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Fluctuations and stability of a fast-driven Otto cycle
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We investigate the stochastic dynamics of a thermal machine realized by a fast-driven Otto cycle. By
employing a stochastic approach, we find that system coherences strongly affect fluctuations depending on the
thermodynamic current. Specifically, we observe an increment in the system instabilities when considering the
heat exchanged with the cold bath. On the contrary, the cycle precision improves when the system couples
with the hot bath, where thermodynamic fluctuations reduce below the classical thermodynamic uncertainty
relation bound. Violation of the classical bound holds even when a dephasing source couples with the system.
We also find that coherence suppression not only restores the cycle cooling but also enhances the convergence of
fluctuation relations by increasing the entropy production of the reversed process. An additional analysis unveiled
that the stochastic sampling required to ensure good statistics increases for the cooling cycle while downsizes for
the other protocols. Despite the simplicity of our model, our results provide further insight into thermodynamic
relations at the stochastic level.
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I. INTRODUCTION

The constantly growing field of emerging new technologies
has prompted the interest in understanding of quantum effects
of energy manipulation. The miniaturization of thermal ma-
chines due to the fast development of new technologies has led
to an intense investigation on how thermodynamics manifests
at nanoscales [1–7]. In this context, quantum thermal machine
models offer a simple route to understand (and consequently
exploit) how small quantum systems exchange energy with
thermal reservoirs. Quantum engines have been already ex-
plored in a large variety of physical systems like spins [8–12],
cold atoms [13,14], diamonds [15], superconducting devices
[16–19], trapped ions [20–23], and optomechanical devices
[24]. Furthermore, recent works have shown that quantum
thermal machines may also offer a promising route for the
optimization of quantum hardware, examples are related to
methods to purify a qubit on a quantum processing unit [25]
or the verification of certain thermodynamics in a related
setting [26].

As physical systems are scaled down, fluctuations in ther-
modynamic quantities, such as heat or work, may become
significant and cannot any longer be disregarded [27–29].
Stochastic schemes offer a well-suited description of these
systems allowing the treatment of thermodynamics quantities
as random variables [30–32], which may be described, in
the quantum realm, in terms of quantum trajectories [33–36].
Within this approach, for a specific trajectory, the system
dynamics breaks down in a subtle evolution governed by a
non-hermitian Hamiltonian disrupted by quantum jumps be-
tween the system states. Experimentally, quantum trajectories
can be accessed by continuously monitoring the system [37],

and their observation has already been demonstrated in ex-
periments based on superconducting devices [38–40]. Among
various proposals, Ref. [41] recently reported a novel mea-
surement protocol to access heat exchanges. The authors
studied the main characteristics of the jump trajectories in
a superconducting setup consisting of a qubit coupled to a
heat bath realized as a resistor. Here, the resistor behaves as
a nanocalorimeter continuously monitored using fluorescent
measurements, where changes in the resistor temperature un-
veil whether a photon is absorbed or emitted. The authors
verified that their nanocalorimeter measurement outcomes are
consistent with the standard interpretation of the outcome of a
projective measurement.

In the past few years, stochastic schemes have become a
powerful tool for studying nonequilibrium quantum systems
[42–46]. Several works studied a set of universal fluctuation
relations (FRs) that imposes strict restrictions on the stochas-
tic distribution of thermodynamic quantities [27,28,47–50].
Although FRs are universal, they require sufficient sam-
pling from the initial ensemble, causing poor convergence
in many situations [51–53]. Recent findings have shown that
the thermodynamic cost of generating a specific dissipative
process restricts the dispersion of observables [54–60]. The
irreversible entropy production thus sets a lower bound to the
signal-to-noise ratio, better known as the thermodynamic un-
certainty relation (TUR). Indeed, the stability and dispersion
of thermodynamic currents play a relevant role in determining
the thermal machine performance [61–65].

Quantum thermal machines operate at scales where the
quantum mechanics dominates the system dynamics. One
may expect that quantum coherence may play an important
role in energy exchanges. Nevertheless, it has not yet been
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well-established whether coherence offers an advantage in
thermal machine performance [66–69]. An increasing number
of studies have found that quantum coherence may enhance
the collective capabilities of heat engines [5,70–74] and re-
frigerators [70,75–78]. It has also been shown that quantum
coherences may reduce thermodynamic fluctuations below the
classical bound [79–85]. In particular, recent studies discussed
the optimization of thermal machines in fast driving regimes
[86–88]. Via optimal control of sudden quenches, the authors
demonstrated that an Otto cycle operating as a heat engine
or as a refrigerator universally achieves the maximum power
and the maximum cooling rate, respectively. In this direction,
Ref. [89] proposed a driving protocol based on a sudden cycle
scheme that avoids the creation of coherence and restores the
cooling in a fast Otto cycle.

Motivated by the works of Refs. [86,89], we study the
stochastic characteristics of an Otto cycle realized by a two-
level system (TLS) driven by sudden quenches. We focus on
studying the effects of coherence in the stochastic properties
of our working medium. The different operating regimes of
our cycle are studied using a master equation (ME) approach.
We describe the stochastic dynamic using the well-known
Monte Carlo wave function (MCWF) method [34], which al-
lowed us to successfully compute the probability distribution
of heat exchanges and entropy production and an in-depth
characterization of FRs and TUR bounds.

This work is organized as follows. In Sec. II, we present the
basic principle design of our fast-driven Otto cycle. The open-
system dynamics, using a Lindblad equation, is described in
Sec. III. Here, we compute numerically and analytically the
averaged energetic exchanges and study the role of system
coherences in cooling in our fast Otto cycle. We identify the
different operating regimes and briefly discuss the effects of
adding a dephasing noise source into the cycle dynamics.
The stochastic approach is described in Sec. IV. We start by
presenting the main features of the MCWF method. We then
move forward and study the coherence effects on the stochas-
tic characteristics of the fluctuation relations. The stability of
the machines is analyzed by looking at the TURs. The final
remarks and conclusions are given in Sec. V.

II. THE OTTO CYCLE

The Otto cycle we are going to analyze in the paper shown
in Fig. 1. It consists of a TLS alternatively coupled to cold and
hot thermal baths at temperatures TC and TH , respectively. The
Hamiltonian of the working substance (the two level system)
is given by

Hα = −E0(qασz + �σx ), (1)

with α = H,C, E0 the overall energy scale, � the splitting
energy, and qα the control parameter. The eigenstates of

Hα are |g〉α = (
√

1 − ηα|+〉 + √
1 + ηα|−〉)/

√
2 and |e〉α =

(
√

1 + ηα|+〉 − √
1 − ηα|−〉)/

√
2, respectively, where |±〉

are eigenstates of σz with eigenvalues ±1. Here, ηα =
(qα/�)/

√
1 + (qα/�)2. The energy level spacing is given by

�Eα = 2E0

√
q2

α + �2.
As illustrated in Fig. 1(a), the Otto cycle is composed

by four strokes: (i) the control parameter is initially set to

(a)

(b) (c)

FIG. 1. (a) Schematic plot of the cooling cycle. The TLS couples
alternately to one of the baths at a time. The interaction of the
TLS with each bath is controlled by the level separation. (b) Cy-
cle diagram. Temperature versus entropy. The system contacts the
thermal reservoirs only in the strokes a → b and c → d. There is no
dissipation of heat during the strokes b → c and d → a. (c) Model
of the measurement setup for each αth bath. Cα and Gα

th are the
heat capacity of the absorber and the thermal conductance to the
super bath, respectively. δQ̇α

abs is the instantaneous heat current on
the absorber. See text for further details.

qα = qC and the TLS couples to the cold bath for the time
interval �t (a → b), (ii) after that time, the energy level spac-
ing is expanded by a sudden change on the control parameter
qα : qC → qH (b → c), (iii) the TLS now couples to the hot
bath for the same time interval �t (c → d), after which,
(iv) the energy level spacing is abruptly compressed, i.e.,
qα : qH → qC (d → a). An equivalent description of our Otto
cycle can be done using a temperature-entropy (T-S) diagram.
Furthermore, as sketched in Fig. 1(b), the system exchanges
energy with thermal baths only in isothermal strokes, i.e., a →
b and c → d. Alternatively, the sudden changes on the control
parameter qα : qC ↔ qH (b → c and d → a) are described
as isentropic processes. Finally, Fig. 1(c), illustrating some
details of the measurement protocols [41], will be discussed
later in the paper.

III. AVERAGE HEAT AND WORK - LINDBLAD DYNAMICS

If one is interested in the average energy exchanges taking
place during the cycle, it is sufficient to consider the dynam-
ics of the density matrix ρ of the TLS. The thermalization
processes taking place in the isothermal strokes a → b and
c → d can be described using a simple Lindblad evolution,

ρ̇ = − i

h̄
[Hα, ρ] +

∑
k

[
Lk,αρL†

k,α
− 1

2
{L†

k,α
Lk,α, ρ}

]

+ �φ,α[ρ − σzρσz], (2)

with ρ the density matrix of the TLS and Lk,α the jump
operators. In this picture, among all possible transitions that
the system may undergo due to interactions with the reservoir,
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we consider the following jump operators:

L↑,α = √
�↑,α|e〉α〈g|α,

L↓,α = √
�↓,α|g〉α〈e|α, (3)

with {|g〉, |e〉} the eigenstates basis previously defined. �↓,α

and �↑,α are the corresponding transition rates, with �↑,α =
�↓,αeβα�Eα . Note that L↓,α and L↑,α will, in fact, induce re-
laxation through population transfer between the ground and
excited states. In Eq. (2), we also consider a dephasing mecha-
nism described by the last term. This mechanism simply leads
to a decay of the coherence terms given by the off-diagonal
terms of the density matrix ρ. �φ,α describes the correspond-
ing decay rate.

After considering the previous description, and using the
parametrization Di,f = ρ i,f

gg − 1/2, Ri,f = Re(ρ i,f
ge ), and Ii,f =

Im(ρ i,f
ge ) referred to the initial (i) and final (f) states of the

density matrix in each isothermal stroke, the Lindblad equa-
tion (2) changes to (see Appendix A for further details)

Df = �↓,α

��,α

+
(−�↓,α + ��,α

(
Di + 1

2

))
��,α

e−��,α�t − 1

2
,

Rf = e−(
��,α

2 +2�φ,α )�t (Ri cos(ϕα ) − Ii sin(ϕα )),

If = e−(
��,α

2 +2�φ,α )�t (Ri sin(ϕα ) + Ii cos(ϕα )), (4)

with ��,α = �↓,α + �↑,α and ϕα = ∫ �t
0 �Eαdt , which repre-

sents the dynamic phase acquired in each isothermal stroke.
Recall that i → f corresponds to a → b when α = C, and to
c → d when α = H .

We assume that isentropic processes can be modeled by
imposing the continuity condition of the density matrix, i.e.,
ρf = ρ i, and express it in the respective eigenstates basis
before and after the isentropic stokes b → c and d → a, see
Appendix A.

Due to the absence of an input work, the heat exchanged
from the system to each reservoir 〈Qα〉 equals the change of
internal energy �Eα and can be simply computed as

〈Qα〉 = �Eα = �Eα (Df − Di ). (5)

Note the change of internal energy is given by �Eα =
〈Eα (tf )〉 − 〈Eα (ti )〉, where 〈Eα (t )〉 = Tr(ρHα ) describes the
system energy at time t , with ρ the density matrix of the
system. In particular, ti and tf are the initial and final times
for each isothermal stroke of the cycle. We then get 〈QC〉 =
�EC (Db − Da) and 〈QH 〉 = �EH (Dd − Dc).

From now on, all numerical and analytical plots are ob-
tained for TH = 0.42[E0/kb], and TC = 0.32[E0/kb]. These
values correspond to typical numbers for superconducting
qubits [90–94]. For illustrative purposes, we fixed � =
0.5[E0]. Note that the chosen value of � may be outside the
weak-coupling regime. Therefore, the following results may
not be entirely accurate in a quantitative sense. Nevertheless,
smaller values of � are expected to yield the same qualitative
results. For simplicity, we have chosen �↓,H = �↓,C = �. De-
pending on the choice of the other parameters the engines can
operate in different regimes. It is noteworthy that alternative
approaches to studying strong-coupling regimes can be found
in past literature [95–98].

(a) (b)

FIG. 2. Incoherent cycle. (a) Analytical plots of heat exchanges
〈Qα〉 as a function �t without dephasing �φ = 0, obtained us-
ing Eq. (6). (b) Numerical plots of D as a function of t/�t for
�t = 5[E−1

0 ] (top plot) and �t = 20[E−1
0 ] (bottom). The other nu-

merical parameters are TH = 0.42[E0/kb], TC = 0.32[E0/kb], and
� = 0.5[E0], with �↓,H = �↓,C = �.

Refrigerator (incoherent) regime. We first consider pro-
tocol qα (t ) : qC → qH and � = 0. Besides the cold and hot
reservoirs, we assume the system also couples to a dephasing
noise source. For the sake of simplicity, we fixed �φ,C =
�φ,H = �φ 	= 0. Within this setup, the solution of Eq. (5) can
be easily computed as

〈QC,H 〉 = − �EC,HF[�C, �H ,�t], (6)

with

F[�C, �H ,�t] = (�C
↓��,H − �H

↓ ��,C )

��,C��,H (e(��,C+��,H )�t − 1)

× (e��,C�t − 1)(e��,H �t − 1). (7)

If βC�EC < βH�EH , the Otto cycle always operates as a
refrigerator, i.e., 〈QC〉 < 0 and 〈QH 〉 > 0 [99]. The specific
behavior of 〈Qα〉 as a function of �t can be seen in Fig. 2(a)
for qC = 0.019[E0] and qH = 0.38[E0]. As the time-interval
�t increases, the absolute value of each 〈Qα〉 exhibits an
exponential increment. Essentially, the system-bath interac-
tion progressively lasts longer, which continuously induces an
increase of energetic exchanges. The subsequent saturation of
the energy flow for large values of �t reflects the system ther-
malization. This is also illustrated in Fig. 2(b), where we plot
the steady solution D as function of t/�t for �t = 5[E−1

0 ]
(top) and �t = 20[E−1

0 ] (bottom). The results are plotted us-
ing blue and red colors to indicate which isothermal strokes
they belong. The blue color corresponds to the stroke a → b,
while red corresponds to c → d.

The heat exchanges, see Eq. (6), are independent of the de-
phasing noise power �φ,α and the dynamic phase ϕα . Indeed,
the coherences vanish in the steady state regime. Specifically,
we obtain Ra,b,c,d(t ) = Ia,b,c,d(t ) = 0 for any value of �φ,α

and ϕα thus implying that the cycle operates as an incoherent
refrigerator.

Coherent regime. Another interesting case to consider is
qα (t ) : 0 → qH and � 	= 0. Unlike the previous cycle, we
now assume that the system is no longer coupled with a
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(a) (b)

FIG. 3. Coherent cycle. (a) Numerical and analytical plots of
heat exchanges 〈Qα〉 as a function �t without dephasing �φ = 0.
In the inset, we report 〈Qα〉 as a function of �t . Analytical results
are calculated using Eq. (6) and are plotted using dashed lines.
(b) Numerical plots of D as a function of t/�t for �t = 5[E−1

0 ] (top
plot) and �t = 20[E−1

0 ] (bottom). The other numerical parameters
are the same in Fig. 2.

dephasing noise source (�φ,α = 0). In Fig. 3, we present the
analytical solution of Eq. (4) for � = 0.019[E0] and qH =
0.38[E0].

Opposite to the previous case, both baths are now heated,
that is, 〈QC〉 > 0 and 〈QH 〉 > 0. A striking feature of this
cycle is the oscillating behavior that the heat exchange 〈QC〉
exhibits as a function of �t . As shown in Fig. 3, for small
values of �t , the system reaches a partially thermalized state,
for which the dynamic phase ϕC = �EC�t survives dissi-
pation effects. This last result suggests that the system may
exhibit coherences, which ultimately facilitates the oscillating
behavior of 〈QC〉 as a function of �t . This is well illustrated
in Fig. 3(b), where we plot the time evolution of D for �t =
5[E−1

0 ] (top plot) and for �t = 20[E−1
0 ] (bottom plot).

A natural follow-up question is whether suppression of the
coherences due to dephasing processes can restore the refrig-
erator regime. To investigate this regime, we now consider that
the system couples with a unique dephasing noise source. We
set then �φ,C = �φ,H = �φ , with �φ = 10��,H .

Surprisingly, as Fig. 4(a) shows, despite there being no
evidence of time-dependent oscillations (coherences) in 〈QC〉,
both baths are still heated. To better understand the system
dynamics, in Fig. 4(b), we plot the time evolution of the
coherence terms R and I varying the strengths of dephasing
�φ for the time interval �t = 5[E−1

0 ]. From 4(b), it is clear
that the amplitude of R systematically diminishes when �φ

increases. However, R does not completely fade away but
instead presents sharp peaks at integer values of t/�t . Such
discontinuities in R occur at times when the control parameter
abruptly compresses or expands. The reason for such behavior
is that when � 	= 0, this protocol will always lead to jumping
operators defined on a distinct basis depending on the isother-
mal stroke, Lk,C ↔ Lk,H . This result suggests that coherences
can never vanish. In other words the cycle gives heating as a
result of the isentropic phases, at least when they are treated
as a mere basis change.

(a) (b)

FIG. 4. Coherent cycle. (a) Numerical plots of heat exchanges
〈Qα〉 as a function �t including dephasing �φ = 10��,H . Compar-
atively, numerical results from Fig. 3(a) are also plotted using bold
lines in light colors. In the inset, we report 〈Qα〉 as a function of �t .
(b) Numerical plots of R (top) and I (bottom) as a function of t/�t
for �t = 5[E−1

0 ] and different values of �φ . All numerical results are
obtained using the ME approach. The other numerical parameters are
the same in Fig. 2.

IV. FLUCTUATIONS AND STABILITY

As discussed extensively in the literature, one of the key
properties of small heat in engines is the importance of
fluctuations. To this aim, the open system dynamics is now
addressed by using a stochastic representation of the Lindblad
equation, also known as unraveling [37,100,101]. By exploit-
ing this approach, one is able to determine the probability
distribution of thermodynamics quantities, such as heat Qα . In
this work, we employ the MCWF method to compute the en-
ergetic exchanges [33–36]. In Appendix B, for completeness,
we give a brief description of this method.

Following this stochastic approach, for a specific jth tra-
jectory and a single kth jump, it is possible to identify the
energy exchange between the system and the bath as

�E j
k,α

= (
E j

α (tk + δt ) − E j
α (tk − δt )

)
, (8)

with E j
k,α

(t ) = 〈φ j (t )|Hα|φ j (t )〉 and tk the time at which a
single quantum jump occurs. As mentioned before, because
of the absence of an input work, the change of internal en-
ergy equals the heat exchange, i.e., �E j

k,α
= Q j

k,α
. It is thus

straightforward to show that the heat Q j
k,α

exchanged by the
system to the reservoir can be computed as

Q j
k,α

= −�Eα

(
δtk ,t

↑
k

− δtk ,t
↓
k

)
, (9)

with δtk ,t
↑,↓
k

being the delta of Kronecker and t↑
k , t↓

k is the times
at which an “up” or “down” jump occurs. The system absorbs
+δt,t↑

k
(or emits −δt,t↓

k
) a single photon of energy �Eα from (or

to) the αth-bath. Consequently, if we consider all kth jumps
occurring in a single jth trajectory, it is possible to define the
total heat exchange as

Q j
α = Qabs, j

α + Qloss, j
α , (10)
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with Qabs, j
α = ∑N↑, j

α

k Q j
k,α

and Qloss, j
α = ∑N↓, j

α

k Q j
k,α

. Here, N↑, j
α

and N↓, j
α are the total number of jumps up and down, re-

spectively. Interestingly, from these previous definitions, the
ME results can be easily recovered after averaging over Ntraj

random trajectories, 〈Qα〉 = ∑Ntraj

j Q j
α/Ntraj.

Following Ref. [41], in Fig. 1(c), we display a simple
sketch of the possible measurement process of the ener-
getic exchanges. The measurement device consists of a
nanocalorimeter realized by a finite-size absorber at tempera-
ture T α weakly coupled to an infinite bath. The design ensures
that changes in the absorber temperature unveil whether a
photon is absorbed or emitted. In this manner, we can measure
the stochastic heat exchanges of the system by monitoring the
absorber temperature.

We now proceed to analyze the stochastic properties of
our Otto cycle, focusing on studying the FRs [28,51] and the
TURs [55,56]. These last are important in assessing how the
stability of the engine is affected if one tries to increase the ef-
ficiency towards its optimal value. The temperature variations
are assumed to be small enough, which allows us to consider
constant rates, not depending on the history of previous jumps.

A. Fluctuation relations

Irreversible entropy production is one of the intrinsic
characteristics of nonequilibrium systems. To study the fluc-
tuations in the entropy production, namely �, one needs to
treat � as a random variable distributed according to a certain
probability distribution P(�). These distributions satisfy a set
of fundamental symmetry relations known as FRs, which can
generally be expressed as [27,28,47,48,102]

ln

(
P[�;V]

P̃[−�; Ṽ]

)
= �. (11)

V describes the forward driving, while Ṽ corresponds to its
time-reversed path. For our cycle, the protocols are simply
defined as V : qα (t ) and Ṽ : qα (−t ). P[·] and P̃[·] denote the
probability distributions for the forward and backward evolu-
tion, respectively. In particular, given our cycle, the entropy
production can be simply computed as � = βCQC + βH QH

and obey the FR

〈e−�〉 =
∫

�

d�P[�;V]e−� = 1. (12)

Note that the integral is defined using the forward probability
distribution.

From Eqs. (11) and (12), it is clear that their convergence
will depend on stochastic sampling. In this regard, analyz-
ing the convergence of FRs offers a tool to benchmark the
sampling. However, estimating the coherence effects on such
sample spaces is not straightforward given our driving proto-
cols. One question that naturally arises is: What would be the
optimal sampling size for each configuration? Most impor-
tantly, does the stochastic sampling that ensures convergence
of Eq. (11) also do it for Eq. (12) (and vice versa)? In what
follows, we shall focus on answering these questions by ana-
lyzing the role of system coherences in stochastic dynamics.

(a) (b)

FIG. 5. Incoherent cycle. Probability distributions of � =
βCQC + βH QH for the forward (a) and backward (b) evolution. We
fixed �t = 20[E0]−1 and �φ = 0. All results are computed by means
of MCWF method and considering 105 trajectories. The other nu-
merical parameters are the same in Fig. 2.

In order to study the forward and backward evolu-
tion, we shall employ the MCWF method following the
next steps. For each jth trajectory, the system is initial-
ized in the excited state |e〉C . At the time t0, we turn on
the driving protocol V and generate the stochastic dynam-
ics using the MCWF method until t1. After this time, we
swap the protocols V → Ṽ and let the system stochastically
evolves until t2. For each evolution, we collect all stochastic
heat exchanges and store them in sequence S = {(Q1

C, Q1
H ),

(Q2
C, Q2

H ), ..., (Q j
C, Q j

H ), ..., (Q
Ntraj

C , Q
Ntraj

H )}, with Ntraj the total
number of random trajectories. Note that t1 can be written in
terms of �t as t1 = Ncycles�t , with Ncycles the total number
of cycles it takes for the system to reach steady state. We
can estimate the value of Ncycles by simply employing the ME
method to compute the time evolution of the density matrix.
In fact, we numerically found that for all cases, the system
reaches its stationary regime after Nsteady = 4 cycles. We thus
fix Ncycles = 8 (Ncycles > Nsteady). To obtain t2, we repeat the
same procedure for the backward evolution. We get the same
number of cycles.

We start by considering the incoherent refrigerator, that is,
qC = 0.019[E0] and qH = 0.38[E0], with � = 0. For simplic-
ity, we fixed �φ = 0 and �t = 20[E−1

0 ].
For illustrative purposes, in Fig. 5, we plot the probabil-

ity distribution of � for the forward (a) and backward (b)
evolution, both obtained after considering 105 trajectories. As
shown, both probabilities present a very intriguing distribution
due to the small number of jumps occurring in each process,
i.e., the accessible values of � are few. The difference be-
tween these distributions can be measured using the relative
entropy [103]

D[P[�;V]|P̃[−�; Ṽ]] =
∫

�

d�P[�;V]ln

(
P[�;V]

P̃[−�; Ṽ]

)

= 〈�〉f, (13)

with 〈�〉f as the average of � over all random realizations of
the forward process, being 〈�〉f = 0.53 for our case. Since
entropy production quantifies how dissipative a process is,
Eq. (13) reveals that the distinguishability between the two
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(a) (b)

FIG. 6. Incoherent cycle. (a) Plot of ln(P[�;V]/P̃[−�; Ṽ] as
a function of � = βCQC + βH QH . Theoretical curve plot in dashed
line. (b) Plot of 〈e�〉 as a function of number of trajectories Ntraj.
All results are computed by considering 105 trajectories. We fixed
�t = 20[E0]−1 and �φ = 0. The other numerical parameters are the
same in Fig. 2.

distributions would be more significant for more dissipative
processes.

The logarithmic ratio ln(P[�;V]/P̃[−�; Ṽ]) as a func-
tion of � is shown Fig. 6(a). The results presented in
Figs. 6(a) and 6(b) suggest that while the logarithmic ratio
ln(P[�;V]/P̃[−�; Ṽ]) requires a significant stochastic sam-
pling, the integral 〈e−�〉 may converge for a smaller collection
of realizations. According to Ref. [103], the convergence of
the FR, 〈e−�〉 = 1, relies on the averaged entropy production
〈�〉b of the backward processes, being 〈�〉b = −0.63 for our
case. The optimal number of trajectories will, indeed, depend
on 〈�〉b of form Nop ∼ exp[〈�〉b], meaning that the more
dissipative the process, the smaller sampling is needed to
ensure the convergence of the integral 〈e−�〉.

We move outside the refrigerator regime with proto-
col qC = 0 and qH = 20�, for � = 0.019[E0] and �t =
20[E0]−1. We analyze the cases of no-dephasing (�φ = 0)
and strong-dephasing (�φ = 10�H

� ). All numerical results are
computed employing 105 realizations.

The distribution probabilities P[�;V] and P̃[�;V] plotted
in Fig. 7 exhibit a similar structure to the ones obtained
for the previous case. A striking outcome for the coher-
ent case is exposed in Fig. 8. While the logarithmic ratio
ln(P[�;V]/P̃[−�; Ṽ]) converges very well for the sam-
pling of Ntraj realizations [Fig. 8(a)], the integral 〈e−�〉 does
not [Fig. 8(b)]. Yet, we find that 〈e−�〉 convergence be-
comes faster when the system couples with a dephasing
noise source. The explanation for this behavior is rather
simple. For such a purpose, it is necessary to compute
the reversed entropy production for each case. After av-
eraging over Ntraj trajectories, we get that 〈�〉b,�φ=10�H

�
=

−0.65 is slightly larger than 〈�〉b,�φ=0 = −0.60. As ex-
pected, the convergence is faster on increasing the dissipative
process.

It is noteworthy that while the convergence of 〈e−�〉 can be
easily estimated using 〈�〉b, the analysis of the convergence of
ln(P[�;V]/P̃[−�; Ṽ]) is not simple. Notwithstanding, from
Figs. 6(a) and 8(a), we can infer that the spread of the nu-

(a) (b)

FIG. 7. Coherent cycle. Probability distributions of � =
βCQC + βH QH for the forward (a) and backward (b) evolution. In
both panels, we report the cases with (�φ = 10��,H ) and without
(�φ = 0) dephasing. We fixed �t = 20[E0]−1. All results are com-
puted by means of MCWF method and considering 105 trajectories.
The other numerical parameters are the same in Fig. 2.

merical data around the theoretically expected value decreases
when the system exhibits a certain degree of coherence.

B. Thermodynamic uncertainty relations

Thermodynamic fluctuations strongly affect the dynamics
and stability of nanoscale thermal machines. As well-known,
TURs impose strict restrictions on the fluctuations of thermo-
dynamic currents, say for example Qα [54–58,83],

Var(Qα )

〈Qα〉2
� 2

〈�〉 , (14)

with Var(Qα ) = 〈Q2
α〉 − 〈Qα〉2 and 〈�〉 the averaged entropy

production. Equation (14) expresses a trade-off between pro-
cess precision, quantified by the signal-to-noise ratio (SNR),
and dissipation, quantified through the entropy production. As
a matter of fact, in order to reduce fluctuations in the heat

(a) (b)

FIG. 8. Coherent cycle. (a) Plot of ln(P[�;V]/P̃[−�; Ṽ] as a
function of � = βCQC + βH QH . Theoretical curve plot in dashed
line. (b) Plot of 〈e�〉 as a function of number of trajectories Ntraj.
All results are computed by considering 105 trajectories. We fixed
�t = 20[E0]−1 and �φ = 0. The other numerical parameters are the
same in Fig. 2.
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FIG. 9. Incoherent cycle. (a) Numerical and analytical plots of
the ratio ξC as a function �t for the case of �φ = 0. Numerical results
are plotted using points, while analytical results are plotted using
bold lines. Inset plots depict the distribution probability of QC for
�t[E−1

0 ] = 1 and �t[E−1
0 ] = 20, respectively. All the numerical re-

sults are obtained considering 3×104 trajectories. We fixed �φ = 0.
The other numerical parameters are the same in Fig. 2.

exchange Qα and stabilize the cycle, Eq. (14) states that it is
necessary to increase dissipation.

In what follows, we study analytically and numerically the
behavior of the previous TUR bound for the coherent and
incoherent cycles. Recall that, independently of the operating
regime, it is possible to range the duration of the isothermal
strokes by changing the time interval �t . In terms of sys-
tem precision and cycle stabilization, it is thus interesting
to explore how the isothermal stroke duration may impact
fluctuations of certain heat currents. From now on, and for
the sake of simplicity, we will analyze ratio

ξα =
(

Var(Qα )

〈Qα〉2

)/(
2

〈�〉
)

.

Equation (14) now reads ξα � 1.
We employ, also in this case, the MCWF method to com-

pute the numerical results. The averaged entropy production
computes as 〈�〉 = βC〈QC〉 + βH 〈QH 〉, with 〈Qα〉 defined in
Eq. (5), while the variance is given by

Var(Qα ) = (�Eα )2

[
1

2
− (Df + Di )

2

]
, (15)

with Di,f the solutions of Eq. (4). See Appendix C for further
details.

In Fig. 9, we plot the ratio ξC as a function of �t without in-
cluding dephasing, �φ = 0. Here, we consider the incoherent
refrigerator, i.e., qC = 0.019[E0], qH = 0.38[E0], and � = 0.
Due to the numerical cost, we only plot a few numerical
points, each obtained using 3×106 trajectories. Any deviation
from the analytical curves is due to poor statistics. Note that
ξC = ξH as shown in Appendix D.

It is interesting to note that the ratio ξC is significant for
small �t , while it saturates for longer time intervals. As
mentioned in Sec. III, this specific dynamic stems from the

FIG. 10. Coherent cycle. Numerical and analytical plots of the
ratio ξC as a function �t for the cases of �φ = 0 (green) and �φ =
10��,H (orange). Numerical results are plotted using points, while
analytical results are plotted using bold lines. The inset plots depict
the distribution probability of QC for �t[E−1

0 ] = 1 and �t[E−1
0 ] =

20, respectively. Histograms plotted in bold lines correspond to
�φ = 0, while histograms plotted in dashed lines correspond to �φ =
10��,H . All the numerical results are obtained by considering 3×104

trajectories. We fixed �φ = 0. The other numerical parameters are
the same in Fig. 2.

thermalization process itself and, as we will show, reflects
in the stochastic results. From the inset plots, it is clear that
for short time intervals �t , the number of jumps allowed in
the system is insignificant. Nevertheless, when �t increases,
the system experiences additional energetic exchanges, which
enhances the statistics and reduces the standard deviation of
the probability distribution P[QC]. In contrast, in the case of
prolonged time intervals, P[QC] remains unchanged since the
system thermalizes, thus interrupting the energetic exchanges.

When considering the coherent cycle, we find that the
process precision for the thermodynamic current QC wors-
ens, i.e., the ratio ξC increases (see Fig. 10). Although not
shown, an additional numerical analysis unveiled that such an
increment in ξC is mainly due to a reduction in 〈QC〉 since the
variance Var(QC ) remains almost unchanged for both regimes.
As clearly shown in Fig. 3, the average heat 〈QC〉 decreases in
the presence of coherences. Indeed, it is easy to prove that
average heat exchange explicitly depends on coherences as
〈QC〉 = �ECRc, see Appendix D.

The remarkable result emerging from the coherent case
is that system coherences reduce the thermodynamic fluc-
tuations of QH below the classical bound for large values
of �t , see Fig. 11. Similar results have been observed in
previous works [80,83,84]. Interestingly, when a dephasing
source noise couples to the system, we find that thermody-
namic fluctuations remain unaffected. In fact, whereas �t �
1/(��,α/2 + 2�φ,α ), we successfully prove that the ratios ξC

and ξH both compute as

ξC,H =
[

1
2 − R2

c,a

]
R2

c,a(�ECRc − �EHRa)
, (16)
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FIG. 11. Coherent cycle. Numerical and analytical plots of the
ratio ξH as a function �t for the cases of �φ = 0 (blue) and �φ =
10��,H (magenta). Numerical results are plotted using points, while
analytical results are plotted using bold lines. Inset plots depict the
distribution probability of QH for �t[E−1

0 ] = 1 and �t[E−1
0 ] = 20,

respectively. The histograms plotted in bold lines correspond to
�φ = 0, while histograms plotted in dashed lines correspond to �φ =
10��,H . All the numerical results are obtained by considering 3×104

trajectories. The other numerical parameters are the same in Fig. 2.

regardless of the value of �φ . See Appendix D for further
details.

V. CONCLUSIONS

We studied the dynamics of a fast-driven Otto cycle op-
erating under different regimes. Specifically, by employing
a Lindbladian approach, we successfully identified the re-
frigerator and nonrefrigerator cycles. The results of this first
study support previous ideas that optimal refrigeration can
be realized by mimicking classical dynamics via a simple
incoherent sudden cycle [18]. In fact, we proposed an alter-
native fast-driving protocol for which the system behaves as
an incoherent refrigerator, where all system coherences in the
steady state regime are suppressed. The protocol consists of
a sudden variation of the control parameter qα , followed by a
complete cancellation of the detuning energy �.

Further stochastic analysis revealed that the suppression
of coherence not only restores the cooling in the cycle but
also increases or decreases the quantum fluctuations of cer-
tain thermodynamic currents. Specifically, when analyzing the
stochastic characteristics of the heat exchange QC , we found
that the system precision worsens when system coherences are
strong. Although, for the same cycle protocol, we observed the
opposite behavior for the heat exchange QH . Here, the current
instabilities reduce, even below the classical TUR bound (14)
[83,84].

Interestingly, we found that, for all regimes, the cycle sta-
bilizes when we fix a long time interval �t . In other words,
system precision improves when the isothermal strokes of the
thermal machine operate for long periods. Here, the system
thermalizes, and the entropy production reaches its maximum
value. Since the energetic exchanges cease for long values

of �t , the probability distributions of Qα remain unchanged,
setting fixed values of the SNR Var(Qα )/〈Qα〉2.

We provided evidence that coherence may reduce the en-
tropy production for irreversible processes. On the one hand,
we found this mechanism minimizes typical random devia-
tions in FRs due to poor statistics. On the contrary, when we
analyzed the behavior of the integral 〈e−�〉 as a function of the
stochastic sampling, our results revealed the convergence of
the equality 〈e−�〉 = 1 presents a slower rate than for the inco-
herent cycle. These results correlate favorably with Ref. [103].

It is worth noting that we have chosen a value of � that
barely lies outside the weak-coupling regime. In fact, in the
strong-coupling regime, the interaction energy between the
system and the bath becomes significant, and heat cannot be
identified as the energy change of the bath. Nevertheless, FRs
remain valid even in strong coupling [28]. On the other hand,
introducing strong coupling may decrease the coherences in
the cycle by increasing dissipation, which can significantly
alter the fluctuations, including the TUR bounds.

Our research has highlighted the role of system coher-
ences in small thermal machines. As shown in our work, the
stochastic approach provides a powerful tool for investigating
possible instabilities in the cycle. In fact, the evidence from
this study points towards the idea that coherence plays a
relevant role in thermodynamic fluctuations and fluctuation
relations.
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APPENDIX A: LINDBLAD EQUATION

By replacing the jumps operators Lβ,α , β =↑,↓, φ, into
Eq. (2), we get the following set of uncoupled equations

ρ̇gg = −��,αρgg + �α
↓,

ρ̇ge = −
(

��,α

2
+ 2�φ,α

)
ρge, (A1)

with ��,α = �↑,α + �↓,α , α = H,C. The solution of Eq. (A1)
is thus

ρf
gg = �↓,α

��,α

+
(−�↓,α + ��,αρ i

gg

)
��,α

e−��,α�t ,

ρf
ge = e−(

��,α
2 +2�α

φ )�t eiϕαρ i
ge. (A2)

Here, ϕα = ∫ �t
0 �Eαdt = �Eα�t is the dynamic phase ac-

quired in each leg of the cycle.
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For the following calculations, it will be useful to
parametrize the density matrix as(

ρgg ρge

ρ∗
ge 1 − ρgg

)
→

(
D + 1

2 R + iI
R − iI 1

2 − D

)
, (A3)

where D = ρgg − 1/2, R = Re(ρge), and I = Im(ρge).
Eq. (A2) thus transforms to a coupled system of equation of
the form

Df = �↓,α

��,α

+
(−�↓,α + ��,α

(
Di + 1

2

))
��,α

e−��,α�t − 1

2
,

Rf = e−(
��,α

2 +2�φ,α )�t (Ri cos(ϕα ) − Ii sin(ϕα )),

If = e−(
��,α

2 +2�φ,α )�t (Ri sin(ϕα ) + Ii cos(ϕα )). (A4)

Taking into account each thermalization stroke, we obtain
the following set of equations:

Db = �↓,C

��,C
+

(− �↓,C + ��,C
(
Da + 1

2

))
��,C

e−��,C�t − 1

2
,

Rb = e−(
��,C

2 +2�φ,C )�t (Ra cos(ϕC ) − Ia sin(ϕC )),

Ib = e−(
��,C

2 +2�φ,C )�t (Ra sin(ϕC ) + Ia cos(ϕC )),

Dd = �↓,H

��,H
+

(− �↓,H + ��,H
(
Dc + 1

2

))
��,H

e−��,H �t − 1

2
,

Rd = e−(
��,H

2 +2�φ,H )�t (Rc cos(ϕH ) − Ic sin(ϕH )),

Id = e−(
��,H

2 +2�φ,H )�t (Rc sin(ϕH ) + Ic cos(ϕH )). (A5)

The isentropic processes are modeled by simply imposing
the continuity condition of the density matrix, i.e., ρf = ρ i.
The relation between the elements of the final and initial
density matrix is given by ρf

kl = ∑
k′l ′ ρ

i
k′l ′ 〈k|k′〉〈l ′|l〉 with kl

and k′l ′ the indexes of the new and old bases, respectively.
In our case, the transformation ρf

kl → ρ i
k′l ′ must done for the

strokes b → c and d → a. For our cycle, we then get

Dc =
(
ηCηH +

√
1 − η2

C

√
1 − η2

H

)
Db

+
(
ηC

√
1 − η2

H − ηH

√
1 − η2

C

)
Rb,

Rc =
(
− ηC

√
1 − η2

H + ηH

√
1 − ηC

2
)
Db

+
(
ηCηH +

√
1 − η2

C

√
1 − η2

H

)
Rb,

Ic = Ib,

Da =
(
ηCηH +

√
1 − η2

C

√
1 − η2

H

)
Dd

+
(
− ηC

√
1 − η2

H + ηH

√
1 − η2

C

)
Rd,

Ra =
(
ηC

√
1 − η2

H − ηH

√
1 − ηC

2
)
Dd

+
(
ηCηH +

√
1 − η2

C

√
1 − η2

H

)
Rd,

Ia = Id, (A6)

APPENDIX B: MONTE CARLO WAVE
FUNCTION METHOD

Without going into further details, the MCWF method
consists of the following two elements. For a specific jth
realization of the stochastic process, the system is described
as a pure state |φ j (t )〉, which at time t + δt evolves as

|φ j (t + δt )〉 =

⎧⎪⎨
⎪⎩

C0,α |φ j (t )〉√
δpα (t )

withprobability δpα (t )

Ck,α |φ j (t )〉√
δpk (t )

withprobability δpk,α (t )

(B1)

The evolution operators are defined as C0,α = 1 − iδtH/h̄ and
Ck,α = √

δtLk,α , with H = Hα − ih̄
∑

m C†
k,α

Ck,α and Lk,α the
jump operators given in Eq. (2). Since C0,α and Ck,α are
non-Hermitians, for each case, the wave-function evolution
is followed by a normalization given by the norms

√
δpα (t )

and
√

δpk (t ), with δpα (t ) = ∑
k δpk,α (t ) and δpm,α (t ) =

δt〈φ j (t )|C†
k,α

Ck,α|φ j (t )〉. The time step δt is chosen to be
sufficiently small in order to satisfy δpα � 1.

Equation (B1) basically states that, given a specific jth
trajectory, one part of the system evolves as a smooth function
governed by a non-hermitian Hamiltonian H , while, between
[t, t + δt], the system |φ j (t )〉 can experience random jumps
occurring with probability δpk,α (t ) and defined by the jump
operators Ck,α .

APPENDIX C: VARIANCE

To obtain an analytical expression of variance Var(Qα ), we
need to go a step further. We start by defining the cumulant
generating function of Eα ,

CEα
(λ) = ln〈eλHα 〉. (C1)

In this way, we have

〈Eα〉 = ∂CEα
(λ)

∂λ
,

Var(Eα ) = ∂2CEα
(λ)

∂2λ
. (C2)

After evaluating the Hamiltonian Hα into CEα
(λ), Eq. (C2)

changes to

〈Eα〉 = −�Eα

2
(2ρgg − 1),

Var(Eα ) =
(

�Eα

2

)2

− 〈Eα〉2. (C3)

The mean value of 〈Qα〉 = 〈E f
α〉 − 〈E i

α〉 is thus 〈Qα〉 =
�Eα (ρf

gg − ρ i
gg) = �Eα (Df − Di )with Df,i = ρf,i

gg − 1/2. This
last expression perfectly matches with Eq. (6).

In the case of Var(Qα ), we employ the identity Var(aX +
bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X,Y ), obtaining

Var(Qα ) = Var
(
E f

α

) + Var
(
E i

α

) − 2Cov
(
E f

α, E i
α

)

= 2

(
�Eα

2

)2

− 〈
E f

α

〉2 − 〈
E i

α

〉2 − 2Cov
(
E f

α, E i
α

)
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= 2

(
�Eα

2

)2

−
(

�Eα

2

)2(
2ρf

gg − 1
)2

−
(

�Eα

2

)2(
2ρ i

gg − 1
)2 − 2Cov

(
E f

α, E i
α

)

= 2

(
�Eα

2

)2

− (�Eα )2
(
D2

f + D2
i

)

− 2Cov
(
E f

α, E i
α

)
. (C4)

The Cov(E f
α, E i

α ) can be simply computed as follows:

Cov
(
E f

α, E i
α

) = ∂2CE i
α,E f

α
(λi, λf )

∂λi∂λf
, (C5)

with

CE i
α,E f

α
(λi, λf ) = ln〈eλiHαδt,ti +λfHαδt,tf 〉. (C6)

We get then

Cov
(
E f

α, E i
α

) = (�Eα )2DiDf. (C7)

Finally, the variance can be written as

Var(Qα ) = 2

(
�Eα

2

)2

− (�Eα )2(D2
f + D2

i

)

− 2(�Eα )2DiDf

= 2

(
�Eα

2

)2

− (�Eα )2(Df + Di )
2,

Var(Qα ) = (�Eα )2

[
1

2
− (Df + Di )

2

]
. (C8)

APPENDIX D: TUR BOUND

We start by considering the incoherent case. Since
ηC, ηH = 1, the continuity conditions (A6) reduce to Db = Dc

and Dd = Da. The variance for both currents QC and QH can

be simply computed as

Var(QC,H ) = (�EC,H )2

[
1

2
− (Db + Da)2

]
. (D1)

From Eqs. (D1) and (6), it is easy to prove that the ratios
ξC and ξH are equals and compute as

ξC,H = 1

�EH − �EC

[
1
2 − (Db + Da)2

]
(Db − Da)2

, (D2)

with Db − Da = F[�C
↓ , �H

↓ ,�t] defined in Eq. (7).
We now move forward and consider the coherent case. For

simplicity, we approximate ηH ≈ 1 as qH � �. Under this
assumption, and following the results in Eq. (A6), the density
matrix elements D and R for stroke a → b transform to Da ≈
Rd and Db ≈ Rc, while for the stroke c → d, we have Dc ≈
−Rb and Dd ≈ −Ra. The variances Var(QC ) and Var(QH )
can be thus expressed as

Var(QC ) = (�EC )2

[
1

2
− (Rc + Rd)2

]
,

Var(QH ) = (�EH )2

[
1

2
− (Ra + Rb)2

]
. (D3)

If we consider the case of large time interval �t � 1/

(��,α/2 + 2�φ,α ), it is thus possible to neglect the terms

e−(
��,α

2 +2�φ,α )�t cos(ϕα ) ≈ 0 and e−(
��,α

2 +2�φ,α )�t sin(ϕα ) ≈ 0
in Eq. (A5). In this manner, the continuity conditions reduce
to Rb,Rd ≈ 0. Eq. (D3) now reads

Var(QC,H ) = (�EC,H )2

[
1

2
− R2

c,a

]
. (D4)

Likewise, the averaged heats 〈QH 〉 and 〈QC〉 in Eq. (5) trans-
form as 〈QC〉 = �EC (Rc − Rd) and 〈QH 〉 = �EH (Rb −
Ra). In particular, we get

〈QC〉 = �ECRc, 〈QH 〉 = −�EHRa. (D5)

Given the last expressions, averaged entropy production ex-
presses as 〈�〉 = �ECRc − �EHRa.

The ratios ξC,H can finally be written as

ξC,H =
[

1
2 − R2

c,a

]
R2

c,a(�ECRc − �EHRa)
. (D6)
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