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We present a theoretical study of the Berezinskii-Kosterlitz-Thouless transition of a two-dimensional super-
fluid in the presence of an externally imposed density modulation along a single axis. The subject is investigated
in the context of the |ψ |4 classical field theory, by means of analytical and numerical techniques. We show that,
as the amplitude of the modulation increases, the physics of the system approaches that of the anisotropic x-y
model, with a suppressed superfluid transition temperature and an anisotropic response, but with no dimensional
crossover.
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I. INTRODUCTION

The intriguing behavior of a quantum fluid in reduced
dimensions continues to elicit considerable research activity,
in part motivated by recent experimental advances, allowing
one to investigate, e.g., superfluid helium films or cold-atom
assemblies in novel, yet unexplored settings.

The superfluid transition of a Bose fluid in three dimen-
sions (3D) occurs at the critical temperature Tc, concomitantly
with the onset of Bose-Einstein condensation, namely, the
appearance of off-diagonal long-range order (ODLRO) [1,2].
By contrast, in two dimensions (2D) the superfluid phase
displays no true ODLRO at any finite temperature, but rather
a slow (power-law) decay of spatial correlations. The super-
fluid transition in 2D is theoretically understood within the
Berezinskii-Kosterlitz-Thouless (BKT) general framework
[3–5]; the characteristic fingerprint of the BKT transition is
the so-called “universal jump” of the superfluid fraction ρs(T )
as a function of temperature, from zero to a finite value as Tc

is approached from above [6–9].
Yet another paradigm change takes place if the sys-

tem is confined to just one dimension (1D), for in that
case a comprehensive description of its low-lying excitations
and its ensuing thermodynamic properties is provided by
the Tomonaga-Luttinger liquid theory [10]. While, strictly
speaking, no superfluid phase exists in 1D in the thermo-
dynamic limit (i.e., L→∞, L being the system size), one
can still meaningfully speak of “superfluidity” of a 1D sys-
tem as a well-understood and characterized finite-size effect,
i.e., ρs(L, T ) is a universal function of LT [10–12]. It should
also be noted that, although no superfluid (i.e., indefinitely
long-lived) current can in principle be sustained in 1D,
nonetheless the physical mechanism that leads to current
decay in 1D, namely, phase slips [13–17], can be strongly
suppressed at low temperature, to the point where there may
be no practical experimental difference between a current-

carrying state in 1D and a 3D superfluid [18]. Moreover, there
exist theoretical scenarios in which 3D superflow could be
established in a network of interconnected quasi-1D channels
[19,20].

Experimental verification of the BKT transition has been
achieved in a variety of physical settings, including superfluid
(4He) [21–26] and superconducting [27] thin films, Josephson
junction arrays [28], and, relatively more recently, cold-atom
assemblies [29–32]. In order to observe Luttinger liquid be-
havior, several experimental avenues have been considered
to confine quantum fluids such as 4He in (quasi) 1D. In
particular, the adsorption of helium gas inside elongated cav-
ities of nanometer-size diameter, such as those that exist in
a variety of porous glasses [33–38], or nanoholes in Si3N4

membranes [39], as well as carbon nanostructures [40,41], has
been vigorously pursued, seen as it was as the most promis-
ing approach. More recently, however, interesting alternatives
have emerged, such as self-assembled chains of atoms on
surfaces [42] and cold atoms [43–45].

The remarkable degree of control that has been attained
on many of the relevant systems that have been investigated
allows one to pose fundamental theoretical questions on the
physics of superfluids in reduced dimensions, making pre-
dictions for which actual experimental verification may be
feasible. One such question is whether it is possible, by
tweaking an external parameter, to change the effective di-
mensionality of a superfluid and observe the ensuing change
in the behavior of the system, described by the abovemen-
tioned, different theoretical frameworks [46]. Some of these
issues have already been explored in the context of dipolar
assemblies of cold atoms or molecules, which can form 3D
parallel stripes (elongated droplets in finite systems) [47,48]
whose collective behavior can mimic that of a 2D cluster
crystal [49,50].

But even if interactions among the constituent particles are
isotropic, one can imagine inducing a dimensional crossover
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by superimposing, e.g., to a quasi-2D Bose gas, an external
modulating potential of variable amplitude along a specific
direction. In this setup, which is well within the reach of
current experimental cold-atom technology [43,51,52], one
should observe the breakdown of the system into nearly in-
dependent, quasi-1D stripes (or “tubes”), for sufficiently large
amplitude of the external potential, conceivably accompanied
by a change in the physical behavior of the system, reflect-
ing an effective change of dimensionality, from 2D to 1D.
This behavior would allow, for instance, by means of perti-
nent modulating potentials, to mimic quasi 1D systems with
nontrivial topology such as, for instance, junctions and/or
networks of 1D channels [53–57] or to realize in a tunable
and controlled way the physics associated to the topological
Kondo effect [58–64].

With the aim of characterizing such a possible dimensional
crossover, we investigate this scenario theoretically within the
framework of the classical |ψ |4 lattice field theory. The reason
for this choice is that, despite the obviously oversimplified
description that this model provides of the system of inter-
est, it nonetheless features all the physical aspects that we
wish to explore; i.e., it displays a BKT superfluid transition
while allowing for an externally induced density modulation,
expressed through the use of a locally varying chemical po-
tential. It also lends itself to a semianalytical analysis, which
we then validate quantitatively by means of large-scale, nu-
merical simulations.

Our main finding is that the uniaxial external modula-
tion induces no dimensional crossover for any finite value
of the amplitude of the modulation. Rather, as the system
progressively forms quasi-1D parallel stripes in the direction
perpendicular to that of the modulation, its physical behavior
approaches that of the classical anisotropic x-y model, i.e.,
with different coupling along the two directions. In particular,
increasing the amplitude of the modulation has the effect of
suppressing the superfluid transition temperature Tc, while the
anisotropy of the superfluid response can be interpreted as a
change of length scale in one of the two directions.

The remainder of this paper is organized as follows: in
Sec. II we introduce the model and discuss the main issue of
interest, as well as the different investigative methodologies
adopted in this work. In Sec. III, we show that model (1)
becomes effectively equivalent to an anisotropic x-y model
in the limit of large modulation amplitude, and we obtain
analytical predictions concerning the superfluid transition. In
Sec. IV we assess our analytical predictions against the results
of our numerical (Monte Carlo) simulations. We offer our dis-
cussion and conclusions in Sec. V, while in the Appendix we
provide the mathematical details of the mapping between the
|ψ |4 model and the anisotropic x-y model.

II. MODEL

The classical |ψ |4 field theory is defined by the following
Hamiltonian:

H = −t
∑
〈rr′〉

(ψrψ
�
r′ + ψ�

r ψr′ ) +
∑

r

(
U

2
n2

r − μrnr

)
. (1)

We assume a square lattice of L × L sites (L even), with
periodic boundary conditions in both directions; the position

of a generic lattice site is r ≡ (lx, ly), with lx and ly being
integers, 1 � lx(y) � L. The (first) second sum runs over all
(pairs of nearest-neighboring) sites, ψr is a complex-valued
field defined at site r, and nr = |ψr|2 is the corresponding
density of particles. The parameter t is a particle-hopping
energy, which we take as our energy unit and set equal to 1.
U (assumed positive in this work) is the characteristic energy
of interaction of particles occupying the same site, while μr is
a (site-dependent) chemical potential, which we assume to be
of the following form:

μr = V0 + V1 cos

(
2πmly

L

)
. (2)

μr accounts for an external potential, which is taken to be
along the y direction and has amplitude V1. m is an integer
number ranging from 1 to L and commensurate with L, so
that the modulation takes place over a period of N = L/m.

Equation (1) is the classical limit of the well-known Bose-
Hubbard model, approached when the average occupation
number 〈nr〉 � 1. In the absence of an external potential
(i.e., with V1 = 0), and with V0 = U , Eq. (1) reduces to the
well-known x-y model, in the strong coupling (i.e., U → ∞)
limit. In 2D, model (1) displays a BKT superfluid transition,
the role of the superfluid response being played by the clas-
sical helicity modulus [65]. It constitutes a suitable minimal
model to gain insight into the physics of interest here, since
we aim at determining whether a change in the effective
dimensionality of the system occurs for a finite value of the
modulation amplitude. Such a change ought to be mirrored
in the critical properties of the system, which in turn re-
flect its behavior over long distances, largely insensitive on
whether the underlying field theory is formulated in the con-
tinuum or on a lattice or whether it is quantum or classical in
character.

It is worth mentioning that the effect of an anisotropic
hopping parameter, including the case of spatial modulation
in one direction, has been studied in the context of the Bose-
Hubbard model [66]. In the model considered in this work,
on the other hand, the anisotropy of the physical behavior,
including a possible dimensional crossover, arises exclusively
from the imposition of an external potential. The advantage
of utilizing Eq. (1) as a starting point is that it allows one
to establish some basic physical conclusions analytically and
test them reliably by means of large-scale numerical (Monte
Carlo) simulations.

III. ANISOTROPIC x-y MODEL DESCRIPTION
OF THE CLASSICAL |ψ|4 THEORY

Model (1) can be shown to be effectively equivalent to an
anisotropic x-y model. We begin by re-expressing the |ψ |4
Hamiltonian using the “polar coordinate” representation for
ψr given by ψr = √

nr eiθr , i.e.,

H = −
∑
〈rr′〉

t
√

nrnr′cos(θr − θr′ ) +
∑

r

(
U

2
n2

r − μrnr

)
.

(3)

For U large and V0 = U one may rely on a saddle-point
approximation of the right-hand side of Eq. (3). To do so, one
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sets nr = n̄r + δnr, with n̄r being the saddle-point solution
for nr. Moreover, fluctuations in the phase differences θr − θr′

are typically assumed to be of order (δnr )2 [67]. Taking that
into account, we conclude that cos(θr − θr′ ) ≈ 1 + O((δnr )2).
Therefore, neglecting the coupling between δnr and the fluc-
tuations of θr up to second-order in the fluctuations, we obtain

−
∑
〈rr′〉

t
√

nrnr′ cos(θr − θr′ ) ≈ −
∑
〈rr′〉

t
√

nrnr′

+
∑
〈rr′〉

t
√

n̄rn̄r′ [1 − cos(θr − θr′ )]. (4)

Inserting Eq. (4) into Eq. (3) and equating to 0 the term that
is linear in δnr, we recover the saddle-point equations for n̄r.
These are given by

t
{√

n̄(lx+1,ly ) + √
n̄(lx−1,ly ) + √

n̄(lx,ly+1) + √
n̄(lx,ly−1)

}
= √

n̄(lx,ly )
{
Un̄(lx,ly ) − μ(lx,ly )

}
, (5)

with the additional constraint that ∀r one has n̄r � 0. When
t = 0, Eq. (5) reduces to the “local density approximation”
solution, n̄(lx,ly ) = μ(lx,ly )/U if μ(lx,ly ) > 0 and =0 otherwise.
A finite t , instead, implies a finite n̄(lx,ly ) over each lattice site,
even for |V1| > |V0|.

The “leftover” term at the right-hand side of Eq. (4), which
does not depend on δnr, eventually provides the effective
Hamiltonian describing the phase fluctuations of the |ψ |4
model (that are the relevant, low-lying degrees of freedom
close to the BKT phase transition [67]). Substituting each
n̄r at the right-hand side of Eq. (4) with the corresponding
saddle-point solution of Eq. (5), we conclude that the phase
fluctuations are described by the modulated x-y Hamiltonian
Hmod

x−y , given by

Hmod
x−y = −2

∑
r

{
Jx

r cos
[
θ(lx+1,ly ) − θ(lx,ly )

]

+ Jy
r cos

[
θ(lx,ly+1) − θ(lx,ly )

]}
, (6)

with Jx
r = t

√
n̄(lx,ly )n̄(lx+1,ly ) and Jy

r = t
√

n̄(lx,ly )n̄(lx,ly+1). Given
the periodic form of the uniaxial modulation (2), we obtain
that Jx(y)

(lx,ly+N ) = Jx(y)
(lx,ly ), with N = L/m being the modulation

period. Moreover, since n̄(lx,ly ) is uniform along the x direc-
tion, (that is, it is independent of lx, just as μ(lx,ly )), we infer
that both Jx and Jy are functions of ly only. Finally, as we
evidenced above, n̄r is finite over every lattice site, which
implies that Jx

r and Jy
r are different from 0 over every bond

of the lattice.
Given the correspondence between H in Eq. (1) and Hmod

x−y ,
we refer to this latter model Hamiltonian to compute the
superfluid fractions in the two directions as a function of
the temperature T , ρs,x (T ) and ρs,y(T ). Specifically [8], we

“twist” θr → θr + Qx
lx
L + Qy

ly
L and identify the superfluid

fractions ρs,x (T ) and ρs,y(T ) from the coefficients of the
quadratic (in Qx and Qy) contributions to the total free en-
ergy. In the low-temperature limit, we resort to an “improved”
Villain approximation [8], i.e., we expand cos(θr − θr′ ) up to
fourth-order in θr − θr′ . Expanding up to fourth-order allows
us to recover the leading, low-T contributions to ρs,x(y)(T )
and ρ

(0)
s,x(y)(T ), without accounting for the contributions from

vortex excitations, which we introduce later on, within the

renormalization group (RG) approach to the BKT phase tran-
sition.

In implementing the Villain approximation, one has to
account suitably for the “superperiodicity” induced by the
modulation. To do so, we write the Fourier mode expansion
of θ(lx,ly ) and of Jx(y)

ly
as

θ(lx,ly ) = 1

L2

∑
k∈BN

N−1∑
ν=0

eik·r+ 2π iνly
N θk,ν ,

Jx(y)
ly

= 1

N

N−1∑
ν=0

e
2π iνly

N Jx(y)(ν), (7)

with the reduced Brillouin zone BN = [−π, π ] × [− π
N , π

N ].
To recover the large-scale, low-k effective description of our
system, we systematically integrate over the θk,ν modes, with
ν 
= 0 so as to obtain an effective Hamiltonian only involving
the ν = 0 modes. In the Appendix we describe in detail the
whole derivation. As a result, we eventually obtain

HVil
Eff,mod[Q] = 1

2L2

∑
k∈BN

	(k)|θk,0|2

+
[
Q2

xJ x(T ) + Q2
yJ y(T )

]
2N

. (8)

In the Appendix we show that J x(y)(T ) = J x(y)
0 − TJ x(y)

1

and we provide the explicit formulas for J x(y)
0 and for J x(y)

1 .
Therefore, from Eq. (8) we determine the (“bare,” that is,
undressed by vortices) superfluid fractions along the two di-
rections, according to

ρ (0)
s,x (T ) = J x(T )

J x(0)
= 1 − T

δx
,

ρ (0)
s,y (T ) = J y(T )

J y(0)
= 1 − T

δy
, (9)

with δx(y) = J x(y)
0 /J x(y)

1 . In Eq. (A7) we provide the explicit
formula for the kernel 	(k). By expanding 	(k) up to second
order in k, we obtain

HVil
Eff,mod = HVil

Eff,mod[Q = 0]

≈ 1

2L2

∑
k

{
J x(T )k2

x + J y(T )k2
y

}|θk,0|2. (10)

The right-hand side of Eq. (10) corresponds to the
long-wavelength expansion of the Hamiltonian of a uni-
form, anisotropic x-y model with coupling strengths in the
two directions respectively given by J x(T ) and J y(T ).
Therefore, in the following we employ this latter model
to account for the effect of the vortices on the superfluid
fractions.

The BKT superfluid transition. In the general framework of
the x-y model it is well established that, on taking into account
vortex excitations, the “renormalized” superfluid fractions
ρs,x(y) acquire an explicit dependence on the running scale λ

(eventually identified with the system size) [7,8,68]. Denoting
with y(T, λ), with ρx(T, λ), and with ρy(T, λ), respectively,
the scale-dependent single-vortex fugacity and the superfluid
fractions, their scaling with λ is described by the (anisotropic)
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RG equations given by [7,66,68]

dy(T, λ)

d ln λ
=

[
2 − πJ

T

√
ρs,x (T, λ)ρs,y(T, λ)

]
y(T, λ),

dρs,x (T, λ)

d ln λ
= −2π3J

T
y2(T, λ)

√
[ρs,x(T, λ)]3ρs,y(T, λ),

dρs,y(T, λ)

d ln λ
= −2π3J

T
y2(T, λ)

√
[ρs,y(T, λ)]3ρs,x(T, λ),

(11)

with J = √
J x(0)J y(0). The superfluid fractions in the ther-

modynamic limit are recovered from the solutions of Eq. (11)
at given λ and T , determined by using the bare superfluid
fractions in Eq. (9) as initial values of the parameters at the
reference scale, by eventually taking the λ→∞ limit. The
single-vortex fugacity at the reference scale, y(0)(T ), can be
estimated using a pertinent extension to the anisotropic model
of the results of Ref. [8], which is y(0)(T ) ≈ exp[−π2J

2T ]. Over
a finite-size (L2) lattice, we recover the finite-size superfluid
fractions ρs,x(y)(T, L) by stopping the RG flow determined by
Eq. (11) at λ = L.

To solve Eq. (11), we note that they imply that the
dimensionless quantity K(T ) = ρs,y(T, λ)/ρs,x (T, λ) is con-
stant along the RG trajectories; that is, it is independent of λ.
Accordingly, we set

ρs,x (T, λ) = ρs(T, λ)
√
K(T ),

ρs,y(T, λ) = ρs(T, λ)/
√
K(T ). (12)

In terms of y(T, λ) and ρs(T, λ), the system (11) reduces
to

dy(T, λ)

d ln λ
=

[
2 − πJ

T
ρs(T, λ)

]
y(T, λ),

dρs(T, λ)

d ln λ
= −2π3J

T
y2(T, λ)ρs(T, λ)2. (13)

Equations (13) correspond to the familiar set of the BKT
RG equations for the running parameters in the isotropic x − y
model [68]. It is, therefore, immediate to infer they imply that
the critical temperature Tc satisfies the equation [68]

2πy(0)(Tc) + 2 − πJ
Tc

ρ (0)
s (Tc) = 0, (14)

with ρ (0)
s (T ) =

√
ρ

(0)
s,x (T )ρ (0)

s,y (T ). (Roughly speaking,
Eq. (14) implies a scaling of Tc with J , as it is typical
of the anisotropic x-y model [69]).

Finally, we recover the “anisotropic” universal jump con-
dition for the superfluid fractions, consistent with K(T ) being
invariant along the RG trajectories, given by

lim
T →T −

c

ρs,x (T ) = 2Tc

πJ
√
K(Tc)

,

lim
T →T +

c

ρs,x (T ) = 0, (15)
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FIG. 1. (a) Effective anisotropy γ (V1) ≡ Jy(0)/Jx (0) induced in
the equivalent x-y Hamiltonian HVil

Eff,mod by the external modulation.
(b) Critical temperature for the BKT phase transition as a function
of V1, Tc(V1), normalized to the critical temperature in the absence of
modulation, Tc(0). In both panels, the interpolating dashed line is a
guide to the eye.

and

lim
T →T −

c

ρs,y(T ) = 2Tc
√
K(Tc)

πJ ,

lim
T →T +

c

ρs,y(T ) = 0, (16)

with ρs,x(y)(T ) = limλ→∞ ρs,x(y)(T, λ).
For a finite system size L, Eq. (11) predict a downturn in

both ρs,x (T, L) and ρs,y(T, L) as a function of T , centered
over a certain “finite-size critical temperature” Tc(L) (which
is the same for both the superfluid fractions). The larger L
is, the sharper the downturn in the superfluid fractions is. In
the thermodynamic limit L → ∞, the downturn evolves into
the sharp “universal critical jump”: the fingerprint of the BKT
phase transition in a two-dimensional system [6–8].

The uniaxial modulation induces an effective anisotropy, as
illustrated in Fig. 1(a), where the ratio γ (V1) ≡ Jy(0)/Jx(0),
computed based on Eq. (A4) and (A6), is shown for the value
of the model parameters used here (see above). There is a
monotonic decrease, the system remaining two-dimensional
for arbitrarily large values of V1. It is worth stressing that
modulating the hopping rather than the potential [66] would
possibly lead to a similar effective description of the scaling
of the superfluid fractions.

Figure 1(b) also shows the computed critical temperature
for the BKT phase transition as a function of V1, normal-
ized to the critical temperature in the absence of modulation,
Tc(V1)/Tc(0), as a function of V1. As one might intuitively
expect, the quantities shown in Figs. 1(a) and 1(b) behave
similarly as a function of V1. Indeed, in the limit |V1/V0| � 1,
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T

s,x
ρ

s,y
ρ

L=256
L=128

FIG. 2. Superfluid responses ρs,x (T, L) and ρs,y(T, L) of model
(1), computed by means of the Monte Carlo approach as a function
of T for V0 = U = 40, t = 1, and modulation strength V1 = 40, for
different system sizes. The dashed vertical line marks the location of
the transition, i.e., T = Tc. Also shown are fitting curves obtained as
explained in the text.

a perturbative calculation based on the formalism of the Ap-
pendix shows that both quantities decrease quadratically with
V1, while in the opposite limit the numerical results indicate
a change of convexity; i.e., both quantities approach zero
asymptotically.

IV. NUMERICAL RESULTS

In order to obtain an unbiased numerical check of our
predictions, we performed Monte Carlo numerical simula-
tions of the lattice field theory (1), specifically computing the
superfluid responses ρs,x (T, L) and ρs,y(T, L) as a function
of T for various system sizes. We used the classical worm
algorithm, in its standard lattice implementation described,
for instance, in Ref. [70]. In particular, the superfluid fraction
is estimated by means of the well-known winding number
estimator.

We henceforth take t as our energy unit and set
V0 = U = 40; i.e., we work in the strong-coupling limit of
the theory, in which Eq. (1) approaches the isotropic x-y
model in the absence of external modulation. For definiteness,
but without any loss of generality, we set the period of the
modulation of the external potential N = 8 lattice sites.

Figure 2 shows Monte Carlo results for ρs,x(T, L) and
ρs,y(T, L), computed for two different system sizes, namely,
L = 128 and L = 256, for a value of the amplitude of the
modulating external potential V1 = 40. The downturn in both
ρs,x (T, L) and ρs,y(T, L) at a temperature of Tc ≈ 0.48 is clear,
although it is less evident in ρs,y(T, L), due to the anisotropy-
induced reduction of the superfluid fraction in the direction
of the modulation [69]. As expected, the transition becomes
increasingly sharp as L grows; despite the presence of the
modulating field, the evidence of a BKT phase transition
in the planar model seems clear. Obviously, however, this
assertion must be verified by carrying out finite-size scaling
analysis.

On integrating the RG equations (11) up to λ = L for dif-
ferent values of T , one can obtain fitting curves for ρs,x(T, L)
and ρs,y(T, L). To do this analytically, one needs to know how
the system parameters at the reference scale depend on the

0.5

0.4

0.2

0.0
0.0 0.1 0.6 0.70.2 0.80.3 0.4

1.0

0.8

0.6
1

ρ
s,x

T

V =40
V =60

1

FIG. 3. Superfluid response ρs,x (T, L) of the model (1) as a func-
tion of T , computed by Monte Carlo simulations for a square lattice
with L2 = 2562 sites. The amplitudes of the modulation are V1 = 40
(circles) and V1 = 60 (squares), while the values of all other model
parameters are specified in the text. The dashed vertical lines mark
the approximate locations of the two critical temperatures.

temperature. Eqations (9) and the expressions for δx and δy

in the Appendix rely upon approximations that are strictly
speaking only valid in the T → 0 limit and thus are not
expected to hold quantitatively near Tc. For this reason, we
fitted the Monte Carlo results with the curves described in
Sec. III, using δx, δy, and J as adjustable fitting parameters.
The excellent fit to the numerical data obtained in this way
(shown in Fig. 2) represents strong evidence to the effect that
the superfluid properties of model (1) are the same as those of
the (anisotropic) x-y model [71].

Within the framework of the anisotropic x-y model, one
expects a reduction of Tc with increasing anisotropy, con-
sistent with Eq. (14). In Fig. 3, we show ρs,x(T, L) as a
function of T . The reduction of Tc on increasing V1 (that is,
the anisotropy in the effective x-y Hamiltonian) is apparent
(in the figure we mark with dashed vertical lines the approx-
imate locations of the two critical temperatures) and is also
roughly consistent with the results for the anisotropy and for
the critical temperature in Fig. 1 and with the implication of
Eq. (14).

In our view, these results provide robust numerical con-
firmation of the theory described in Sec. III, namely, that
the superfluid behavior of the |ψ |4 theory in the pres-
ence of a uniaxial modulation reduces to that of the
two-dimensional anisotropic x-y model. Accordingly, in-
creasing the strength of the modulation simply enhances
the anisotropy, thus pushing the BKT phase transition to
lower values of Tc but without determining any dimen-
sional crossover in the system. There is always a finite,
though small, Tc at which the system undergoes the BKT
phase transition from the superfluid to the disordered
phase.

To strengthen our conclusion that Tc remains finite in the
V1 → ∞ limit, in Fig. 4 we show our numerical results for
ρs,x (T, L) as a function of T for increasing values of L, from
L = 64 till L = 512, for t = 1, U = V0 = 40, and V1 = 40 (a),
and V1 = 60 (b). In both cases we recognize the typical scaling
of the superfluid fractions in the anisotropic x-y model, with
Tc finite and consistent with the fitted data for Tc as a function
of V1 in Fig. 1.
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FIG. 4. Superfluid response ρs,x (T, L) of the model (1) as a
function of T , computed by Monte Carlo simulations for a square
lattice for L = 64 (purple solid dots), L = 128 (blue empty dots),
L = 256 (green solid squares), and L = 512 (red empty squares), and
for V1 = 40 (a) and V1 = 60 (b). The dashed vertical lines mark the
(approximate) location of the critical temperature in the two cases.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the effects of a uniaxial
external modulation over a two-dimensional superfluid. We
described the superfluid at finite temperature by means of
the classical |ψ |4 model over a square lattice. Adding the
modulation on top of the well-established mapping between
the |ψ |4 model and the x-y model, we derived a version of the
latter model Hamiltonian with modulated parameters, which
allowed us to spell out the effects of progressively increasing
the potential modulation strength V1.

We show that despite the tendency of the system to de-
velop quasi-1D stripes perpendicular to the direction of the
modulation, at any V1 the superfluid phase transition is well
captured by the classical anisotropic x-y model, to which the
modulated model reduces in the long-wavelength, low-energy
limit. In particular, the main effect of increasing V1 is that
of enhancing the anisotropy of the effective x-y Hamiltonian
and, correspondingly, pushing Tc toward lower (though finite)
values [72–74].

Due to the wide applicability of our minimal model to
describing the superfluid phase transition in planar, interacting
bosonic systems, we infer that, as a general result, an external
uniaxial modulation fails to induce a 2D to 1D dimensional
crossover in such a system. The good agreement between the
analytical prediction and the numerical Monte Carlo data wit-
nesses the reliability of our results, regardless of the various
approximations we employed along our derivation. In addi-
tion, the finite-size scaling analysis of the superfluid fractions
unambiguously shows that even for relatively large modula-
tion amplitudes the scaling behavior is that expected for a
2D system, which is completely different from the 1D case
[7,11,12,66,68,74].

Possible further extensions of our work include, but are not
limited to, considering the inclusion of disorder in the sample.
It would be interesting to evidence whether the scenario we
evidenced is affected by impurities. In this direction, given the
high level of control reached in the technology of cold-atom
devices one may think, for instance, of engineering impurities
“ad hoc,” with tunable parameters, mimicking junctions of
quantum wires [75–81], or even network of junctions [82],
with a high level of quantum coherence [83,84] and a plethora
of potential practical applications.
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APPENDIX: DERIVATION OF EQ. (8)

In this Appendix we show that, once expressed in terms of
the θk,0, the Hamiltonian HVil

Eff,mod[Q] takes the form in Eq. (8).
We begin with the mode expansions in Eq. (7). Denoting

with Hmod
x−y [Q] the Hamiltonian in Eq. (6) at nonzero Q, we

approximate

Hmod
x−y ≈ Hmod

Vil,2[Q] + Hmod
Vil,4[Q]. (A1)

The quadratic term in Eq. (A1) is given by

Hmod
Vil,2[Q] = 1

2NL2

N−1∑
ν,ν ′=0

∑
k∈BN

θ−k,−νθk,ν ′Dν,ν ′ (k)

+
[
Q2

xJx(0) + Q2
yJy(0)

]
2N

+ Qy

NL

N−1∑
ν=1

θ0,ν

(
e

2π iν
N − 1

)
Jy(−ν), (A2)

with

Dν,ν ′ (k) = |1 − eikx |2Jx(ν − ν ′)

+ (
1 − e−iky− 2π iν

N
)(

1 − eiky+ 2π iν′
N

)
Jy(ν − ν ′).

(A3)

As for the quartic term, we treat it within the mean-
field approximation, along the derivation of Ref. [8]. This
implies decoupling quartic and cubic terms, respectively,
according to

∑
r Jx

ly
[θ(lx+1,ly ) − θ(lx,ly )]4 → ∑

r Jx
ly

[θ(lx+1,ly ) −
θ(lx,ly )]2〈[θ(lx+1,ly ) − θ(lx,ly )]2〉, together with the analogous ex-
pression with x → y, and to

∑
r Jy

ly
[θ(lx,ly+1) − θ(lx,ly )]3 →∑

r Jy
ly

[θ(lx,ly+1) − θ(lx,ly+1)]〈[θ(lx,ly+1) − θ(lx,ly )]2〉, with 〈. . .〉
denoting the average with respect to the quadratic Hamilto-
nian (A2). Just as for the homogeneous, isotropic Hamilto-
nian, the contributions obtained in this way simply amount to
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adding finite-T corrections to Jx(ν) and Jy(ν), according to

Jx(ν) → Ĵx(ν, T )

= Jx(ν) − NT

2

N−1∑
ν1,ν2=0

Jx(ν + ν1 − ν2)

× 1

L2

∑
q∈BN

|1 − eiqx |2[D(q)]−1
ν1,ν2

,

Jy(ν) → Ĵy(ν, T )

= Jy(ν) − NT

2

N−1∑
ν1,ν2=0

Jy(ν + ν1 − ν2)

× 1

L2

∑
q∈BN

(
1 − e−iqy− 2π iν1

N
)

× (
1 − eiqy+ 2π iν2

N
)
[D(q)]−1

ν1,ν2
. (A4)

Once the θk,ν modes are pertinently integrated over, the
free energy of our system must be quadratic in the Qx,y. To
evidence this, we trade Ĥmod

Vil,2[Q] [that is, Hmod
Vil,2[Q] with all

Jx(y)(ν) substituted with Ĵx(y)(ν, T )] for the effective Villain
Hamiltonian HVil

Eff,mod[Q], defined (apart for an unessential
constant) via a systematic integration over the θk,ν modes,

with ν 
= 0, according to

e− HVil
Eff,mod[Q]

T =
∫ ∏

k

N−1∏
ν=1

dθk,νe− Ĥmod
Vil,2[Q]

T . (A5)

As a result, we obtain Eq. (8) of the main text, with

J x(T ) = Ĵx(0, T ) ≡ J x
0 − TJ x

1 ,

J y(T ) = Ĵy(0, T ) −
N−1∑

ν1,ν2=1

Ĵy(ν1, T )
(
1 − e− 2π iν1

N
)

× [D̃(0)]−1
ν1,ν2

(
1 − e

2π iν2
N

)
Ĵy(−ν2, T )

≡J y
0 − TJ y

1 . (A6)

Setting δx(y) = J x(y)
0 /J x(y)

1 yields Eq. (9) of the main text.
The kernel 	(k) in Eq. (8) is defined as

	(k) = D̂0,0(k) −
N−1∑

ν,ν ′=1

D̂0,ν (k)[D̃−1(k)]ν,ν ′D̂ν ′,0(k), (A7)

with D̃(k) in Eq. (A6) being an (N − 1) × (N − 1) matrix,
obtained from D̂(k) by dropping the first row and the first
column, with D̂ν,ν ′ (k) equal to Dν,ν ′ (k) in Eq. (A3), and with
Jx(y)(ν) substituted with Ĵx(y)(ν, T ). Expanding 	(k) around
k = 0 up to second order in k, we obtain Eq. (10) of the main
text.
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