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Including many-body effects into the Wannier-interpolated quadratic photoresponse tensor
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We present a first-principles scheme for incorporating many-body interactions into the unified description of
the quadratic optical response to light of noncentrosymmetric crystals. The proposed method is based on time-
dependent current-density response theory and includes the electron-hole attraction via a tensorial long-range
exchange-correlation kernel, which we calculate using the parameter-free bootstrap approximation. By bridging
with the Wannier-interpolation of the independent-particle transition matrix elements, the resulting numerical
scheme is very general and allows us to resolve narrow many-body spectral features at low computational
cost. We showcase its potential by inspecting the second-harmonic generation in the benchmark zinc-blende
semiconductor GaAs, the layered graphitic semiconductor BC2N, and the Weyl semimetal TaAs. Our results
show that excitonic effects can give rise to large and sharply localized one- and two-photon resonances that are
absent in the independent-particle approximation. We find overall good agreement with available experimental
measurements, capturing the magnitude and peak structure of the spectrum as well as the angular dependence at
fixed photon energy. The implementation of the method in Wannier-based code packages can serve as a basis for
performing accurate theoretical predictions of quadratic optical properties in a vast pool of materials.
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I. INTRODUCTION

The field of nonlinear optics [1,2] has received a con-
siderable push in recent years, thanks in part to advances
of contemporary techniques in designing novel structures
such as layered materials and thin films [3,4]. Breakthroughs
have come in various fronts such as topology [5], with an
acute enhancement of the nonlinear light absorption in Weyl
semimetals [6–8] or the prediction of a quantized photore-
sponse [9], but also in more applied aspects such as the
increasing of power-conversion efficiency in ferroelectric in-
sulators [10] or the engineering of new effects for boosting the
performance of standard solar cells [11].

The unified microscopic description of nonlinear optical
phenomena is due to Sipe and co-workers [12–14], who de-
veloped a general formalism within the independent-particle
approximation for calculating the intrinsic contribution to the
second-order optical photoresponse tensors. This approach
accounts for the various quadratic optical processes taking
place in semiconductors, including injection and shift cur-
rents [2,15,16] that originate from physical divergences of
the response coefficients. Building on this scheme, several
studies based on density functional theory (DFT) have re-
ported material-specific calculations for various second-order
processes; see Refs. [17–26] for a small survey. In addition,
recent works have extended the formalism to include metallic
terms [27,28] and third-order contributions [29–31]. Alterna-
tive approaches have also been proposed, e.g., based on the
reduced density matrix formalism [32].

*peio.garcia@ehu.eus

While the theory of nonlinear optical photoresponses in
the independent-particle approximation has an ample track
record, many fewer studies have considered many-body in-
teractions beyond this picture. Among those, a series of
works by Luppi, Hübener, and Veniard [33–36] casted the
second-order susceptibility within the time-dependent DFT
(TDDFT), and provided explicit calculations of excitonic ef-
fects on the second-harmonic generation (SHG) spectrum for
various materials. DFT-based SHG spectra influenced by the
electron-hole attraction within a Bethe-Salpeter scheme were
also reported in Refs. [37–39]. An alternative real-time ap-
proach based on the Berry-phase formulation of the dynamical
polarization was set forth in Refs. [40,41]. More recently,
quasiparticle and excitonic effects on the shift current have
been analyzed using the GW plus Bethe-Salpeter equation
method [42,43].

The relative scarcity of practical implementations is in
part a consequence of the technical difficulties involved.
An important bottleneck concerns the calculation of the
independent-particle quadratic response, due to the intricate
form of the transition matrix elements that involve deriva-
tives with respect to the crystal momentum k of Bloch states
[14]. Their calculation requires a careful treatment in or-
der to ensure k-space gauge invariance and properly handle
band degeneracies [23,44,45], and brute-force approaches
quickly become time-demanding from a computational point
of view [25]. Recently, it has been shown that the so-called
“Wannier interpolation” procedure can solve the above diffi-
culties [21,46]. In this approach, the quadratic matrix elements
are reformulated in terms of localized Wannier functions,
in the same spirit as the Wannier interpolation of the Berry
curvature and anomalous Hall conductivity [47]. The method
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offers a general and efficient way of calculating second-order
optical response tensors without band-truncation errors, and it
can serve as the basis for further developments.

In this work, we incorporate many-body interactions into
the Wannier-based scheme by working out an expression
for the quadratic optical photoresponse tensor beyond the
independent-particle approximation. Our derivation is based
on the time-dependent current-density response theory and
formally includes excitonic effects through a tensorial long-
range exchange-correlation (xc) kernel. Explicitly adopting
the tensorial character of the response is of central importance,
as this allows a natural connection with the formalism of
the independent-particle picture in the optical limit and, by
extension, with the Wannier-interpolation scheme. To illus-
trate the generality and accuracy of our method, we analyze
the SHG process in three bulk materials. First, we con-
sider GaAs as a benchmark test. Second, we study BC2N,
a highly anisotropic graphitic-layered semiconductor that
showcases the advantages of the adopted tensorial frame-
work. Finally, we apply our scheme to the Weyl semimetal
TaAs and discuss the results in the context of recent optical
measurements.

The paper is organized as follows. In Sec. II we present
the main theoretical scheme. We first express the microscopic
quadratic conductivity tensor renormalized by many-body in-
teractions, and we compare our main tensorial expression with
the scalar counterpart of TDDFT [33–36]. We then consider
the optical limit and specialize to the SHG process, for which
we derive new metallic terms. To establish the link to exper-
imental observables, we analyze the connection between the
microscopic and macroscopic scales. Technical details con-
cerning the electronic-structure ab initio calculations based
on maximally localized Wannier functions and the inclusion
of excitonic effects are described in Sec. III. The computed
SHG spectra of GaAs, BC2N, and TaAs are presented and
discussed in Sec. IV. We provide concluding remarks in
Sec. V, while several technical subjects are kept for the
Appendixes.

II. THEORETICAL FRAMEWORK

A. Microscopic response tensors and many-body effects

Our starting point considers the microscopic response
of a many-body (MB) system of electrons interacting via
the Coulomb potential in a crystal that relates the electric
current-density vector J(r, t ) to the powers of an externally
applied time-dependent electric field Eext (r, t ). In practice,
this amounts to expanding the current-density vector in a
power series,

J(r, t ) =
∑

j

J j (r, t ), (1)

with the jth-order contribution defined as

J j (1) =
∫

· · ·
∫ 1

0
σ j (1, . . . , j + 1)

∏
j

Eext ( j + 1)d j + 1,

(2)

where we adopted the notation (r j, t j ) ≡ ( j) with j a positive
integer. The quantity σ j (1, . . . , j + 1) denotes the jth-order

MB conductivity tensor, and our main goal consists in finding
an expression for the second order, i.e., the j = 2 contribution.

To do so, let us adopt the standpoint of an electron in an
auxiliary Kohn-Sham (KS) system of independent particles,
where the total electric field that it feels can be written as

Etot (r, t ) = Eext (r, t ) + EH(r, t ) + Exc(r, t ). (3)

The Hartree (H) electric field as a function of the current-
density vector is given by

EH(1) =
∫ 1

0
KH(1, 2)J(2)d2, (4)

where KH(1, 2) is the tensorial Hartree kernel. In turn, the xc
electric field up to second order can be written as

Exc(1) =
∫ 1

0
Kxc,1(1, 2)J(2)d2

+
∫∫ 1

0
Kxc,2(1, 2, 3)J(2)J(3)d2d3, (5)

with Kxc,1(1, 2) and Kxc,2(1, 2, 3) the first-order and second-
order tensorial xc kernels, respectively.

Within the KS system, the response properties are gov-
erned by the so-called KS conductivity tensor, which de-
scribes the current-density vector in terms of powers of the
total electric field, in such a way that

J j (1) =
∫

· · ·
∫ 1

0
σ KS

j (1, . . . , j + 1)
∏

j

Etot ( j + 1)d j + 1.

(6)

Thus, the task is to express the MB response tensors up to sec-
ond order in terms of the necessary KS response coefficients
as well as the tensorial Hartree and xc kernels.

1. Linear response

As a warmup, we first review the linear case. Within the
time-dependent current-density functional theory (TDCDFT)
[48,49], the first-order current-density vector is given by

Ja
1 (1) =

∫ 1

0

∑
b

σ ab
1 (1, 2)Eb

ext (2)d2, (7a)

Ja
1 (1) =

∫ 1

0

∑
b

σ KS,ab
1 (1, 2)Eb

tot (2)d2, (7b)

where σ 1(1, 2) and σ KS
1 (1, 2) are the first-order conductivity

tensors of the MB and the KS system, respectively, defined as

σ ab
1 (1, 2) = δJa(1)

δEb
ext (2)

, (8a)

σ KS,ab
1 (1, 2) = δJa(1)

δEb
tot (2)

. (8b)

Henceforth, superscripts refer to Cartesian components. Ap-
plying the chain rule in the definition of the MB conductivity
tensor in Eq. (8a) and taking into account the definition of the
KS conductivity tensor in Eq. (8b), the first-order Dyson-like

205101-2



INCLUDING MANY-BODY EFFECTS INTO THE … PHYSICAL REVIEW B 107, 205101 (2023)

equation relating the MB and KS responses reads

σ ab
1 (1, 2) =

∫ ∑
c

σ KS,ac
1 (1, 3)ε−1,cb(3, 2)d3, (9)

where we have introduced the dielectric tensor ε(1, 2). This
quantity accounts for the MB electronic screening effects
within the crystal, and its inverse links the total and external
electric fields as

Ea
tot (1) =

∫ 1

0
ε−1,ab(1, 2)Eb

ext (2)d2. (10)

Considering the implicit definition of the inverse dielectric
tensor in Eq. (10) together with the relation between the total
and external electric fields in Eq. (3), we apply again the chain
rule to obtain

ε−1,ab(1, 2) = δ(1, 2)δab

+
∫ ∑

c

Kac
Hxc,1(1, 3)σ cb

1 (3, 2)d3. (11)

Above, KHxc,1(1, 2) = KH(1, 2) + Kxc,1(1, 2) is the grouping
of the first-order tensorial Hartree and xc kernels.

For practical purposes, it is useful to express the dielectric
tensor in terms of the KS conductivity tensor instead of the
MB one. Such an expression is obtained by reproducing the
previous chain rule procedure, but this time starting from

Eq. (8b), and it reads

εab(1, 2) = δ(1, 2)δab −
∫ ∑

c

Kac
Hxc,1(1, 3)σ KS,cb

1 (3, 2)d3.

(12)

2. Quadratic response

In analogy with the treatment of the first-order response,
the second-order current-density vector can be written as

Ja
2 (1) =

∫∫ 1

0

∑
bc

σ abc
2 (1, 2, 3)Eb

ext (2)Ec
ext (3)d2d3, (13a)

Ja
2 (1) =

∫∫ 1

0

∑
bc

σ KS,abc
2 (1, 2, 3)Eb

tot (2)Ec
tot (3)d2d3,

(13b)

where σ 2(1, 2, 3) and σ KS
2 (1, 2, 3) are the second-order con-

ductivity tensors of the MB and the KS systems, respectively,
defined as

σ abc
2 (1, 2, 3) = δ2Ja(1)

δEb
ext (2)δEc

ext (3)
, (14a)

σ KS,abc
2 (1, 2, 3) = δ2Ja(1)

δEb
tot (2)δEc

tot (3)
. (14b)

By systematically applying the chain rule in the definition of
the MB conductivity tensor in Eq. (14a), a procedure that is
outlined in Appendix A, one derives the desired second-order
Dyson-like equation relating the MB and KS responses,

σ abc
2 (1, 2, 3) =

∫∫∫ ∑
def

ε−1,ad (1, 4)σ KS,de f
2 (4, 5, 6)ε−1,eb(5, 2)ε−1, f c(6, 3)d4d5d6

+
∫∫∫ ∑

def

σ ad
1 (1, 4)Kdef

xc,2(4, 5, 6)σ eb
1 (5, 2)σ f c

1 (6, 3)d4d5d6. (15)

The above equation can be regarded as the tensorial gen-
eralization of the expression for the second-order scalar
density response function obtained in TDDFT (see Eq. 180
in Ref. [50] or Eq. 13 in Ref. [33]). Dealing with the response
in the form of a tensorial quantity allows a natural connection
with the description of the optical KS response, as we show
below.

B. Optical limit

To proceed further, one needs explicit expressions for the
KS response. This task can be greatly simplified by consid-
ering the optical and long-wavelength limit, which assumes
that the external electric field remains constant in the length-
scale of the crystal’s unit cell [51]. Within this approach, it
is convenient to adopt the formalism of Sipe and co-workers
[12–14], where the current-density vector operator is split into
its interband (ter) and intraband (tra) parts at any jth order as

J j (t ) = dPter, j (t )

dt
+ Jtra, j (t ), (16)

where the interband polarization- and intraband current-
density vectors are, respectively, expressed in terms of the
charge-density matrix elements ρ j,mn(t ) as

Pa
ter, j (t ) = e

V

∑
kmn

ra
nmρ j,mn(t ), (17a)

Ja
tra, j (t ) = e

V

∑
kmn

[
va

nmδnm − e

h̄

∑
b

(
ra;b

nm + δnmεcab�
c
n

)
Eb(t )

]

× ρ j,mn(t ). (17b)

Above, V denotes the volume of the crystal, while n and m are
band indices. The transition matrix elements involve several
quantities; ra

nm = (1 − δnm)ξ a
nm and ra;b

nm = ∂ra
nm/∂kb − i(ξ b

nn −
ξ b

mm)ra
nm are the interband dipole and its generalized derivative,

respectively; ξ a
nm = i 〈un|∂/∂ka|um〉 and εcab�

c
n = ∂ξ b

nn/∂ka −
∂ξ a

nn/∂kb stand for the Berry connection and curvature, re-
spectively, with |un〉 the crystal-periodic part of the Bloch
function; finally, va

nm = 〈un|∂Ĥ/∂ka|um〉 denotes the velocity
matrix element. We kept the dependence on the crystal wave
vector k implicit for all these quantities.
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Based on the dynamical equation of the charge-density
operator within the Schrödinger picture, one can solve for
ρ j,mn(t ) employing an iterative scheme at the desired order
in the electric field and compute the associated response
tensors [14]. In frequency domain, the first-order interband
polarization- and intraband current-density vectors can be ex-
pressed, respectively, as

Pa
ter,1(ω) =

∑
b

αKS,ab
ter,1 (ω)Eb

tot (ω), (18a)

Ja
tra,1(ω) =

∑
b

σ KS,ab
tra,1 (ω)Eb

tot (ω), (18b)

and similarly for second order

Pa
ter,2(ω12) =

∑
bc

αKS,abc
ter,2 (ω1, ω2)Ec

tot (ω1)Eb
tot (ω2), (19a)

Ja
tra,2(ω12) =

∑
bc

σ KS,abc
tra,2 (ω1, ω2)Eb

tot (ω1)Ec
tot (ω2), (19b)

with ω12 = ω1 + ω2. In Eqs. (18a) and (18b), αKS
ter,1(ω) and

σ KS
tra,1(ω) are the first-order optical KS interband polarizabil-

ity and intraband conductivity tensors, respectively, while in
Eqs. (19a) and (19b), αKS

ter,2(ω1, ω2) and σ KS
tra,2(ω1, ω2) are their

second-order counterparts, respectively. Following Eq. (16),
the full optical KS conductivity tensors at first and second
order are, respectively, given by

σ KS
1 (ω) = −iωαKS

ter,1(ω) + σ KS
tra,1(ω) (20)

and

σ KS
2 (ω1, ω2) = −iω12α

KS
ter,2(ω1, ω2) + σ KS

tra,2(ω1, ω2). (21)

The expressions for the optical KS interband polarizability
and intraband conductivity tensors are well established at first
order [52,53], as well as at second order in the case of semi-
conductors [12–14]. In the case of metals and semimetals,
extra terms appear due to the presence of a Fermi surface.
Recent works [27,28] have derived and thoroughly discussed
the metallic terms of σ KS

tra,2(ω1, ω2), paying special attention
to the direct-current contribution. As for αKS

ter,2(ω1, ω2), its
metallic terms have not been previously derived to the best
of our knowledge. In Appendix B, we provide the general
expressions of all optical KS response tensors up to second
order valid for any kind of material.

1. Second harmonic generation

In the remainder of this work, for conciseness we specialize
in the calculation of a particular quadratic optical response,
namely the second harmonic generation. The SHG process
considers two initial photons with the same frequency which
are combined to generate a final photon with twice the initial
frequency, maintaining the coherence of the excitation. By
setting ω1 = ω2 ≡ ω in Eqs. (B2a) and (B2b) of Appendix B,
the SHG KS interband polarizability intraband conductivity
tensors are, respectively, given by

αKS,abc
ter,2 (ω,ω) = e3

2h̄2V

( ∑
kmnl

ra
nm

(
rb

ml r
c
ln + rc

ml r
b
ln

)
ωln − ωml

(
2 fnm

ωmn − 2ω̃
+ fln

ωln − ω̃
+ fml

ωml − ω̃

)
+ i

∑
kmn

{
fnm

[
2ra

nm

(
rb;c

mn + rc;b
mn

)
ωmn(ωmn − 2ω̃)

+ ra;b
nm rc

mn + ra;c
nm rb

mn

ωmn(ωmn − ω̃)
+ ra

nm

(
rb

mn�
c
mn + rc

mn�
b
mn

)
ω2

mn

(
1

ωmn − ω̃
− 4

ωmn − 2ω̃

)]
− ra

nm

(
fnm;brc

mn + fnm;crb
mn

)
ωmnω

})
,

(22a)

σ KS,abc
tra,2 (ω,ω) = e3

2h̄2V

{
−

∑
kmn

fnm

[
rc;a

nm rb
mn + rb;a

nm rc
mn

ωmn − ω̃
+�a

nm

(
rb

mnrc
nm + rc

mnrb
nm

)
2ω(ωmn − ω̃)

]
+

∑
kn

[
i
( fn;bεdac + fn;cεdab)�d

n

ω
− va

n fn;bc

ω2

]}
.

(22b)

Above, ωmn = ωm − ωn and fnm = fn − fm, with h̄ωn and fn = f (h̄ωn) the eigenvalue and occupation factor of the eigenstate
|kn〉, respectively, while �a

nm = va
n − va

m and ω̃ ≡ ω + iη/h̄, with η a positive real infinitesimal. The terms including the
derivatives fn;a = ∂ fn/∂ka and fn;ab = ∂2 fn/∂ka∂kb correspond to the metallic contribution. With explicit expressions for the
SHG KS response coefficients at hand, we can now calculate the SHG MB conductivity tensor from Eq. (15) as

σ abc
2 (ω,ω) =

∑
def

ε−1,ad (2ω)σ KS,de f
2 (ω,ω)ε−1,eb(ω)ε−1, f c(ω) +

∑
def

σ ad
1 (2ω)Kdef

xc,2(ω,ω)σ eb
1 (ω)σ f c

1 (ω), (23)

where the optical dielectric and MB conductivity tensors sat-
isfy, respectively [see Eqs. (12) and (9)],

εab(ω) = δab −
∑

c

Kac
Hxc,1(ω)σ KS,cb

1 (ω) (24)

and

σ ab
1 (ω) =

∑
c

σ KS,ac
1 (ω)ε−1,cb(ω). (25)

Let us inspect Eq. (23) in some detail. MB interactions
come in two different ways; on the one hand, they occur
through the inverse dielectric tensor that includes screen-
ing effects, and on the other hand, they occur through the
second-order tensorial xc kernel Kxc,2(ω,ω). Due to hierarchy
arguments, we expect the former to be dominant. Focusing on
the first piece on the right-hand side (r.h.s.) of Eq. (23), the
response at frequency ω is affected by the screening at that
and twice that frequency. This can lead to double-frequency
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many-body resonances in the SHG spectrum, as we will
show in more detail when analyzing our numerical results in
Sec. IV. Note that, in the case of isotropic media, Eq. (23) is
equivalent to Eq. 37 of Ref. [35].

2. From the microscopic response to the macroscopic response

As the final step, we consider the connection between
the previous microscopic coefficients and their macroscopic
counterparts, which are ultimately the quantities measured in
experiment. The macroscopic response to light is described
by Maxwell’s equations and can be accessed by performing
a macroscopic average of the microscopic response tensors
over regions in space that are large in comparison with the
crystal unit cell, but small compared to the wavelength of
the external perturbation [51]. In this work, we adopt the
formulation of Del Sole and Fiorino [54] for relating the
macroscopic and microscopic scales; the detailed derivation is
outlined in Appendix D. Here we focus on the SHG process;
by setting ω1 = ω2 ≡ ω in Eq. (D12), the macroscopic SHG
photoconductivity tensor is calculated from its microscopic
counterpart as

σ abc
M,2(ω,ω) = εaa

M (2ω)σ abc
2 (ω,ω)εbb

M (ω)εcc
M (ω), (26)

where the macroscopic optical dielectric tensor is given in
terms of the microscopic optical conductivity by

εaa
M (ω) =

[
1 − i

4π

ω
σ 1(ω)

]−1,aa

. (27)

III. TECHNICAL DETAILS

In this section, we describe in detail the steps followed in
the calculations for three bulk materials: the semiconductor
GaAs, the semiconductor BC2N, and the semimetal TaAs.

A. DFT calculations

In a first step, we performed DFT self-consistent calcula-
tions using the QUANTUM ESPRESSO code package [55,56].
The interaction between valence electrons and atomic cores
was modeled by means of projector-augmented-wave pseu-
dopotentials [57] with scalar relativistic corrections for GaAs
and BC2N and fully relativistic corrections for TaAs. The
pseudopotentials were taken from the QUANTUM ESPRESSO

website and generated using the Perdew-Burke-Ernzerhof
generalized gradient approximation for the xc energy func-
tional [58]. For GaAs, we considered the zinc-blende crystal
structure together with the experimental value of the lat-
tice parameter, i.e., a = 10.68a0 [59]. We performed DFT
calculations using an 8 × 8 × 8 k-point mesh in combina-
tion with fixed occupation values and a plane-wave basis set
with a cutoff energy of 60 Ry. For BC2N, we considered
the graphitic-layered A2 crystal structure, which is the most
stable noncentrosymmetric bulk structure, with orthorhombic
space group Pmm2 (no. 25) following the theoretical struc-
tural parameters of Ref. [60]. We performed DFT calculations
using a 10 × 10 × 10 k-point mesh in combination with fixed
occupation values and a plane-wave basis set with a cut-
off energy of 70 Ry. Finally, for TaAs, we considered its
ground-state body-centered-tetragonal crystal structure with

FIG. 1. DFT and Wannier-interpolated energy bands of TaAs.
The horizontal dashed line at 3 eV denotes the upper limit of the
inner energy window used in the disentanglement step of the Wannier
construction procedure.

nonsymmorphic space group I41md (no. 109) following the
experimental structural parameters of Ref. [61]. We per-
formed noncollinear spin-DFT calculations using an 8 × 8 ×
8 k-point mesh in combination with occupation values calcu-
lated by means of the optimized tetrahedron method [62] and
a plane-wave basis set with a cutoff energy of 60 Ry.

B. Wannier interpolation

In a postprocessing step, we constructed maximally lo-
calized Wannier functions (MLWFs) using the WANNIER90
code package [63]. For GaAs, starting from a set of 15 spin-
degenerate bands, we constructed 11 disentangled MLWFs
spanning the four high-energy valence bands and the seven
low-energy conduction bands using two s trial orbitals and
one p trial orbital centered on all atoms, as well as one s trial
orbital halfway between the two atoms. For BC2N, starting
from a set of 38 spin-degenerate bands, we constructed eight
disentangled MLWFs spanning the four high-energy valence
bands and the four low-energy conduction bands using pz trial
orbitals centered on all atoms. Finally, for TaAs, starting from
a set of 48 spin-polarized bands, we constructed 32 disen-
tangled MLWFs spanning the 16 high-energy valence bands
and the 16 low-energy conduction bands using p and d trial
orbitals centered on all As and Ta atoms, respectively. In all
cases, the agreement between DFT and Wannier-interpolated
bands is in excellent agreement inside the chosen inner energy
window [64], as we illustrate in Fig. 1 for the case of TaAs.

Having converged the Wannier basis, we then computed
the linear and quadratic optical KS response tensors [see
Eqs. (B1a)–(B1b) and Eqs. (22a)–(22b), respectively] using
Wannier interpolation. To that end, we used the schemes de-
scribed in Ref. [47] for the calculation of interband dipole
matrix elements and Berry curvatures, Ref. [46] for the cal-
culation of generalized derivatives of the dipole matrix, and
Ref. [65] for the calculation of velocity matrix elements. Fol-
lowing the procedure of Refs. [46,66], in Eqs. (22a)–(22b) we
regularized the energy denominators of the three-band term
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and ra;b
mn involving intermediate states by means of an auxiliary

parameter ηr. Alongside, the derivatives of the occupation
factors were computed by replacing

fn;a → df

dωn
va

n (28)

for the first-order derivative and

fn;ab → d2 f

dω2
n

va
nv

b
n + df

dωn
ωn;ab (29)

for the second-order derivative, where ωn;ab denotes the in-
verse effective-mass tensor [65]. We considered Gaussian
distributions for the derivatives of the occupation factors.

To obtain well-converged optical spectra, we used dense
k-point interpolation meshes of 250 × 250 × 250 for GaAs,
200 × 200 × 200 for BC2N, and 300 × 300 × 300 for TaAs.
With respect to the imaginary part of the complex energy h̄ω̃

[see Eqs. (22a) and (22b)], we set η = 0.1 eV in the case of
GaAs and TaAs, consistent with carrier scattering lifetimes
(∼ 10 fs) near the Fermi level observed in both GaAs [67] and
TaAs [68], while for BC2N we employed an adaptive scheme
[65]. Regarding the auxiliary parameter for regularizing en-
ergy denominators, we chose ηr = 0.04 eV for both GaAs and
BC2N, following Refs. [46] and [69], respectively. In the case
of TaAs, we set ηr = 0.1 meV in order to properly capture the
contribution of Weyl points. The occupation factors and their
derivatives are evaluated at zero temperature (T = 0 K) for
the semiconductors GaAs and BC2N and at room temperature
(T = 300 K) for TaAs.

C. Long-range contribution to the tensorial xc kernel

Within the long-wavelength and optical limit, the gen-
eral expressions for the tensorial Hartree and xc kernels [see
Eqs. (4) and (5)] simplify. The Hartree term reduces to a
diagonal and isotropic tensor

Kab
H (ω) = −i

4πδab

ω
. (30)

As for the xc term, it takes the form of a long-range con-
tribution (LRC) with a screened Coulomb-like potential, as
first discussed in Ref. [70]. In our work, we took into ac-
count quasiparticle self-energy effects by means of a scissors
operator, while we incorporated electron-hole interactions as-
suming a static tensorial LRC xc kernel based on an attractive
Coulomb-like potential. With these assumptions, the first-
order tensorial xc kernel simplifies to (see Appendix C)

Kab
xc,1(ω) = i

αa
LRCδab

ω
, (31)

which is a diagonal but generally anisotropic 3 × 3 ma-
trix composed of three independent, positive-definite, and
frequency-independent coefficients αa

LRC. We note that αa
LRC

in Eq. (31) is the tensorial generalization of the scalar
α-parameter of LRC xc kernels used in TDDFT [71–73].
In our implementation, we calculated these coefficients by
means of the so-called self-consistent bootstrap (BO) approx-
imation [74] along each principal axis of the material (see
Appendix C for details). While this approximation might
underestimate excitonic effects in large-band-gap insulators

[75], we have verified that our results on semiconduct-
ing GaAs and BC2N are practically unchanged when using
an alternative one-shot RPA-bootstrap (RBO) approximation
proposed in Refs. [75,76].

Finally, in our calculations we discarded the effect of
the second-order tensorial xc kernel Kxc,2(1, 2, 3) entering
Eq. (5), given that its approximate expression is generally
unknown and its effects are expected to be minor (of the
order of crystal local-field effects [70]) in comparison to the
first-order contribution [33–35].

To sum up, in practice, we calculated the microscopic SHG
MB conductivity tensor by means of

σ abc
2 (ω,ω)

=
∑
def

ε−1,da(2ω)σ KS,de f
2 (ω,ω)ε−1,eb(ω)ε−1, f c(ω), (32)

where the microscopic optical dielectric tensor is given by

εab(ω) = δab + i
4π − αa

LRC

ω
σ KS,ab

1 (ω). (33)

The last step involves calculating the macroscopic SHG pho-
toconductivity tensor from its microscopic counterpart by
means of Eq. (26).

IV. RESULTS

In this section, we present our numerical results of the
macroscopic SHG photoresponse. To facilitate comparison
with existing literature, we will partly describe our results in
terms of the photosusceptibility, whose connection to the pho-
toconductivity used in our derivations of Sec. II is provided in
Appendix D. In the materials analyzed in this work, the optical
dielectric tensor is diagonal due to symmetry arguments [77].
It then follows that the relation between the macroscopic SHG
MB and KS photosusceptibilities simplifies to

χabc
2 (ω,ω) = βabc(ω)χKS,abc

2 (ω,ω), (34)

with

βabc(ω) = εaa
M (2ω)ε−1,aa(2ω)

× εbb
M (ω)ε−1,bb(ω)εcc

M (ω)ε−1cc
(ω) (35)

the enhancement factor, a quantity that will be useful when
discussing the impact of MB corrections in our results.

A. GaAs

The first SHG measurements in GaAs date back to the
1960s [78,79], and it has become the standard material for
benchmarking theoretical SHG calculations. Initial works
were based on empirical pseudopotentials [80] and tight-
binding models [81]. More recently, several first-principles
studies have been reported [17–19,21,82]; most have been per-
formed within the independent-quasiparticle approximation
(IQA), i.e., including self-energy effects to the independent-
particle picture. Beyond this approach, only a few studies have
reported the impact of MB interactions [34,35,37,38].

Since GaAs is a cubic crystal, εaa(ω) = εxx(ω) for any
Cartesian component a, and χabc

2 (ω,ω) = χ
xyz
2 (ω,ω) for any

permutation abc of xyz, while all other components of both
tensors vanish by symmetry [77]. Figures 2(a) and 2(b)
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FIG. 2. (a) Imaginary and (b) real parts of the macroscopic
dielectric function, and (c) imaginary and (d) real parts of the macro-
scopic SHG photosusceptibility for bulk GaAs. Thin solid black,
thick solid red, and thick dashed blue lines represent the KS-IQA,
MB-BO, and MB-RBO spectra, respectively. Gray circles represent
the experimental data from Ref. [87]. Vertical dotted lines represent
the band-gap energy (Ebg = 1.42 eV) and half its value (Ebg/2).
(e) Absolute value of the enhancement factor βxyz(ω) [see Eq. (35)].

show the spectra of the imaginary and real parts, respec-
tively, of the calculated macroscopic optical dielectric tensor.
Figures 2(c) and 2(d) show the spectra of the imaginary and
real parts, respectively, of the calculated macroscopic SHG
photosusceptibility. KS calculations have been performed
within IQA incorporating quasiparticle corrections by means
of a scissors operator that rigidly shifts the conduction bands
by 0.91 eV in order to recover the experimental value of the
band-gap energy at room temperature, Ebg = 1.42 eV [83]. In

the MB picture, excitonic effects have been included through
the LRC xc coefficient αa

LRC ≡ αLRC, which is isotropic in
cubic crystals. The calculated coefficients within BO and
RBO approximations are αBO

LRC = −0.11 and αRBO
LRC = −0.12,

respectively, consistent with the values of previous ab initio
studies [84–86]. From Figs. 2(a) and 2(b), the inclusion of
LRC coefficients significantly improves the agreement of lin-
ear optics with experimental measurements [87].

Coming next to quadratic SHG optics, let us begin by
describing the KS-IQA results. The spectrum of the imaginary
part [Fig. 2(c)] is finite for energies above Ebg/2 [14] and
contains a strong peak near the band edge. As for the real
part [Fig. 2(d)], it is finite at all energies due to photons
absorbed or emitted in virtual excitations. The spectrum grows
progressively at low energies and exhibits maxima at Ebg/2
and Ebg due to two- and one-photon resonances, respectively.
At higher energies, double resonant transitions take place [14]
and the spectrum shows several strong peaks.

The net effect of MB-LRC corrections is to increase the
magnitude of both the imaginary and real parts of the SHG
spectrum, as is clearly visible in Figs. 2(c) and 2(d), respec-
tively. The enhancement factor displayed in Fig. 2(e) shows
that the difference ranges between 0% and 50%, with the
largest renormalization taking place right at the band-edge
energy. No new spectral feature is formed as a consequence of
excitonic effects. It is also worth noting that the MB-BO and
MB-RBO spectra are practically indistinguishable from each
other at both first and second orders; hence in the remainder of
this work, we will only show MB-BO results for conciseness.
In Fig. 3 we show the absolute value of the macroscopic
SHG photosusceptibility and compare our calculations with
experimental measurements as well as previous theoretical
works including different approximations. The experimental
spectrum is dominated by a peak at the band-edge energy,
and it contains a “V”-shaped form between 2 and 3 eV.
These two spectral features are well described by both our
KS-IQA and MB-LRC calculations, which show a similar
shape but different size as discussed previously. Our KS-IQA
result [see Fig. 3(a)] is in qualitative agreement with previous
IQA calculations, especially that of Ref. [35]. Our MB-LRC
calculation [see Fig. 3(b)] strikes the best balance in describ-
ing the magnitude and width of the two spectral features of
the experiment, although the height of the “V”-shaped form
is somewhat overestimated. Here too we note a qualitative
agreement with the TDDFT result of Ref. [35].

In quantitative terms, our results show sharper peaks than
those of previous theoretical works. This can be a conse-
quence of the small smearing factors achievable thanks to
Wannier interpolation, which makes it possible to consider on
the order of 106 k-points for converging the SHG integrals
over the BZ [see Eqs. (22a) and (22b)]. For comparison, the
calculations of Refs. [38] and [35] employed on the order
of 103 and 104 k-points, respectively. This fine sampling has
allowed us to model the lifetime of hot carriers (∼10 fs)
in bulk GaAs [67], which therefore renders more realistic
spectral widths as compared to experiment.

B. BC2N

The graphitic-layered semiconductor BC2N has attracted
interest in recent years as a potential nonlinear optical material
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FIG. 3. Absolute value of the macroscopic SHG photosuscepti-
bility for bulk GaAs in the (a) KS-IQA and (b) MB-BO pictures.
Solid black lines represent our calculated spectra. Gray circles rep-
resent the experimental data from Ref. [87]. Magenta hexagons,
yellow squares, and cyan diamonds represent theoretical spectra
from Refs. [37], [38], and [35], respectively, within IQA in (a) and
including excitonic effects in (b) by means of BSE for Refs. [37] and
[38], and TDDFT for Ref. [35]. In all these works, the scissors shift is
such that the experimental value of the band-gap energy is recovered,
being equal to 0.6 and 0.8 eV for Refs. [38] and [35], respectively. In
Ref. [35], TDDFT is employed with an empirical αLRC = 0.2.

[88,89]. Its layered geometry composed of alternating zigzag
of C − C and B − N chains makes it a malleable and strongly
anisotropic crystal [90]. Among its several polytypes, the A2
configuration (BC2N-A2) is the most stable noncentrosym-
metric structure [60] that allows a finite quadratic response.
First-principles calculations within the independent-particle
approximation (IPA) have recently predicted a large SHG for
BC2N-A2 in monolayer and nanotube form [91] that is an
order of magnitude larger than in bulk GaAs. A large shift
current has also been calculated recently in bulk [92] and
monolayer [69] form. To our knowledge, no systematic study
of MB effects on the SHG has been carried out for bulk
BC2N-A2 to date.

Due to its mm2 point group, the symmetry-allowed compo-
nents of the SHG photosusceptibility tensor for BC2N-A2 are
xxy = xyx, yxx, yyy, yzz, and zzy = zyz [77]. Their absolute
values in the KS-IPA picture are displayed in Fig. 4(a). To

FIG. 4. (a) Absolute value of the SHG KS-IPA photosusceptibil-
ity tensor for bulk BC2N-A2. Solid black, dashed gray, dotted green,
dash-dot-dashed blue, and dash-dot-dotted red lines represent the
spectra of the xxy = xyx, yxx, yyy, yzz, and zzy = zyz nonvanishing
components, respectively. The inset zooms in the yyy, yzz, and zzy
components. (b) Joint density of states. Solid magenta and dashed
orange lines represent the one- and two-photon signals, respectively.
Vertical dotted lines represent the band-edge energy range bound-
aries (Ebg ≈ 1.18 and EX ≈ 1.33) and half their values.

facilitate the discussion of the spectral features, in Fig. 4(b)
we show the joint density of states (JDOS) per crystal unit
cell [92] for the one- and two-photon signals. In these and
following figures, Ebg = 1.18 eV denotes the direct band-gap
energy, while EX = 1.33 eV refers to the band-gap energy at
high symmetry point X. The latter was found to mark the peak
absorption of the shift current at low energies [92] and will
also play an important role in the SHG.

The tensor components xxy and yxx dominate the SHG
photoresponse with values of the order of the SHG for the
monolayer and nanotube forms [91], and they coincide with
the dominant components of the shift current for bulk BC2N-
A2 [92]. The maximum value of 5.8 × 103 pm/V takes place
for the yxx component at EX/2 due to a two-photon absorption
process. These and further spectral features like the peak at
� 1 eV can be associated with contributions in the one- and
two-photon JDOS [see Fig. 4(b)]. We focus next on the MB-
LRC interactions. Unlike the case of GaAs studied previously,
BC2N-A2 is anisotropic and so is the tensorial LRC xc ker-
nel; the calculated BO coefficients are {αx

LRC, α
y
LRC, αz

LRC} =
{0.06, 0.29, 5.51}. Note that the z component is an order of
magnitude larger than the x and y components, as well as
the coefficient computed for GaAs (see Sec. IV A). There-
fore, BC2N-A2 represents a clear example where an isotropic
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FIG. 5. (a) Absolute value of the xxy component of the macro-
scopic SHG photosusceptibility tensor for bulk BC2N-A2. (b) Ab-
solute value of the enhancement factor βxxy(ω). The solid black line
represent the KS-IPA spectrum. The dashed red and dash-dotted blue
lines represent the MB-BO spectrum using the anisotropic (aniso.)
and isotropic (iso.) tensorial LRC xc kernel, respectively. (c) xx com-
ponent of the inverse of the macroscopic optical dielectric tensor. The
solid red (dashed green) and dotted blue (dash-dotted black) lines
represent the real (Re) and imaginary (Im) parts in the anisotropic
(isotropic) case, respectively. These spectra are practically identical
when using BO or RBO approximations.

treatment of the excitonic effects constitutes a poor choice,
given that the value of the space-averaged scalar LRC xc
coefficient αiso.

LRC = 0.42 is close to none of the actual space-
resolved tensorial components. In the following, we illustrate
the profound errors that this procedure can induce in the
absorption spectrum.

In Fig. 5(a) we display the renormalization of the macro-
scopic SHG photosusceptibility tensor component xxy by
electron-hole corrections at two levels: using the anisotropic
and isotropic tensorial LRC xc kernels. Comparison to the
KS-IPA response shows that the anisotropic kernel induces a
maximum increase of nearly a factor 1.5 [see the enhancement
factor in Fig. 5(b)], but it does not alter the overall shape
of the spectrum, in line with what we found for GaAs (see
Sec. IV A). On the other hand, the isotropic kernel produces a

large peak at half the band-edge energy that completely dom-
inates the MB-BO spectrum, with an enhancement of more
than one order of magnitude as compared to the anisotropic
kernel. A secondary peak is also visible at the band-edge
energy.

The origin of these two sharp peaks can be determined by
inspecting the inverse of the macroscopic optical dielectric
tensor along x; this quantity is shown in Fig. 5(c) separately
for the real and imaginary parts. While Imε−1,xx

M (ω) is barely
affected by the type of tensorial LRC xc kernel, Reε−1,xx

M (ω)
shows a strong shift that is nearly frequency-independent;
both these features can be qualitatively understood by working
out explicit expressions [use Eqs. (33) and (25) in Eq. (27)]
and noting that the Hartree contribution is much stronger than
any of the LRC xc components, i.e., 4π 	 αa

LRC. In the case
of the isotropic kernel, Reε−1,xx

M (ω) crosses the zero axis very
close to the band-edge energy, where Imε−1,xx

M (ω) � 0 too,
leading to a sharp peak in εxx

M (ω) at that energy [see the
enhancement factor in Fig. 5(b)]. This peak is then replicated
at half the band-edge energy in the SHG spectrum through the
εxx

M (2ω) factor in Eq. (26), and enhanced by transition matrix
elements.

We have verified that a similar effect takes place for the
SHG tensor component yxx too (not shown). In this case,
the isotropic kernel gives rise to an even larger peak right
at the band-edge energy reaching � 700 × 103 pm/V [see
Fig. 5(a) for comparison], while the anisotropic kernel induces
only moderate changes to the KS-IPA response. These exam-
ples show that sharp, excitonlike peaks in the SHG spectrum
can be induced by MB-LRC effects provided the appropriate
conditions are met. These conditions are very sensitive to
numerics, which stresses the importance of accounting for
the space-resolved anisotropy of the material in the tensorial
xc kernel, and therefore its advantage over a space-averaged
scalar approach.

C. TaAs

Theoretically predicted [94,95] and experimentally con-
firmed in 2015 [96–98], TaAs is a type I Weyl semimetal
[99] without an inversion center. Following its discovery, sev-
eral experiments have reported remarkable nonlinear optical
properties. Reference [6] measured a “giant” SHG photosus-
ceptibility at � 1.55 eV that is an order of magnitude larger
than in most other materials. Shortly after, Ref. [93] extended
the measurements to lower energies and found a narrow res-
onance at � 0.75 eV with an even larger photoresponse. In
addition to the SHG, other quadratic optical responses such as
the shift current have also been measured to be exceptionally
large [8].

Due to its 4mm point group, the symmetry-allowed compo-
nents of the SHG tensor in TaAs are zzz, zxx = zxz = zyy =
zyz, and xxz = xzx = yyz = yzy, where x and y are equivalent
directions of the tetragonal unit cell, and the direction perpen-
dicular to the xy plane is the polar axis z.

Unlike GaAs and BC2N studied previously, TaAs is a
semimetal. In this case, the BO and RBO approximations
for the calculation of the tensorial LRC xc kernel cannot
be applied directly since Im[ε(ω = 0)] 
= 0 [74]. As a con-
sequence, we have chosen to renormalize the SHG KS-IPA
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FIG. 6. (a) Absolute value of the zzz component of the macroscopic SHG photosusceptibility tensor for bulk TaAs. Dashed black and solid
colored lines represent the KS-IPA and MB-LRC spectra as a function of αz

LRC, respectively. Black errorbar corresponds to the experimental
data point from Ref. [6]. (b) SHG intensity polar plot in both parallel (‖) and perpendicular (⊥) generator/analyzer configurations. For better
visualization, results in the ⊥ configuration are multiplied by a factor 8. KS-IPA calculations are multiplied by a factor 6 and 24 for ‖ and
⊥ configurations, respectively. Open red and blue circles represent ‖ and ⊥ experimental data from Ref. [6], respectively. Solid (dashed)
red (magenta) and blue (cyan) lines represent our MB-LRC (KS-IPA) calculations in the ‖ and ⊥ configurations, respectively, for {αx=y

LRC =
1.8, αz

LRC = 0.3}. (c) Absolute value of the macroscopic SHG photoconductivity tensor. Open red, dark blue, and black circles represent
experimental data from Ref. [93] for the xxz, zxx, and effective components, respectively. Orange, cyan, and gray solid lines represent our
calculated MB-LRC spectra of the xxz, zxx (multiplied by 100), and effective (multiplied by 10) components, respectively.

spectrum for a reasonable range of LRC xc coefficients
{αx=y

LRC, αz
LRC} and determine empirically their most appropri-

ate values by comparing to the experimental measurements.
In Fig. 6(a) we show our calculated |χ zzz

2 (ω,ω)| as a func-
tion of αz

LRC together with the available experimental data
point at � 1.55 eV from Ref. [6], equal to 7 ± 1 × 103 pm/V.
The KS-IPA response peaks around 0.85 eV and captures the
magnitude of the experimental value but underestimates it by
roughly a factor 2. The SHG MB-LRC spectrum grows with
the value of αz

LRC until it equals 0.3, where it basically matches
the experiment and therefore represents the optimal value. For
αz

LRC > 0.3, the magnitude of |χ zzz
2 (ω,ω)| starts decreasing

and it becomes nearly overdamped for αz
LRC > 0.6. The over-

all shape of the spectrum is maintained in the whole range
of αz

LRC considered. By applying the same procedure to the
zxx and xxz components, we have determined the remaining
coefficient α

x=y
LRC = 1.8.

In Ref. [6], two additional measurements were conducted
at � 1.55 eV for varying angle θ of linearly polarized light,
with the field oriented along the [1, 1,−1] (parallel setup,
‖) and [1,−1, 0] (perpendicular setup, ⊥) directions. Mak-
ing use of the appropriate combination of the SHG tensor
components (see Eqs. 3 and 4 of the supplemental material
in Ref. [6]), we have calculated the angular dependence of
the SHG intensity and compared it to the experimental polar
plot, as shown in Fig. 6(b). For the parallel configuration,
the response shows an elongated shape along the θ = 0 axis
that is remarkably well captured by our MB-LRC result. For
the perpendicular configuration, the response shows a four-
fold structure with maxima at π/4 + n × π/2 and minima
at n × π/2 for any integer n. While the KS-IPA calculation
fails in both magnitude and shape, our MB-LRC result agrees
nicely with the experimental measurement, thus capturing the
main characteristics of the photoresponse at this particular
energy.

As the last step, we proceed to study the low-energy re-
gion accessed in Ref. [93], where a narrow resonance was

measured at � 0.75 eV. In Fig. 6(c) we compare the ex-
perimentally measured |σ zxx

M,2|, |σ xxz
M,2|, and |σ eff

M,2| ≡ |σ zzz
M,2 +

4σ xxz
M,2 + 2σ zxx

M,2| with our calculations using the optimal values
of αa

LRC quoted previously. Our results underestimate the main
excitonlike peak by an order of magnitude, and we have been
unable to strike a substantial improvement by further vary-
ing αa

LRC. The description of this low-energy peak appears,
therefore, to be beyond the scope of the linear tensorial LRC
xc kernel considered here. It is tempting to speculate that
it might be induced by MB corrections not included in our
calculations, e.g., a frequency dependence in the LRC xc
coefficients αa

LRC(ω) [100,101], or the quadratic tensorial xc
kernel of Eq. (5).

V. SUMMARY AND OUTLOOK

In summary, we have described a general scheme for
calculating the quadratic optical response to light tensor of
crystals taking into account many-body interactions. We have
formally included excitonic effects by means of a tensorial
long-range exchange-correlation kernel whose coefficients
have been calculated using two variants of the parameter-free
bootstrap approximation. We have also generalized previ-
ous independent-particle expressions [12–14,27,28] for the
transition matrix elements to account for all metallic contri-
butions, allowing an exhaustive study of materials like Weyl
semimetals.

Linking the formalism with the Wannier interpolation
of the transition matrix elements [46,47,102], we have
performed calculations of the second-harmonic generation
photoresponse tensor in a range of materials. Besides bench-
marking our approach in bulk GaAs, we have shown that the
electron-hole attraction can give rise to strong and sharply
localized one- and two-photon resonances that are absent in
the Kohn-Sham photoresponse. In the graphitic-layered bulk
crystal BC2N, a space-averaged isotropic approach overesti-
mates the electronic renormalization by orders of magnitude,
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highlighting the need to account for the space-resolved
anisotropic nature of many-body interactions in tensorial
form. We have further verified that the bootstrap and the RPA-
bootstrap kernels yield virtually the same result, consistent
with previous studies in small- to medium-gap semiconduc-
tors [86,103,104]. Finally, with the use of a highly dense
k-space mesh, our calculations have reproduced the magni-
tude and angular dependence of the photoresponse for the
Weyl semimetal TaAs measured recently [6].

We hope that the presented scheme together with its im-
plementation in the WANNIER90 and WANNIERBERRI code
packages will facilitate an efficient and accurate calculation
of the quadratic optical photoresponse of materials beyond
the SHG process analyzed here. We note that the procedure
adopted for including many-body excitonic effects requires
only a fraction of the computational time as compared to the
calculation of the Kohn-Sham photoresponse.

The proposed method can be improved in several fronts.
Adopting a Wannier-based strategy for the calculation of
the linear xc kernel in metals and semimetals (see, e.g.,
Ref. [105]) would allow a fully parameter-free analysis
in these types of materials. An improved description of

many-body effects can be achieved by extending the LRC xc
coefficients to the frequency domain [100,101] or by working
out an approximation for the second-order xc kernel, which
would open the way to study potentially new excitonic effects
that have been barely described in the literature up to now. The
method can also model crystal local-field corrections, whose
effect tends to reduce the intensity of the SHG spectra [106]
and could therefore improve agreement with experiments. Fi-
nally, accounting for quasiparticle self-energy corrections due
to electron-electron or electron-phonon interactions would
allow modeling extrinsic quadratic contributions such as the
ballistic current [2,107–109]. We expect to address these sub-
jects in future works.
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APPENDIX A: DERIVATION OF THE QUADRATIC DYSON-LIKE RESPONSE TENSOR EQUATION

Here we outline the steps involved in the derivation of the Dyson-like equation relating the MB and KS conductivity tensors
at second order in Eq. (15) of the main text. We start by applying the chain rule twice in the definition of the quadratic MB
conductivity tensor in Eq. (14a),

σ abc
1 (1, 2, 3) = δ

δEb
ext (2)

[∫ ∑
d

δJa(1)

δEd
tot (4)

δEd
tot (4)

δEc
ext (3)

d4

]

=
∫ ∑

d

{
δ2Ja(1)

δEb
ext (2)δEd

tot (4)

δEd
tot (4)

δEc
ext (3)

+ δJa(1)

δEd
tot (4)

δ

δEb
ext (2)

[
δEd

tot (4)

δEc
ext (3)

]}
d4

=
∫∫ ∑

de

δ2Ja(1)

δEe
tot (5)δEd

tot (4)

δEe
tot (5)

δEb
ext (2)

δEd
tot (4)

δEc
ext (3)

d4d5 +
∫ ∑

d

δJa(1)

δEd
tot (4)

δ2Ed
tot (4)

δEb
ext (2)δEc

ext (3)
d4. (A1)

The first term on the right-hand side (r.h.s.) of the last line in Eq. (A1) can be expressed in terms of σ KS
2 and ε using Eqs. (14b)

and (10), respectively. As for the second term, the piece δJa(1)/δEd
tot (4) can be written in terms of σ KS

1 using Eq. (8b), while the
calculation of the remaining piece requires applying the chain rule again,

δ2Ed
tot (4)

δEb
ext (2)δEc

ext (3)
= δ

δEb
ext (2)

[
δ(4, 3)δdc +

∫ ∑
e

δEd
Hxc(4)

δJe(5)

δJe(5)

δEc
ext (3)

d5

]

=
∫ ∑

e

[
δ2Ed

Hxc(4)

δEb
ext (2)δJe(5)

δJe(5)

δEc
ext (3)

+ δEd
Hxc(4)

δJe(5)

δ2Je(5)

δEb
ext (2)δEc

ext (3)

]
d5

=
∫∫ ∑

e f

δ2Ed
Hxc(4)

δJ f (6)δJe(5)

δJ f (6)

δEb
ext (2)

δJe(5)

δEc
ext (3)

d5d6 +
∫ ∑

e

δEd
Hxc(4)

δJe(5)

δ2Je(5)

δEb
ext (2)δEc

ext (3)
d5, (A2)

where we used ε−1,ab(1, 2) = δEa
tot (1)

δEb
ext (2)

and Eq. (14b). The first term on the r.h.s. of the last line in Eq. (A2) can be expressed in

terms of Kabc
xc,2(1, 2, 3) and σ ab

1 (1, 2) using δ2Ea
Hxc(1)

δJb(2)δJc (3) = Kabc
xc,2(1, 2, 3) and Eq. (8a), respectively. As for the second piece, it can

be recast in terms of Kab
Hxc,1(1, 2) and σ2 using Kab

Hxc,1(1, 2) = δEa
Hxc(1)

δJb(2) and Eq. (14a), respectively.
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Taking into account all the previous observations, we can rewrite Eq. (A1) as

σ abc
2 (1, 2, 3) =

∫∫ ∑
de

σ KS,aed
2 (1, 5, 4)ε−1,eb(5, 2)ε−1,dc(4, 3)d4d5

+
∫∫∫ ∑

def

σ KS,ad
1 (1, 4)Kdf e

xc,2(4, 6, 5)σ f b
1 (6, 2)σ ec

1 (5, 3)d4d5d6

+
∫∫ ∑

de

σ KS,ad
1 (1, 4)Kde

Hxc,1(4, 5)σ ebc
2 (5, 2, 3)d4d5. (A3)

Moving now the last term on the r.h.s. of Eq. (A3) to the left-hand side (l.h.s.), we can rewrite this side with the quadratic MB
conductivity tensor as a common factor. Taking advantage of the definition of the dielectric tensor in Eq. (12), we obtain that∫ ∑

e

[
δ(1, 5)δae −

∫ ∑
d

σ KS,ad
1 (1, 4)Kde

Hxc,1(4, 5)d4

]
σ ebc

2 (5, 2, 3)d5

≡
∫ ∑

d

εda(1, 4)σ dbc
2 (4, 2, 3)d4 =

∫∫ ∑
de

σ KS,aed
2 (1, 5, 4)ε−1,eb(5, 2)ε−1,dc(4, 3)d4d5

+
∫∫∫ ∑

def

σ KS,ad
1 (1, 4)Kdf e

xc,2(4, 6, 5)σ f b
1 (6, 2)σ ec

1 (5, 3)d4d5d6. (A4)

Finally, inverting the transpose of the dielectric tensor from the r.h.s. to the l.h.s., we arrive at the Dyson-like equation (15)
quoted in the main text:

σ abc
2 (1, 2, 3) =

∫∫∫ ∑
def

ε−1,da(1, 4)σ KS,de f
2 (4, 5, 6)ε−1,eb(5, 2)ε−1, f c(6, 3)d4d5d6

+
∫∫∫ ∑

def

σ ad
1 (1, 4)Kdef

xc,2(4, 5, 6)σ eb
1 (5, 2)σ f c

1 (6, 3)d4d5d6. (A5)

APPENDIX B: KS OPTICAL RESPONSE TENSOR EXPRESSIONS UP TO SECOND ORDER

In this Appendix, we provide the expressions of all optical KS response tensors up to second order within the formalism of
Sipe and co-workers [12–14] (see Sec. II B). These expressions are valid for any combination of ω1 and ω2 and include metallic
terms proportional to k-space derivatives of the occupation factors. Here we merely quote the final expressions; for details on
the derivation steps, we refer the reader to Sec. IV in Ref. [14] or to Appendix A in the supplemental material of Ref. [27].

At first order, the optical KS interband polarizability and intraband conductivity tensors are expressed, respectively, as

αKS,ab
ter,1 (ω) = e2

h̄V

∑
kmn

fnm
ra

nmrb
mn

ωmn − ω̃
, (B1a)

σ KS,ab
tra,1 (ω) = e2

h̄V

∑
kn

fn

(
i
ωn;ab

ω
− εcab�

c
n

)
, (B1b)

while at second order they are expressed, respectively, as

αKS,abc
ter,2 (ω1, ω2) = e3

2h̄2V

{ ∑
kmnl

ra
nm

ωmn − ω̃12

[
fnl

(
rb

lnrc
ml

ωln − ω̃1
+ rc

lnrb
ml

ωln − ω̃2

)
− flm

(
rb

ml r
c
ln

ωml − ω̃1
+ rc

ml r
b
ln

ωml − ω̃2

)]

+ i
∑
kmn

ra
nm

ωmn − ω̃12

[
fnmrb;c

mn + fnm;crb
mn

ωmn − ω̃1
− fnmrb

mn�
c
mn

(ωmn − ω̃1)2 − fnm;brc
mn

ω1

+ fnmrc;b
mn + fnm;brc

mn

ωmn − ω̃2
− fnmrc

mn�
b
mn

(ωmn − ω̃2)2 − fnm;crb
mn

ω2

]}
, (B2a)

σ KS,abc
tra,2 (ω1, ω2) = e3

2h̄2V

{
−

∑
kmn

[
fnm�a

nm

ω12

(
rc

nmrb
mn

ωmn − ω̃1
+ rb

nmrc
mn

ωmn − ω̃2

)
+ fnm

(
rc;a

nm rb
mn

ωmn − ω̃1
+ rb;a

nm rc
mn

ωmn − ω̃2

)]

+
∑
kn

[
i

(
fn;bεdac

ω1
+ fn;cεdab

ω2

)
�d

n − va
n fn;bc

ω1ω2

]}
. (B2b)
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All quantities appearing in the expressions above have been
introduced in Sec. II B except for ωn;ab in Eq. (B1b), which
stands for the inverse effective-mass tensor. We highlight the
presence of metallic terms in the quadratic optical KS intra-
band polarizability tensor in Eq. (B2a).

APPENDIX C: TENSORIAL KERNELS

Here we describe the calculation of the tensorial kernels
in the optical limit. Let us start by reviewing the Hartree
contribution. The Hartree potential is defined by

VH(1) =
∫

vc(1, 2)ρ(2)d2, (C1)

where vc(1, 2) = δ(t1 − t2)/|r1 − r2| is the static Coulomb
scalar potential, and ρ(1) is the charge density. With the aid of
Maxwell’s equation E(r, t ) = −∇V (r, t ) and the continuity
equation ∇ · J(r, t ) = −∂tρ(r, t ), the Hartree electric field in
wave-vector and frequency space is expressed as

EH(q1, ω) =
∑

q2

KH(q1, q2, ω) · J(q2, ω), (C2)

with the kernel given by

Kab
H (q1, q2, ω) = qa

1
vc(q1, q2)

iω
qb

2 = qa
1

4πδq1,q2

iω|q1||q2|qb
2. (C3)

Above, q1 and q2 represent momenta, and the Fourier trans-
form of the Coulomb potential was used. Applying the
q1, q2 → 0 optical limit in Eq. (C3), the tensorial Hartree
kernel takes the usual form

Kab
H (ω) = δab

4π

iω
, (C4)

which is a diagonal and isotropic tensor due to the longitudinal
and radial nature of the Coulomb force.

Coming now to the xc piece, its electric field up to linear
order is written as

Exc,1(q1, ω) =
∑

q2

Kxc,1(q1, q2, ω) · J(q2, ω). (C5)

Assuming that the nonlocal long-range behavior of excitonic
effects completely dominates over all other terms in the op-
tical limit [71], the xc contribution can be modeled by a
Coulomb-like attractive interaction with LRC xc coefficients
αa

LRC. In the wave-vector and frequency domain, the corre-
sponding tensorial xc kernel reads

Kab
xc,1(q1, q2, ω) = −qa

1
αa

LRCδab

iω|q1||q2|qb
2, (C6)

which is a diagonal tensor due to the longitudinal nature of
Coulomb-like forces. The tensorial nature of the xc kernel
in TDCDFT was stressed in early works by Vignale and
co-workers [48,49], as well as in later works making use of
polarization functionals [76,110]. At variance with the Hartree
contribution in Eq. (C3), the tensorial coefficients αa

LRC in
Eq. (C6) allow a space-resolved anisotropic response of the
xc electric field along the crystal axes. By taking the optical
limit in Eq. (C6), we arrive at the simplified expression used
in our calculations,

Kab
xc,1(ω) = −αa

LRCδab

iω
. (C7)

The bootstrap method is a parameter-free approximation
that was originally proposed for self-consistency calculating
the space-averaged isotropic scalar α-coefficient in TDDFT
[74]. We have adopted this method to compute αa

LRC by means
of the expression

αa
LRC = ε−1,aa

M (0)
[
αKS

1 (0)
]−1,aa

, (C8)

which requires calculating the LRC xc coefficients indepen-
dently for each of the three Cartesian directions. As in the
original bootstrap kernel, the calculation of the coefficients is
done iteratively; first, the microscopic optical MB conductiv-
ity is calculated by means of Eqs. (24) and (25); second, the
macroscopic optical dielectric tensor by means of Eq. (27);
and finally, the coefficients αa

LRC by means of Eq. (C8). The
iterative loop starts with the initial guess αa

LRC = 0 and fin-
ishes when self-consistency is reached.

APPENDIX D: THE OPTICAL
MACROSCOPIC-MICROSCOPIC CONNECTION

In this Appendix, we derive the relations that connect cal-
culable response tensors at the microscopic scale with their
measurable macroscopic counterparts in the optical limit. This
is largely based on the work of Del Sole and Fiorino for the
first order [54], and on the work of Luppi and co-workers for
the second order [35].

1. General definitions and useful relations

The response of a material to an applied external electric
field can be mainly described in two ways. On the one hand,
the ability of a material to conduct an electric current is de-
scribed by the electric conductivity, which relates the electric
current-density vector to the electric field. On the other hand,
the ability of a material to electrically polarize is described by
the electric susceptibility or polarizability, which relates the
electric polarization-density vector to the electric field.

At the macroscopic scale (M), these relations are expressed
in terms of the macroscopic total electric field EM

tot (r, t ), in
such a way that the jth-order power-series expansions of the
macroscopic electric current- and polarization-density vectors
are defined, respectively, as

JM, j (1) =
∫

· · ·
∫ 1

0
σ M, j (1, . . . , j + 1)

×
∏

j

Etot,M( j + 1)d j + 1, (D1a)

PM, j (1) = ε0

∫
· · ·

∫ 1

0
χ j (1, . . . , j + 1)

×
∏

j

Etot,M( j + 1)d j + 1, (D1b)

where JM, j (r, t ) and PM, j (r, t ) are the jth-order macro-
scopic electric current- and polarization-density vectors,
respectively, and σ M, j (1, . . . , j + 1) and χ j (1, . . . , j + 1)
are the jth-order macroscopic conductivity and susceptibil-
ity tensors, respectively. The complete macroscopic current-
and polarization-density vectors are given by JM(r, t ) =∑

j JM, j (r, t ) and PM(r, t ) = ∑
j PM, j (r, t ), respectively.
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In turn, at the microscopic scale the relations are expressed
in terms of the microscopic external electric field Eext (r, t ), in
such a way that the jth-order power series expansions of the
microscopic electric current- and polarization-density vectors
are defined, respectively, as

J j (1) =
∫

· · ·
∫ 1

0
σ j (1, . . . , j + 1)

∏
j

Eext ( j + 1)d j + 1,

(D2a)

P j (1) =
∫

· · ·
∫ 1

0
α j (1, . . . , j + 1)

∏
j

Eext ( j + 1)d j + 1,

(D2b)

where J j (r, t ) and P j (r, t ) are the jth-order microscopic elec-
tric current- and polarization-density vectors, respectively,
and σ j (1, . . . , j + 1) and α j (1, . . . , j + 1) are the jth-order
microscopic conductivity and polarizability tensors, respec-
tively. The complete microscopic current- and polarization-
density vectors are given by J(r, t ) = ∑

j J j (r, t ) and
P(r, t ) = ∑

j P j (r, t ), respectively.
In the absence of magnetization and free charge and current

densities, the current- and polarization-density vectors are
related by J(M),( j)(r, t ) = ∂t P(M),( j)(r, t ), both at the macro-
scopic and microscopic levels, as well as at any order of the
power-series expansion. Using the latter relation and compar-
ing Eq. (D1a) and Eq. (D1b), we can derive the connections
between the macroscopic conductivity and susceptibility up to
second order.

In the reciprocal space and frequency domain, the connec-
tion at first order in the optical limit is given by

σ M,1(ω) = −iωε0χ1(ω), (D3)

and at second order by

σ M,2(ω1, ω2) = −i(ω1 + ω2)ε0χ2(ω1, ω2). (D4)

In an analogous way, we can derive the connection between
microscopic conductivity and polarizability up to second or-
der, but this time comparing Eq. (D2a) and Eq. (D2b). At first
order it is given by

σ 1(ω) = −iωα1(ω), (D5)

and at second order by

σ 2(ω1, ω2) = −i(ω1 + ω2)α2(ω1, ω2). (D6)

2. Macroscopic optical susceptibility

Our main goal is to express macroscopic response tensors
as a function of their respective microscopic counterpart. To
this end, the simplest option is to switch to the KS electronic
system, where the observables in Eqs. (D2a) and (D2b) are de-
fined in terms of the microscopic total electric field Etot (r, t )
as in Eq. (6) for the current, and then take a macroscopic
spatial average of the microscopic quantities. In the so-called
long-wavelength limit, where the real-space variation of the
total electric field over distances of the order of the lattice
parameter is neglected and therefore the total electric field
is per se of macroscopic character, the macroscopic spatial
average of microscopic quantities is straightforward; it is

sufficient to retain the G = 0 reciprocal-lattice vector [51].
Furthermore, the averaging is even more direct in the optical
limit, since microscopic quantities are calculated assuming
ideally a nonvariational character in space. Therefore, under
this point of view, one can state that the macroscopic optical
conductivity is equal to its microscopic KS counterpart at any
order, i.e., σM, j (1, . . . , j + 1) = σ KS

j (1, . . . , j + 1).
Nevertheless, the previous approach does not account for

many-body effects in the response, since those are assumed
to be already included in the total electric field. To over-
come this limitation, one can obtain an expression of the
external electric field as a function of the total electric field
at the microscopic level by using Maxwell’s equations and
related constitutive relations. Then, the resulting expression
is used to define microscopic observables in Eqs. (D2a)
and (D2b) in terms of the total electric field, whose macro-
scopic spatial averages give access to the formulation of
macroscopic response tensors including many-body effects.
Following Ref. [35], in the reciprocal space and frequency
domain, the longitudinal-longitudinal (LL) component of the
linear macroscopic susceptibility tensor is given by [54]

χLL
1 (q, ω) = 4παLL

1 (q, ω)εLL
M (q, ω), (D7)

where αLL
1 (q, ω) ≡ α1

LL
GG′ (q, ω)δG,0δG′,0 is the LL compo-

nent of the macroscopic spatial averaged microscopic MB
polarizability tensor at first order, and εLL

M (q, ω) = [1 −
4παLL

1 (q, ω)]−1 is the LL component of the macroscopic
dielectric tensor. In an analogous way, the longitudinal-
longitudinal-longitudinal (LLL) component of the quadratic
macroscopic susceptibility tensor is expressed as

χ
L12L1L2
2 (q1, q2, ω1, ω2)

= 4πε
L12L12
M (q12, ω12)αL12L1L2

2

× (q1, q2, ω1, ω2)εL1L1
M (q1, ω1)εL2L2

M (q2, ω2), (D8)

where L1, L2, and L12 stand for the longitudinal
component along the directions q1, q2, and q12 ≡
q1 + q2, respectively, and α

L12L1L2
2 (q1, q2, ω1, ω2) ≡

α2
L12L1L2
G12G1G2

(q1, q2, ω1, ω2)δG12,0δG1,0δG2,0 is the LLL
component of the spatially averaged microscopic MB
polarizability tensor at second order.

The adopted framework is valid for any q and describes
longitudinal responses to longitudinal perturbations [54]. In
the optical limit (q → 0), one can always find three princi-
pal axes for any crystal symmetry in which the macroscopic
dielectric tensor is diagonal [111]. In this reference frame,
a longitudinal perturbation induces a longitudinal response,
hence any optical property of the crystal can be deduced from
a longitudinal calculation [112]. Therefore, in the principal
frame the linear macroscopic optical susceptibility tensor is
expressed as

χaa
1 (ω) = 4παaa

1 (ω)εaa
M (ω), (D9)

and the quadratic macroscopic optical susceptibility tensor is
expressed as

χabc
2 (ω1, ω2) = 4πεaa

M (ω12)αabc
2 (ω1, ω2)εbb

M (ω1)εcc
M (ω2),

(D10)
where a, b, and c are principal axis components of the crystal.
Note that for any crystal with a symmetry greater than or equal

205101-14



INCLUDING MANY-BODY EFFECTS INTO THE … PHYSICAL REVIEW B 107, 205101 (2023)

to the orthorhombic symmetry, a, b, and c coincide with the
Cartesian coordinates [77].

3. Macroscopic optical conductivity

The derivation of the optical macroscopic-microscopic
connection in the previous section has been given in terms
of the macroscopic susceptibility and the microscopic polar-
izability. Nevertheless, one can also express this connection in
terms of the conductivity by means of the identities provided

in Appendix D 1. In particular, inserting Eqs. (D3) and (D5)
into Eq. (D9), one obtains the linear macroscopic optical
conductivity,

σ aa
M,1(ω) = σ aa

1 (ω)εaa
M (ω), (D11)

while inserting Eqs. (D4) and (D6) into Eq. (D10) yields the
expression for the quadratic macroscopic optical conductivity,

σ abc
M,2(ω1, ω2) = εaa

M (ω12)σ abc
2 (ω1, ω2)εbb

M (ω1)εcc
M (ω2). (D12)
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