given
ν and β, it is straightforward to obtain α on the Xν mesh. In
practice, we calculate the corresponding self-energy exponent
α(β, Xν,i ) using the Akima spline interpolation of the α versus
t⊥ data. Note that a direct interpolation of α versus Xν is prone
to error, hence it should be avoided. We repeat this procedure
for different β values.

We do a visual inspection of α versus Xν for a range of ν

values, and we observe that, within a chosen window around
the QCP, as the ν is increased, the α versus Xν for β = 100
and 500 cross each other with the QCP being the pivot (see
the top two panels of Fig. 11). This observation suggests that
in order to determine the scaling exponent that yields the best
“scaling collapse,” we should look for a zero crossing of a
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FIG. 9. Matsubara Green’s function is calculated using CTQMC
for T/D = 0.002, and t⊥/D = 1.037 (top panel), 1.04 (middle
panel), 1.05 (bottom panel), U/D = 1.75, and V/D = 0.44 and is
fitted with the analytically calculated Matsubara Green’s function in
Eq. (A4), and hence the Mott gap (	gT ) and effective bandwidth W
are obtained.

spread function defined as

L(ν) =
Nx∑

i=1

[2θ (Xν,i ) − 1][α(100, Xν,i ) − α(500, Xν,i )],

(B2)

FIG. 10. 	g0/	g0(0.002D) is plotted as a function of tempera-
ture for t⊥ = 1.037D, 1.08D. 	g0 is obtained by fitting the Matsubara
Green’s function obtained from CTQMC to the analytically calcu-
lated Matsubara Green’s function in Eq. (A4).

FIG. 11. The top two panels show α versus Xν for ν = 0.9 (left)
and ν = 2.0 (right) corresponding to U = 1.75D. The middle panel
shows the spread function L(ν ) as a function of ν for both U =
1.75D and 1.25D. The ν that yields the zero crossing of the spread
is identified as the correlation length exponent. The bottom two
panels show the scaling collapse (of Fig. 4) for U = 1.75D (left) and
U = 1.2D (right) with the corresponding correlation length exponent
ν(U = 1.75) = 1.11 ± 0.001 and ν(U = 1.2) = 1.03 ± 0.01. The
error in ν is found out from the corresponding error in determining
the t⊥,c from the isosbestic plot in Fig. 4.

where θ (x) is a step-function. The finally obtained ν value
corresponds to the root of L(ν), which also gives us the best
scaling collapse around the QCP, as shown in Fig. 11.

The choice of the window [−δ, δ] around the QCP for
computing the spread function is also made through the visual
inspection of the crossings, as shown in the top two panels of
Fig. 11. For U = 1.75D and 1.2D, we chose δ = 0.133 and
0.377, respectively. The error associated in the determination
of ν arises from the error in the estimation of t⊥c. In other
words, we repeat the analysis for the maximum and minimum
probable value of t⊥c and associate the respective spread in the
ν obtained as the error. We have verified that the exponent ν

is quite robust with respect to a variation of δ.

APPENDIX C: MANIFESTATION OF A SOFT-GAP
DENSITY OF STATES WITH EXPONENT r IN THE

MATSUBARA TIME DEPENDENCE OF THE GREEN’S
FUNCTION Gf (τ )

In this Appendix, we show that a real-frequency, soft-
gap DOS implies a power law dependence of the Matsubara
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Green’s function, G f (τ ), on the imaginary-time (τ ) axis. And
the observation of power laws in the CTQMC derived G f (τ )
may then be traced back to the existence of a real-frequency
soft-gap DOS through this proof, as done in Fig. 6 and the
discussion associated with it.

Our starting point is a soft-gap density of states of the form

ρ f (ω) = A|ω|r�(D − |ω|) , (C1)

where |ω| < D, and A may be found through normalization
of the DOS as A = (r + 1)/2Dr+1. The Matsubara Green’s
function can be found by taking the Hilbert transform of the
DOS [Eq. (C1)] as

G f (iωn) =
∫ ∞

−∞
A

|ω|r
iωn − ω

�(D − |ω|)dω . (C2)

Fourier transforming the above, the Matsubara time Green’s
function, G f (τ ), can be represented in terms of G f (iωn) as

G f (τ ) = 1

β

∑
n

G f (iωn)e−iωnτ . (C3)

Using Eqs. (C1), (C2), and (C3), we get

G f (τ ) = −
∫ 0

−D
dω

(r + 1)e−ωτ |ω|r
2Dr+1(1 + e−βω )

−
∫ D

0
dω

(r + 1)e−ωτ |ω|r
2Dr+1(1 + e−βω )

= G(1) + G(2). (C4)

Now consider G(1), and taking the limit β → ∞, we get

G(1) = −
∫ 0

−D
dω

(r + 1)e−ωτ |ω|r
2Dr+1(1 + e−βω )

	
∫ D

0
dω

(r + 1)e−βωeωτωr

2Dr+1
.

The above integral will have a contribution around (2/β )r+1

for τ → β/2, and it will vanish for β → ∞, implying G(1) →
0 in the zero-temperature limit. Now, taking x = ωτ with
β → ∞, we get

G f (τ ) = G(2) = −τ−(r+1)
∫ ∞

0
dx

(r + 1)e−x|x|r
2Dr+1

(C5)

∝ −τ−(r+1)�(r) . (C6)

Thus, G f (τ ) depends on r as given in Eq. (C6). We calcu-
late G f (τ ) from Eq. (C4) directly by calculating the integral
numerically without making the approximations involved in
arriving at Eq. (C6). The results for varying r and D are plotted
in Figs. 12 and 13. The figures show that the exponent r has its
effect only for τ  1, which is easily noticeable from Fig. 12.
We emphasize that these (Figs. 12 and 13) are not CTQMC
results, but are obtained from Eq. (C4).

In Fig. 14 we demonstrate sample fits of G f (τ ) obtained
from CTQMC calculations with the power law form, τ−(1+r)

for t⊥ = 0.5 (Kondo screened phase) and for t⊥ = 1.5 (Mott
insulator phase) (top and bottom panel, respectively), where
Eq. (C4) does not fit the data at all, as should be expected far
away from criticality. This is contrary to the middle panel of

FIG. 12. Numerically calculated Gf (τ ) from the ansatz ρ f (ω) =
A|ω|r�(D − |ω|) with D = 1.0 , β = 500.0 using Eq. (C4). The r is
found to have its effect on Gf (τ ) for τ  1.

Fig. 14, representing the QCP, where the agreement is found
to be the best, and a soft-gap power law form is seen over
more than two decades (see Fig. 6).

APPENDIX D: DETAILED ANALYSIS
ON THE HYBRIDIZATION FUNCTION

1. T → 0 behavior of the moments

Now, let us try to understand the T → 0 behavior of M1

(recall Mk = ∫
dερ0(ε) f k

n (ε), where fn(ε) = V 2[iωn − ε −
t2
⊥/(iωn − ε)]−1) and M2 for t⊥ = t⊥,c. We have

M1 = V 2
∫ ∞

−∞
dε

ρ0(ε)

iωn − ε − t2
⊥,c

iωn−ε

= V 2
∫ ∞

−∞
dε ρ0(ε)

iωn − ε

(iωn − ε)2 − t2
⊥,c

= V 2

2

∫ ∞

−∞
dε ρ0(ε)

(
1

iωn − ε − t⊥,c
+ 1

iωn − ε + t⊥,c

)
,

FIG. 13. Numerically calculated Gf (τ ) from the ansatz ρ f (ω) =
A|ω|r�(D − |ω|) with r = 0.3 and β = 500.0 using Eq. (C4).
Gf (τ ) ∝ τ−(1+r), with r ≈ 0.3, is independent of the cutoff D.
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FIG. 14. The Matsubara time Green’s function −Gf (τ ) ob-
tained from CTQMC for T/D = 2.0 × 10−3 is fitted to the integral
Eq. (C4), using r and D as fitting parameters. The top and bot-
tom panels represent the FL and MI regimes where the integral
equation does not fit the data. There is a clear fit only at the QCP
(t⊥ = 1.033, middle panel) with r ≈ 0.3, and the fit is independent
of D in the large-τ limit. This indicates that the DOS away from the
QCP does not have a power law form.

where, in the limit of ωn → 0+, the real part of M1 becomes
[using 1/(x + i0+) = P (1/x) − iπδ(x)]

ReM1 = V 2

2

∫ ∞

−∞
dε ρ0(ε)

[
P

(
1

−ε − t⊥,c

)

+ P

(
1

−ε + t⊥,c

)]
.

Since ρ0(ε) �= 0 ∀ε ∈ [−D, D] and ρ0(ε) = 0 ∀|ε| > D,
while t⊥,c > D for all the quantum critical points in the phase
diagram, we get

ReM1 = V 2

2

∫ D

−D
dε ρ0(ε)

[
1

−ε − t⊥,c
+ 1

−ε + t⊥,c

]

= V 2

2

∫ D

−D
dε ρ0(ε)

[ −2ε

ε2 − t2
⊥

]
= 0

for a p-h symmetric ρ0(ε). The imaginary part of M1 becomes

ImM1 = V 2

2

∫ ∞

−∞
dε ρ0(ε){−π [δ(−ε − t⊥,c)+δ(−ε + t⊥,c)]}.

With the same argument as we made earlier, since |ε| � D <

t⊥,c always, we get ImM1 = 0. Thus, in the limit of T → 0,
we have shown that M1 → 0.

Now let us evaluate M2 in the limit iωn → i0+ = iη, where
η → 0+,

M2 = V 4

4

∫ ∞

−∞
dε ρ0(ε)

(iη − ε)2[
(iη − ε)2 − t2

⊥,c

]2

FIG. 15. Plot of the real and imaginary part of the moments M1

and M2 as a function of ωn for β = 500 and calculated at t⊥ =
t⊥,c,V = 0.44D,U = 1.75D.

= V 4

4

∫ ∞

−∞
dε ρ0(ε)

ε2 − 2iηε

(ε2 − t⊥,c)2 − 4iηε
(
ε2 − t2

⊥,c

)

= V 4

4

∫ ∞

−∞
dε ρ0(ε)ε2

⎡
⎣P

⎛
⎝ 1(

ε2 − t2
⊥,c

)2

⎞
⎠

+ i4πδ
(
ε2 − t2

⊥,c

)
sgn

[
ε
(
ε2 − t2

⊥,c

)]⎤⎦.

From the same argument that we made earlier that |ε| < D
and t⊥,c > D, the imaginary part goes to zero. Hence only the
real part of M2 survives,

ReM2 = V 4

4

∫ ∞

−∞
dε ρ0(ε)ε2P

(
1

[ε2 − t⊥,c]2

)

= V 4

4

∫ D

−D
dερ0(ε)

ε2

[ε2 − t⊥,c]2
.

From the above expression, it is easy to see that ReM2 is
positive-definite and finite, since the integrand is positive-
definite, and t⊥c > D for all the quantum critical points in the
phase diagram.

2. Finite frequency behavior of the moments

To understand the frequency behavior of the moments,
M1 and M2, at low enough temperatures, we calculate the
respective moments as a function of ωn for two different
inverse temperatures, namely β = 500 (Fig. 15) and β = 104

(Fig. 16), using a power law form for the self-energy. Please
note that our CTQMC calculations are limited to β � 500, so
the β = 104 result shown in Fig. 16 assumes that the same
power law form of the self-energy holds at this temperature,
and the moments are computed using the equation given be-
low Eq. (14). In Fig. 15, we show the moments M1 and
M2 as a function of Matsubara frequency, as computed using
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FIG. 16. Plot of the real and imaginary part of the moments M1

and M2 as a function of ωn for β = 10 000 and calculated at t⊥ =
t⊥,c,V = 0.44D,U = 1.75D.

the power law form of the self-energy at β = 500. We see
that as ωn → 0+, M1 approaches a finite value at the lowest
Matsubara frequency, which will result in a deviation from
a perfect power law form of the hybridization function at
the QCP. To consolidate this observation, we compute the
moments at a much lower temperature, namely β = 104, and
as may be seen in Fig. 16, M1 → 0.

Figure 16 clearly demonstrates that M1 ≈ 0 and M2 is
a real, positive-definite constant in the limit of T → 0 that
naturally implies ωn → 0, and thereby it is only in this limit
that the hybridization function is power-law vanishing with
the form 	(iωn) ≈ − iM2|ωn|r

A , a genuine power-law. In fact,
our analyses suggest that there would always exist a nonzero
contribution from M1 in the low-frequency behavior of 	(iωn)
at all nonzero temperatures. However, the low-frequency con-
tribution will progressively tend to zero as we approach zero
temperature. We infer from our analyses and emphasize that
one may need to go as low as β = 104 to demonstrate a true
soft-gap hybridization at the QCP. Unfortunately, we do not
have the resources required for accessing such low tempera-
tures at present.

Another question that we address now is that of
DMFT self-consistency. From our analytical calculations [see
Eq. (16)], we see that the exponent appearing in the hybridiza-
tion is the same as that of the spectrum and the self-energy
[see Eq. (10)]. However, the CTQMC results shown in Fig. 7
paint a different picture. The figure shows that the critical
t⊥ data do not have a clear power law form, but if we do
somehow fit a power law form to the low-frequency data, we
see an exponent of 0.42, which differs from the self-energy
exponent. Thus, a natural culprit for this mismatch may be
identified as the absence of DMFT self-consistency. However,
as we will show below, the real culprit is the limitation of our
calculations to β � 500, due to the lack of resources, and not
DMFT self-consistency.

In Fig. 17, we show the imaginary part of the hybridization
function as obtained through the DMFT Eqs. (13) and (15),

FIG. 17. The imaginary part of the hybridization function,
−Im	(iωn), calculated at t⊥ = 1.033D, U = 1.75D, V = 0.44D, is
plotted as a function of the βωn for different inverse temperatures,
and it is fitted with a power law. We assume a self-energy of the form
�(iωn) ∼ iA|ωn|−r with r = 0.36, as an ansatz in Eq. (13) (justified
as the self-energy manifests an isosbestic point in temperature, at
t⊥ = 1.033). The important thing to note is that (i) the range of
the power law form extends to higher frequencies as we go down
in temperature, and (ii) the value of the exponent approaches the
value r = 0.36 = −αiso, implying that a genuine soft-gap form with
the expected soft-gap exponent, −αiso, in the hybridization function
emerges as T → 0.

using a power law form of the self-energy �(iωn) = iAω−r
n

with r = 0.36 plotted as a function of βωn. Note that this
gives us the freedom to choose a desired temperature, but
we again iterate that our CTQMC calculations are restricted
to β � 500. With this freedom, we obtain −Im	(iωn) for
increasingly lower temperatures, and as seen in Fig. 17, a
power law form when fit to the low-frequency data matches
the numerical results over an increasingly larger frequency
range as the temperature is lowered. More importantly, the
exponent of the power law decreases smoothly with decreas-
ing temperature from 0.42 to the isosbestic exponent, 0.36.
This shows that the DMFT self-consistency will not result in
the same exponent in the hybridization at finite temperatures.
And only at zero temperature will a perfect power law form
with exactly the same exponent emerge in the hybridization at
the quantum critical point.

APPENDIX E: ADDITIONAL NUMERICAL DETAILS

We use continuous-time quantum Monte Carlo as imple-
mented in the TRIQS [45–50] open source package to study
the finite-temperature behavior of the system. The Monte
Carlo parameters used in the calculations were n_cycle =
200 000, n_warmup = 10 000, n_length = 500. The pa-
rameter, n_cycles, is increased to 1 000 000 for the final
few DMFT iterations to reduce stochastic noise. Furthermore,
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close to the transition point, we also increased the number of
iterations for which n_cycles = 1 000 000 to get the converged
data. The number of Legendre polynomials (n_l) consid-
ered is dependent on the temperature we choose. We used
n_l = 50–100 for inverse temperature (β) ranging from 50 to
500. The number of processors (Dual Intel Xeon Cascadelake

8268) employed was 48. For carrying out the analytic contin-
uation through the Padé approximation, we have used Beach’s
matrix formulation method, as implemented in the code [58],
to find the Padé approximants. The maximum number of Padé
approximant coefficients used for the analytic continuation
is 80.
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