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We have shown theoretically that giant magnetic circular dichroism (MCD) should be observed at the
absorption band edge of two-dimensional (2D) semiconductors exhibiting Rashba splitting in the presence of
a magnetic field perpendicular to the 2D layers. This feature has been found in calculated interband σ+ and σ−

light absorption coefficients for transitions between the Landau levels (LLs) of the conduction and valence bands.
The giant MCD signal is shown to be connected with an unusual magnetic field dependence of the lowest LL
in the presence of the Rashba term. A second unique signature of Rashba splitting is a reduction of the exciton
diamagnetic shift created by the Rashba terms. We show that these terms lead to the characteristic Rashba exciton
dispersion with minima at nonzero momentum. The analysis of the exciton dispersion at nonzero momentum
conducted by Gor’kov and Dzaloshinskii shows that variable separation leads to mixed magneto-impulse terms.
These terms lead to a negative diamagnetic shift, which should be observed in the exciton photoluminescence
that occurs from the dispersion minimum.
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I. INTRODUCTION

Interband magneto-optical measurements are a commonly
accepted way to measure energy band parameters of bulk
semiconductors [1] and two-dimensional semiconductor lay-
ers [2,3]. In the case that the exciton binding energy Eb is
rather small ∼5 − 10 meV it is easy to reach a magnetic field
B for which the electron cyclotron energy h̄ωe � Eb, where
ωe = eB/mec with e the electron charge, me the effective mass
of the electron, c the speed of light, and h̄ the reduced Plank
constant. In this limit, the absorption spectrum created by
interband optical transitions between Landau levels of the
conduction and valence bands consists of multiple allowed
transitions whose energy increases with magnetic field. The-
oretical analysis of these interband spectra, whose transitions
have the form of a fan spreading out with increasing magnetic
field, allows the extraction of the energy band parameters,
such as effective masses and g factors of electrons and holes
and their anisotropy, as well as the nonparabolicity of the elec-
tron and hole spectra, which is commonly characterized by the
Kane energy parameter [4]. This analysis, however, requires
well-resolved interband optical transitions, which can be real-
ized only when h̄ωe > �, where � is the spectral line width.
If the spectra are not resolved, experimentalists use various
differential techniques, such as magnetic circular dichroism
(MCD), which measure the collective difference between the
absorption coefficients for σ+ and σ− polarized light [5].

In the opposite case when h̄ωe < Eb, which is common
in structures with large exciton binding energy, the inter-
band magneto-optical measurements allow determination of
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the Zeeman splitting and diamagnetic shifts of the exciton
lines [1–3]. The analysis of the experimental data involves
extraction of the electron and hole g factors from the Zeeman
splitting, and exciton parameters such as the exciton radius,
the reduced exciton mass μ = (1/me + 1/mh)−1, where mh

is the hole effective mass, etc., from the exciton spectra and
diamagnetic shifts.

Breaking the inversion symmetry of 2D layers by external
or intrinsic electric field, semiconductor crystal structure or by
asymmetry of the 2D layer surfaces could generate Rashba-
Bychkov terms acting on the carriers in the conduction Ĥe

R
and valence Ĥh

R bands [6,7],

Ĥe,h
R = αe,h

h̄
[σ̂e,h × p̂e,h] · ẑ = αe,h

(
k̂e,h

y σ̂ e,h
x − k̂e,h

x σ̂ e,h
y

)
, (1)

where p̂e,h and k̂
e,h

are the momentum operators and wave
vectors, σ̂e,h are Pauli matrices for the conduction electrons
(e) and valence band holes (h) respectively, and ẑ is the unit
vector normal to the surface of the 2D layer. In the expressions
above, the Rashba coefficients for the electron and hole αe,h

are related to the respective Rashba energies Ee,(h)
R by

Ee,(h)
R = α2

e(h)me(h)/(2h̄2). (2)

The magnitude and sign of the Rashba coefficients play an
important role in several physical phenomena, for example, in
potential creation of the ground bright exciton state [8] or pro-
viding the efficient electric dipole spin resonance [9]. Could
this information be extracted from interband magneto-optical
measurements?

This obviously can be done in the strong magnetic field
limit for which h̄ωe,h � Eb and multiple interband optical
transitions are well resolved (h̄ωe,h � �). Due to Rashba
terms, the magnetic field behavior of the Landau levels are
strongly modified from the standard parabolic case, for which
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the Landau level energies increase linearly with increasing
magnetic field and are equidistant from each other [6]. The
magnetic field dependence of these levels, together with de-
tailed analysis of the interband optical transitions, will be
provided later in the paper.

In the weak-magnetic field limit, h̄ωe,h < Eb, and in the
absence of Rashba splitting, the effect of the magnetic field
on excitons is described by the Zeeman interaction and the
diamagnetic shift. Note the exciton levels are split by the
electron-hole exchange interaction; the level order for the
1S exciton at B = 0 is shown in Fig. 1(a), which shows the
exciton center-of-mass dispersion in this case, assuming ap-
proximate tetragonal symmetry. While all of the fine structure
levels experience a diamagnetic shift, linear-in-magnetic field
Zeeman splitting occurs only between the degenerate fine
structure levels with angular momentum projection ±1, which
have transition dipoles in the X,Y plane (with corresponding
labels in Fig. 1). The other levels, Z , whose transition dipole is
oriented perpendicular to the layer plane, and D, which is the
dark singlet exciton, experience a quadratic Zeeman shift with
magnetic field owing to the zero-field fine-structure splitting
[10–12]. These behaviors can be observed in absorption or
reflection.

However, the standard analysis of the magneto-optical
spectra just outlined does not provide a full description of
the Rashba exciton, which is created in structures with large
Rashba terms in the conduction or valence bands. In this situ-
ation, the analysis of the exciton at momentum equal to zero
(wave vector K = 0 in Fig. 1) proceeds as described above,
although if Rashba terms are present in both the conduction
and valence bands, the zero-field splitting and level order can
be affected as shown in Refs. [13,14] and summarized in
Appendix B. This situation is shown in Fig. 1(c) where the
electron and hole Rashba coefficients αe, αh are both nonzero
and have opposite signs, corresponding to cohelical spin tex-
tures [15] in the conduction and value bands, as expected from
DFT calculations [16], resulting in a level-order inversion be-
tween the Z and D exciton. Away from K = 0, the dispersion
of the Rashba excitons is strongly affected by the Rashba
terms and is much more complex than in inversion-symmetric
semiconductors. This is shown in Fig. 1(b), which depicts
the dispersion for the case with nonzero Rashba coefficient
αe only in the conduction band, and in Fig. 1(c), where the
Rashba coefficient for the hole is also nonzero. At K �= 0 the
dispersion of the excitons is shown by the curves labeled A±
and B± in Fig. 1 whose energies, E±

A (K ) and E±
B (K ), respec-

tively, are calculated in Appendix B in Eqs. (B7) and (B8).
These equations give the exciton dispersion both with, and
without, Rashba splitting. Most importantly for our discus-
sion is that the exciton dispersion in the presence of Rashba
splitting has minima at the center-of-mass momentum KR �= 0
[13,14] as shown in Figs. 1(b) and 1(c). In this case, the
exciton photoluminescence can occur from the exciton disper-
sion minima via phonon assisted recombination. Due to the
high density of exciton states near the dispersion minima [14]
the phonon-assisted excitation of these states may be also be
observable in absorption. As we will show below, the diamag-
netic shift of the exciton at the dispersion minima is different
from that connected with the direct exciton at K = 0. The
difference in the diamagnetic shifts for the phonon-assisted
transition and phononless lines has been observed already
experimentally [17].

(a)

(b)

(c)

FIG. 1. Dispersion of the 1S Rashba exciton state in a single-
layer 2D hybrid organic–inorganic perovskite (HOIP) having ap-
proximate tetragonal symmetry, in the absence of a magnetic field.
In panel (a) there is no Rashba effect in either the conduction or
valence bands; while panel (b) shows the exciton dispersion with
nonzero Rashba coefficient αe only in the conduction band. In panel
(c) the Rashba coefficient for the hole is also nonzero; αe, αh have
opposite signs resulting in a level order inversion between the Z and
D exciton. See Appendix B and Eqs. (B7) and (B8) for details of the
calculation. The dark exciton (D) dispersion [B− panels (a) and (b);
B+ in panel (c)] is plotted with black lines, while the dispersion of
the two bright X and Y excitons [A+/B+ in panels (a) and (b); A+/B−

in panel (c)] are shown in green and blue. Finally, the dispersion
of the Z exciton (A−) is shown with orange lines. In panels (b) and
(c) the Rashba coefficients are not zero. As a result, the exciton dis-
persion has an “indirect” minimum at K = KR �= 0, marked in each
panel. The exciton dispersion at K = 0 is split by the electron-hole
exchange interaction. Parameters used in these calculations are listed
in Tables I and II.
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TABLE I. Material parameters used for numerical calculations. Parameters are selected to represent an idealized 2D layered hybrid
organic–inorganic perovskite semiconductor, using parameters based on those measured or calculated for phenethylammonium lead iodide
PEA2PbI4 (PEPI).

Parameter Value Description Source

Eg 2.6 eV band gap Ref. [18]
d 0.644 nm inorganic layer thickness Ref. [19]
� 1.6 nm layer spacing Ref. [19]
εi 5.4 inorganic layer intrinsic relative dielectric constant Ref. [20]
εo 2.56 organic layer intrinsic relative dielectric constant Ref. [20]
no 1.915 ordinary ray refractive index Ref. [20]
μ 0.087m0 exciton reduced effective mass Ref. [18]
me 0.174m0 electron in-plane effective mass Assume me = mh = 2μ

mh 0.174m0 hole in-plane effective mass Assume mh = me = 2μ

Ee
R 40 meV electron Rashba energy Ref. [21]

αe 187 meV nm electron Rashba coefficient From Ee
R using Eq. (2)

Eh
R 7.6 meV hole Rashba energy From αh using Eq. (2)

αh –82 meV nm hole Rashba coefficient Ratio of αh/αe from Ref. [16]
w = C� 12 meV short-range exchange constant Ref. [22]
sin θ 0.277 crystal field phase angle [Eq. (24)] Ref. [20]
ge +2.11 electron out-of-plane g factor Ref. [23]
gh –0.13 hole out-of-plane g factor Ref. [23]
Ep 14 eV Kane energy for PbI4 based perovskites Refs. [11,12]

In this paper we show theoretically that a MCD signal
could be used for measurement of the Rashba terms in the case
that interband optical transitions between Landau levels are
not resolved. We show that Rashba terms lead to a giant MCD
signal near the band edge. For weak magnetic fields, we cal-
culate the diamagnetic shift of the Rashba exciton connected
with its indirect dispersion minimum and show that this can be
significantly smaller than the diamagnetic shift of the exciton
at K = 0. For all of the model calculations shown in this study
we use the material parameters listed in Table I. These are se-
lected to represent an idealized two-dimensional (2D) layered
hybrid organic–inorganic perovskite (HOIP) semiconductor,
using parameters based on those measured or calculated for
phenethylammonium lead iodide PEA2PbI4 (PEPI). In our
modeling, we neglect vibronic [24] or polaronic [25] struc-
ture, which creates a complex multiline fine structure in
absorption and emission in actual samples of PEPI [24,26].
For description of quasi-2D structures with inorganic layer
thickness d greater than one monolayer (ML) we use the same
material parameters as in Table I.

II. LANDAU LEVELS AND INTER-BAND OPTICAL
TRANSITIONS IN 2D STRUCTURES WITH LARGE

RASHBA SPIN-ORBIT COUPLING

To consider the effect of Rashba terms on the interband
transitions in a 2D semiconductor in a magnetic field, we
revisit first the theoretical description of the Landau levels for
electrons or holes in a simple band 2D system. We take the
magnetic field to be in the z direction, B = B ẑ, and model its
effects in the Landau gauge, setting the vector potential A =
Bxŷ, where ŷ is a unit vector along the y axis. Without Rashba
spin-orbit coupling, the effective mass equation for the motion
of an electron or a hole with charge q = ∓e, respectively,
where e is the elementary charge, in the magnetic field takes

the form of a one-dimensional harmonic oscillator. Defining
the mechanical momentum as π̂ = h̄k̂, which is related to
the canonical momentum p̂ through the vector potential by
π̂ = p̂ − qA/c, we note that π̂x = p̂x; and π̂y = p̂y − qBx/c
from which we find the following critical commutation rela-
tion: [π̂x, π̂y] = [ p̂x, p̂y] − qB/c [ p̂x, x] = +i h̄q B/c, where
c is speed of light. Crucially, the sign of commutator depends
on the sign of (qB). From this and defining π̂± = π̂x ± iπ̂y,
we arrive at a generalized definition of the magnetic oscillator
raising and lowering operators valid for electrons or holes
(charge q = −e, +e respectively) and either direction of the
magnetic field (along +ẑ or −ẑ),

â= lm

h̄
√

2
(π̂x+sgn(qB)iπ̂y ); â+ = lm

h̄
√

2
(π̂x−sgn(qB)iπ̂y ),

(3)
where lm = √

ch̄/|q B| is the magnetic length. The spin-
independent portion of the Hamiltonian can thus be expressed
as

Ĥ= 1

2m

{
p̂2

x + ( p̂y − qBx/c)2
}= 1

2m
π̂ · π̂=h̄ωc (â+â + 1/2),

(4)

where ωc = |qB|/mc is the cyclotron frequency of the charge
carrier written in terms of its effective mass m. Given the
translational invariance in the y direction, we write the enve-
lope function according to the ansatz,

ψk (x, y) = eiky

N fk (x), (5)

where N is a normalization factor. Substituting in and solving
for the envelope functions, we find that the orbital energies are
independent of k and are given in terms of Landau level (LL)
quantum number n by Ek (n) = h̄ωc(n + 1/2), with envelope
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functions given by

〈r|k, n〉 = ψk,n(x, y) = eiky

N Hn[x − x0(k)]

× exp

(
− [x − x0(k)]2

2lm
2

)
. (6)

Here x0(k) is the center of the cyclotron orbit in the x direc-
tion, where

x0(k) = h̄kc/qB = sgn(qB) k lm
2, (7)

and Hn(x) is the Hankel polynomial. Inspection of
Eq. (6) shows that the magnetic length lm is a measure of
the cyclotron orbital radius. The number of degenerate states
k in a sample of area A can be shown to be N = AeB/2π h̄
[27]. Including the Zeeman interaction the Hamiltonian can
be written as

Ĥ (B) = h̄ωc

(
â+â + 1

2

)
Î + gμBB

2
σ̂z. (8)

Here, Î is the 2 x 2 identity matrix, μB = eh̄/(2m0) is the Bohr
magneton, and g is the Landé g factor for the carrier.

Rashba term contributions to the Landau level structure
of a two-dimensional electron gas in a simple band system
were first described by Rashba [7] and Bychkov and Rashba
[6]. Here we generalize the analysis to include the Landau
level structure of a 2D hole gas in a simple band system,
such as are found in 2D hybrid organic-inorganic perovskite
semiconductors. With inversion asymmetry in the direction ẑ
perpendicular to the plane of the 2D system, the Rashba term,
Eq. (1) for a given band can be recast as

ĤR = i α(k̂−σ̂+ − k̂+σ̂−), (9)

where we have defined σ̂± = 1
2 (σ̂x ± iσ̂y) and k̂± = k̂x ± ik̂y,

where k̂x, k̂y are components of the wave vector operator. The

Hamiltonian for a simple band in a magnetic field in the
presence of Rashba spin-orbit coupling is thus represented as
the 2 x 2 matrix,

Ĥ (B) = h̄ωc

(
â+â + 1

2

)[
1 0
0 1

]
+ gμBB

2

[
1 0
0 −1

]

+ α

(
0 ik̂−

−ik̂+ 0

)
, (10)

which is spanned by the band-edge Bloch functions for the
band in question. In the absence of in-plane anisotropy, the
conduction band Bloch functions can be represented as the
eigenstates of total angular momentum Jz = ± 1

2 , which we
will denote using double arrows, | ⇑〉, | ⇓〉, while the valence
band Bloch functions can be represented by the spin functions
with projection Sz = +1/2 (−1/2), which we will denote as
| ↑〉, | ↓〉. Explicit representations of these states are given in
the next section.

To proceed we note that the terms k̂± can be rewritten in
terms of raising and lowering operators, Eq. (3). However,
critically, for a given direction of B, the definition required
depends on the sign of the carrier charge q. The Rashba
Hamiltonian thus takes the conditional form

ĤR =

⎧⎪⎪⎨
⎪⎪⎩

α
√

2
lm

( 0 iâ
−iâ+ 0

)
if (q < 0, B > 0), or (q > 0, B < 0) ;

α
√

2
lm

(
0 iâ+

−iâ 0

)
if (q > 0, B > 0), or (q < 0, B < 0).

(11)

With either condition we see that the LLs associated with
the two angular momentum states are generally mixed. An-
ticipating solutions associated with two branches, indexed by
λ = ±1, we write trial state vectors in the following form: For
the conduction electron case (q < 0 in positive magnetic field,
B > 0), the state for LL index n is

|k, n, λ〉 =
⎧⎨
⎩

= C1,λ(n)|n − 1〉| ⇑〉 + C2,λ(n)|k, n〉| ⇓〉, (n � 1, λ = ±1) ;

= |k, 0〉| ⇓〉, (n = 0, λ = +1 only).
(12)

This equation also applies for holes (q > 0) in a negative magnetic field (B < 0) if the conduction band basis states | ⇑〉, | ⇓〉
are replaced by those for the valence band, | ↑〉, | ↓〉. To distinguish hole LLs from those of the electrons, we will write the hole
LLs with index p. For the case of a hole with LL index p in a positive magnetic field q > 0, B > 0, we write the trial function as

|k, p, λ〉 =
⎧⎨
⎩

= V1,λ(p)|p〉| ↑〉 + V2,λ(p)|k, p − 1〉| ↓〉, (p � 1, λ = ±1) ;

= |k, 0〉| ↑〉, (p = 0, λ = +1 only).
(13)

Here again, this equation can also be applied for electrons
(q < 0) in a negative magnetic field (B < 0) if the basis states
| ↑〉, | ↓〉 for the valence band are replaced with those for the
conduction band | ⇑〉, | ⇓〉.

It is important to note that the n = 0 electron state in
Eq. (12) can only exist in the lower angular-momentum state
| ⇓〉 corresponding to branch λ = +1; while the p = 0 hole
state in Eq. (13) can only exist in the upper spin state | ↑〉
corresponding to branch λ = +1. We note that these n = 0
and p = 0 states are unaffected by Rashba splitting.

The energy of the nth Landau level Eλ
e,h(n) = h̄ωe,hε

λ
e,h(n)

in a positive magnetic field is then found to be proportional to
the cyclotron energy of the electrons or hole ωe,h respectively.
The dimensionless energy term ελ

e,h(n) is given for electrons
(e) and holes (h) by

ελ
e,h(n) =

⎧⎨
⎩

δe,h, n = 0, λ = +1

n + λ
√

δ2
e,h + nγ 2

e,h, n � 1
(14)
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(a) (b)

FIG. 2. Magnetic field dependence of the lowest electron and hole Landau levels calculated using equal electron and hole effective masses
me = mh = 0.174m0, with the electron and hole g factors [23] listed in Table I. The calculation is performed with large Rashba splitting in the
conduction band, αe = 187 meV nm, while for clarity, the Rashba splitting in the valence band is set to zero, αh = 0. The arrows in panels
(a) and (b) depict the optical transitions to a given electron Landau level, n, λ, from the valence band state corresponding to hole level, p, λ. For
circularly polarized light σ̂±, these require n = p ± 1, independent of the level branch indices λ. The optical transitions that cause giant MCD
at the band edge are marked by solid arrows in panels (a) and (b); these transition correspond to the circled transitions in Fig. 3(a). Levels with
n, p = 0, 1, 2, 3 are colored black, blue, red, green, respectively.

where the term δe,h depends on the sign of the carrier charge
and of the magnetic field,

δe,h = 1

2

(
1 + sgn(qB)

me,hge,h

2m0

)
. (15)

In these expressions, ge,h are the electron or hole g factors,

while γe,h = 2
√

Ee,h
R /h̄ωe,h where Rashba energy Ee,h

R is de-
fined in Eq. (2). The corresponding wave functions in Eq. (12)
were determined for electrons in a positive magnetic field by
Rashba [7]. For the LL with n = 0

C1,+1(0) = 0, C2,+1(0) = 1, (16)

for n � 1 the wave function can be written as

C1,λ(n) = i sgn(α)λ√
2

√
1 − λδe√

δ2
e + nγ 2

e

,

C2,λ(n) = 1√
2

√
1 + λδe√

δ2
e + nγ 2

e

. (17)

The corresponding solutions for holes with p = 0 are given by

V1,+1(0) = 1, V2,+1(0) = 0, (18)

and for p � 1 can be written as

V1,λ(p) = i sgn(α)λ√
2

√√√√1 + λδh√
δ2

h + pγ 2
h

,

V2,λ(p) = 1√
2

√√√√1 − λδh√
δ2

h + pγ 2
h

. (19)

The magnetic field dependence of the Landau levels are
shown in Fig. 2. For illustration purposes, in Fig. 2, the
electron Rashba coefficient is nonzero while the hole Rashba
coefficient is set to zero. On the same figure we show the
interband selection rules, developed in the next section, for
optical transitions with normally incident circularly polarized
light σ̂±, which require n = p ± 1, where n and p denote
the LL numbers of the electron and hole states, respectively.
These selection rules and Eq. (14) describing the magnetic
field dependencies of the electron and hole Landau levels
allows description of the absorption spectra of 2D layers. Con-
sequently, if the multiple interband optical transitions between
Landau levels are observed, comparison of the experimental
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magnetic field dependence with theory allows extraction of
the Rashba parameter of the conduction and valence bands.

III. ABSORPTION AND MAGNETIC
CIRCULAR DICHROISM

To describe interband absorption and MCD in perovskites
in the presence of Rashba splitting, we must find the opti-
cal selection rules for circularly polarized light in Faraday
geometry and evaluate the polarization dependent transition
oscillator strength. We assume that light is incident in the
positive ẑ direction, normal to the perovskite layers. The light
polarization vector is given for left and right circularly polar-
ized light by the polarization vectors, σ̂+ and σ̂−, respectively,
where

σ̂± = 1/
√

2(x̂ ± iŷ). (20)

Since the interaction Hamiltonian is proportional to e/c A · p̂,
where A is the vector potential of the light and p̂ is the
dipole operator, we find the transition dipole matrix element
connecting the initial state, the crystal ground state |G〉 where
〈re, rh|G〉 = δ( re − rh), and a given electron-hole pair state.
We write the e/h pair state for a given magnetic field B as
|P{ j}〉 ≡ |ke, n, λe; kh, p, λh〉 = |ke, n, λe〉|kh, p, λh〉, where
the term { j} denotes the set of quantum numbers specifying
the electron and hole states within the pair, and evaluate the
matrix element by time reversing the hole wave function and
moving it from the bra to the ket position in the usual manner
[28],

〈P{ j}| p̂|G〉 = 〈ke, n, λe| p̂{T |kh, p, λp〉}. (21)

Here, T is the time reversal operator, T = −i σy K, where K
is the conjugation operator operating on the orbital functions
and σy is the Pauli matrix, which flips the spin.

To proceed further we need the explicit representations
of the band edge Bloch functions. For the valence band, the
Bloch functions are eigenstates of the projection of spin angu-
lar momentum on the z axis,

| ↑〉 = S ↑, | ↓〉 = S ↓ . (22)

Here, the symbol S denotes an orbital function that trans-
forms as an invariant under the operations of the crystal
point symmetry group, while ↑ (↓) denote the spin functions
with projection Sz = +1/2 (−1/2). For the conduction band,
neglecting in-plane anisotropy, the conduction band Bloch
functions have Jz = ± 1

2 , which we denote using double ar-
rows: ⇑,⇓. These are represented by [13,14,20,22,29]

| ⇑〉 = −
{

sin θZ ↑ + cos θ
(X + i Y )√

2
↓
}
,

| ⇓〉 =
{
− cos θ

(X − i Y )√
2

↑ + sin θZ ↓
}
. (23)

In this expression the symbols X, Y, Z denote orbital func-
tions that transform like x, y, z under the operations of the
point group. The phase angle θ determines the mixing of
the lowest J = 1/2 conduction bands and the upper J = 3/2
conduction bands and is determined by the magnitude of spin
orbit splitting �SO and the crystal field splitting δ of the

conduction band [13,14,20,22,29],

tan 2θ = 2
√

2�SO

�SO − 3δ
, 0 � θ � π

2
. (24)

With these definitions it is straightforward to evaluate the
oscillator strength for absorption of left and right circularly
polarized light σ̂± for a given magnetic field B. We recall the
definition of oscillator strength,

f ±
{ j} = 2|P±

{ j}|2
m0E{ j}

, (25)

where E{ j} is the energy of the given optical transition creating
the state { j} by absorption from the crystal ground state G. To
write the oscillator strength we need to evaluate the squared
magnitude of the transition dipole matrix elements that create
a given electron-hole pair state { j}. These matrix elements are
readily evaluated,

|P+
{ j}|2 = |σ̂+ · 〈ke, n, λe; kh, p, λh| p̂|G〉2

= |P|2 cos2 θ
∣∣C1,λe (n)V1,λh (p)

∣∣2δn,p+1δke,−kh ,

|P−
{ j}|2 = |σ̂− · 〈ke, n, λe; kh, p, λh| p̂|G〉2

= |P|2 cos2 θ
∣∣C2,λe (n)V2,λh (p)

∣∣2δn,p−1δke,−kh , (26)

In these expressions, P = − i 〈S| p̂|X 〉 = −i〈S| p̂|Y 〉 is the
Kane momentum matrix element [30], related to the Kane
energy Ep by Ep = 2|P|2/m0. The Kronecker delta function
δke,−kh is a reflection of the momentum conservation: kh +
ke = 0, which implies, via Eq. (7), that electron and hole LLs
have allowed transitions only from the same orbital center.
The Kronecker delta function δn,p±1 gives the LL number
selection rule for σ̂± polarized light n = p ± 1 irrespective of
the branch indices λe, λh in the general case.

In the special case that there is no Rashba splitting in
either band, both the electron and the hole states are pure
angular momentum states. Consequently, for this case there
is an additional branch selection rule, namely, that only cross-
branch transitions are allowed: For absorption of σ̂± polarized
light, the allowed transitions are those that obey λh → −λe.
This leads to ordinary MCD reflecting the expected Zeeman
splitting between transitions allowed for σ̂± polarized light,
with energy separation �Ezee = μB(ge + gh)B. This case is
illustrated for example in Ref. [31].

In the special case that there is significant Rashba splitting
only in the conduction band and vanishing Rashba splitting in
the valence band (not unreasonable since in the valence band,
the Rashba coefficient is expected to be much smaller than in
the conduction band [16]), the valence band LLs are pure spin
states [see Eqs. (13) and (17)]. This results in the following
modifications of the selection rules: For σ̂+ polarized light
the allowed transition only occurs from the valence band level
p with branch λh = +1 to electron state n = p + 1 of either
the upper or lower branch, λe = ±1; while for σ̂− polarized
light the allowed transitions occurs from the hole level p with
branch λh = −1 to the electron level n = p − 1 of either the
upper or lower branch, λe = ±1. These selection rules are
illustrated in Fig. 2. One can see from Fig. 2 that due to the
special selection rules connected with the n = 0 Landau level
in the presence of Rashba terms, the transition terminating at
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n = 0 is 100% polarized for σ− light (this transition is marked
by a bold solid blue arrow) while the two lowest energy transi-
tions (shown by solid red arrows) are σ+ polarized. Since the
Rashba splitting causes all other levels with n � 1 to be well
separated in energy from the pure angular momentum state
n = 0, we expect this feature to result in a giant MCD signal.

With the oscillator strength in hand we can determine the
energy-dependent absorption coefficient α±(E ; B) for a given
magnetic field B. This entails a sum over the final electron and
hole Landau level pair states { j}. In CGS units this is given by
[32]

α±(E ) = 2π2h̄e2

m0

1

nc�

1

A

∑
j

f ±
{ j} g(E − E{ j}), (27)

where n is the refractive index, c is the speed of light, � is the
period of the 2D perovskite, A is the area of the sample, and
g(E − E{ j}) is the normalized absorption lineshape function
for the transition terminating on the state { j}. For all the
calculations we will present, this is assumed to be a Gaussian,

g(E − E{ j}) = 1√
2πσ

e− (E−E{ j} )2

2σ2 , (28)

where the full-width at half-maximum linewidth � =
2
√

2 ln 2σ .
Let us decompose the expression for the absorption coeffi-

cient further. The matrix element in Eq. (25) can be reduced
using Eq. (26), resulting in the absorption for σ̂+ polarized
light given by

α+(E ; B) = 2π2h̄e2

m0

1

nc�

1

A

Ep

Eg
cos2 θ

∑
ke

∑
n,λe,λh

|C1,λe (n)V1,λh (n − 1)|2 g(E − Eλe (n) − Eλh (n − 1)), (29)

and the absorption for σ̂− polarized light given by

α−(E ; B) = 2π2h̄e2

m0

1

nc�

1

A

Ep

Eg
cos2 θ

∑
ke

∑
n,λe,λh

∣∣C2,λe (n)V2,λh (n + 1)
∣∣2 g(E − Eλe (n) − Eλh (n + 1)). (30)

Here we have approximated E{ j} ≈ Eg in the denominator to
pull it out of the sum. We see that these expressions each
involve a sum over ke of a sum, which is independent of ke;
we can therefore eliminate the sum over ke. As noted in the
last section, the number of distinct states ke in a sample of
area A can be shown to be N = AeB/2π h̄ [27]. This is simply
the ratio of the sample area to the square of the magnetic
length, N = A/2π l2

B. Therefore the term A cancels out of the
expressions above. A final refinement is to include the effect
of electron-hole Coulomb interactions via the Sommerfeld
Coulomb enhancement factor for 2D interband transitions. In
terms of the exciton binding energy Bx = |E10|, which is of or-
der ∼300 meV for single layer perovskites (see Appendix A),
this factor is given by [33,34],

S2D(E ) = 2

exp
(− 2π

√
Bx

E−Eg

)+ 1
∼ 2, (E − Eg � Bx ),

(31)

which takes the approximate value 2 within Bx of the band
edge. Putting all these terms together we have

α+(E ; B) = S2D
2π2h̄e2

m0

1

nc�

Ep

Eg
cos2 θ

eB

2π h̄

×
∑

n,λe,λh

|C1,λe (n)V1,λh (n − 1)|2 g(E − Eλe (n)

− Eλh (n − 1)),

α−(E ; B) = S2D
2π2h̄e2

m0

1

nc�

Ep

Eg
cos2 θ

eB

2π h̄

∑
n,λe,λh

|C2,λe (n)

× V2,λh (n + 1)|2g(E − Eλe (n) − Eλh (n + 1)).
(32)

These functions are then used to evaluate the MCD using

MCD ≡ �A = A+ − A−. (33)

Here, A± is the decadic absorbance for σ̂± polarized light
given by A± = −log10(e−α±L ) = α±L/ ln 10, where L is the
sample thickness and α± are the absorption coefficients for
σ̂± polarized light. In Fig. 3 we show calculations of the
MCD corresponding to the case depicted in Fig. 2, where we
assumed that large nonzero Rashba splitting occurs in the con-
duction band with no Rashba splitting in the valence band. As
noted above, due to the special selection rules connected with
the n = 0 electron Landau level in the presence of Rashba
terms, the transition terminating at n = 0 is 100% polarized
for σ− light. This transition, shown with the solid blue arrow
in Fig. 2(a), is circled in blue in Fig 3(a). At the same time, the
two lowest energy transitions, circled in red in the same panel
[shown with the solid red arrows in Fig. 2(b)] are σ+ polar-
ized; each of these transitions has roughly half the oscillator
strength as the transition terminating on the n = 0 electron
LL. Since all other levels are well separated in energy from
the σ− polarized transition terminating in the n = 0 level and
are nearly degenerate with roughly equal oscillator strengths,
the net result is a giant MCD signal with a derivative-like line
shape. Figure 3(b) shows the full MCD calculation confirming
that this is the case. In Fig. 3(c) we show an approximated
calculation including only the transitions circled in Fig. 3(a),
which closely matches the result of the full calculation, con-
firming our analysis.

It is instructive to compare this result to two model cases:
First, the MCD that would be expected for free carrier transi-
tions in the absence of Rashba splitting; and second, the MCD
expected for excitonic transitions.

For free carrier transitions, assuming parabolic band dis-
persion, and assuming that each free carrier transition is
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FIG. 3. Interband optical transitions and MCD stimulated by absorption of σ+ and σ− polarized light in a system with Rashba splitting
only in the conduction band with αe = 187 meV nm. (a) Energy dependence of the transitions to the electron Landau level n, calculated in
magnetic field B = 15 T. Transitions polarized σ− are shown in blue dots while those polarized σ+ are shown with red dots. The size of the dot
corresponds roughly to the relative transition oscillator strength. The MCD, �A, in units of optical density (OD) is calculated as the difference
of the decadic absorbance of σ+ and σ− polarized light in magnetic fields 5, 10, and 15 T, taking into account all Landau levels transitions
within the plotted energy range (b) and calculated using only the circled transitions (see text) (c). The absorbance and MCD calculations
assume a sample thickness L = 100 nm with material parameters given in Table I. Each transition is taken to have a normalized Gaussian
lineshape with full width at half-maximum � = 50 meV.

Gaussian broadened according to Eq. (28), the absorbance A f c

for a sample of thickness L can be shown to be given by

A f c(E ) ≈ L

ln 10
S2D

2π2h̄e2

m0

1

nc�

μ

2π h̄2

Ep

Eg
cos2 θ

× 1

2

(
1 + erf

(
E − Eg√

2σ

))
. (34)

Here, the factor μ/2π h̄2 represents the joint density of states
per unit area per unit transition energy for k-conserving tran-
sitions between the valence and conduction bands. As before,
μ = (1/me + 1/mh)−1. Using this expression, in the limit that
the linewidth � � h̄ωe, MCD associated with the free carrier
interband transitions without Rashba splitting occurs at the
band edge due to the Zeeman shift of the carrier levels. The
MCD is proportional to the derivative of the absorbance at the

band edge and thus has a Gaussian lineshape,

�A f c(B) = −dA f c

dE
g f cμBB

= L

ln 10
S2D

2π2h̄e2

m0

1

nc�

μ

2π h̄2

× Ep

Eg
cos2 θ g(E − Eg) g f cμBB, (35)

where g f c = ge + gh is the interband g factor for Faraday
configuration. This result stands in distinct contrast to what
we found above and in Fig. 3 for the case of Rashba splitting
in the conduction band, where the MCD has a derivative-like
signature.

In the second case of interest, the absorbance Aexc due to
bound exciton transitions can be written similarly to Eq. (27)
in terms of the exciton oscillator strength per unit area, fn,0/A
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(a) (c)

(b) (d)

(e)

(f)

FIG. 4. Interband absorption and magnetic circular dichroism (MCD) including exciton effects, with and without Rashba splitting. The
absorbance and MCD in units of optical density (OD) are calculated in the absence of Rashba terms, (a) and (b), respectively; for Rashba
coefficients αe = 187 meV nm and αh = 0, (c) and (d); and for αe = 187 meV nm and αh = −82 meV nm, (e) and (f). In all three cases,
the absorbance due to the of the 1S and 2S exciton transitions are included. Calculations in (b), (d), and (f) are conducted for the magnetic
fields B = 0, 5, 10, and 15 T. The calculations assume a sample thickness L = 100 nm with material parameters given in Tables I and II. Each
transition is taken to have a normalized Gaussian lineshape with full width at half-maximum � = 50 meV.

for each 2D exciton state with principle quantum number
n � 1 and azimuthal quantum number 0. These are given in
Appendix A [see Eq. (A9)]. The resulting expression for the
absorbance can be written as

Aexc(E ) = L

ln 10

2π2h̄e2

m0

1

nc�

∑
n

(
fn,0

A

)
g(E − En,0),

(36)

where as before we assume that the transitions are broadened
by Gaussian lineshape functions [Eq. (28)]. Each bound ex-
citon transition exhibits MCD due to the Zeeman splitting of
the levels. The MCD can be computed from the derivative of
the absorbance,

�Aexc(B) = −dAexc

dE
gexc μB B, (37)

where gexc = ge + gh denotes the exciton g factor for Faraday
configuration [11,12] for the fine structure levels with angular
momentum Jz = ±1. Notably, the MCD of the excitons that
can be measured in absorbance in Faraday geometry is inde-
pendent of the presence or absence of Rashba terms, since the
Jz = ±1 fine structure levels are not affected by the Rashba
splitting [13,14,29] (see discussion in Appendix B). Unlike
the free-carrier band-edge transitions, the exciton MCD sig-
nature is derivative-like in contrast to what we found for the
band-edge free-carrier transitions in the absence of Rashba
splitting, but similar in this respect to the case of Rashba split-
ting in the conduction band, where the MCD also has a distinct

derivative like signature. How can we distinguish between
the derivative like signatures of bound exciton transitions and
those associated with Rashba splitting?

We address this question in Fig. 4. The figure shows, in the
top row of panels, the polarization-averaged absorbance cal-
culated in zero-magnetic field including the 1S and 2S levels
of bound exciton and the interband transitions, and in the sec-
ond row of panels, the MCD calculated at magnetic fields B =
0, 5, 10, and 15 T, using the parameters listed in Table I. The
polarization averaged absorbance spectra at magnetic fields up
to 15 T are visually not significantly different from the spectra
at B = 0 so only the zero field spectra are shown. Panels
(a) and (b) show the absorbance and MCD with no Rashba
effect in either the conduction or valence bands; panels (c)
and (d) show the absorbance and MCD with Rashba splitting
in the conduction band only, while panels (e) and (f) show
results calculated with Rashba splitting in both the conduction
and valence bands. The dominant MCD signals in panel (b),
calculated with no Rashba splitting, are the derivative-like
signatures associated with the 1S and 2S exciton transitions.
For this case the unipolar band edge feature associated with
the free carrier transitions is very weak. By contrast, panel (d),
corresponding to the case of large Rashba splitting in the con-
duction band, has a dominant derivative-like MCD lineshape
associated with the near-band-edge transitions involving the
n = 0, 1, 2 electron LLs (see Fig. 3), but the MCD has oppo-
site polarity to that of the 1S and 2S exciton features. This is
a characteristic tell-tale for the existence of Rashba splitting.
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FIG. 5. Comparison of the magnitude of the absorbance nor-
malized MCD calculated for different models. For each model, the
plot shows the absolute value of the MCD (|�A|) normalized to the
polarization averaged absorbance at the position of maximum MCD
(Apeak). For cases where the MCD is derivative-like we select the
absolute value of the MCD at the lower-energy lobe of the MCD
lineshape. The 1S and 2S exciton models are shown by black and
pink circles respectively. The model accounting for interband optical
transitions with no Rashba effect are shown with red circles; the
interband transition model with Rashba splitting in the conduction
band only is shown with green circles, while the interband transition
model with Rashba splitting in both the conduction and valence
bands is shown with blue circles. The calculations assume a sample
thickness L = 100 nm with material parameters given in Table I.
Each transition is taken to have a normalized Gaussian lineshape with
full width at half-maximum � = 50 meV.

The last case, with Rashba splitting in both the conduction
and valence bands, shown in panel (f), is qualitatively similar
to that with Rashba splitting only in the conduction band but
with somewhat reduced magnitude of the MCD.

To quantify the relative MCD values for different transi-
tions and/or different models, it is useful to plot the absolute
value of the MCD, normalized to the absorbance at the posi-
tion of the maximum MCD value, versus magnetic field. This
is shown in Fig. 5 for the 1S and 2S exciton transitions and
for the interband transitions for each model shown in Fig. 4.
For cases where the MCD is derivative-like, we select the
absolute value of the MCD at the lower energy lobe of the
MCD lineshape. Inspection of Fig. 5 shows immediately that
the normalized MCD for the interband transitions with Rashba
splitting are much larger than for the excitonic features or for
the free carrier model without Rashba splitting. To quantify
this further, for each of the models shown in Fig. 5 we can
define an effective g factor geff defined as

geff ≡ 1

μB

∣∣∣∣ (∂|�A|max/∂B)

(∂A/∂E )Emax

∣∣∣∣. (38)

For reference, we note that the input model g factor for the
excitons and the free carrier transitions in the absence of
Rashba splitting is gexc = g f c = ge + gh = 1.98 (see Table I).
Unsurprisingly, the effective g factors for the exciton 1S and
2S transitions calculated using Eq. (38) matches this value
exactly: geff = 1.98. For the band-edge free-carrier absorption
in the absence of Rashba splitting, the effective g factor is

slightly larger at geff = 2.03, reflecting a slight impact of the
emergence of Landau levels at the higher magnetic fields in
the calculated range, not accounted for in the simple model
reflected in Eq. (34), which is only valid for � � h̄ωe. By
contrast, in the presence of Rashba splitting in the conduction
band alone, with Rashba coefficient αe = 187 meV nm, the
effective g factor determined using Eq. (38) is much higher,
geff = 11.3. With Rashba splitting in both the conduction and
valence bands, with Rashba coefficients αe = 187 meV nm
and αh = −82 meV nm, the result is geff = 8.4. This giant
MCD, reflected in the greatly enhanced effective g factors,
plus the derivative-like lineshape and polarity reversal relative
to the true Zeeman-driven MCD of the exciton lines, serve as
signatures of the presence of Rashba splitting according to the
Rashba invariant, Eq. (1).

IV. DIAMAGNETIC SHIFT OF THE EXCITON LINES

The diamagnetic shift of the exciton at K = 0 exciton line
is commonly obtained after averaging the diamagnetic term
in the exciton Hamiltonian [35], e2B2ρ2/8μ, where ρ2 =
x2 + y2 and B is the magnitude of the magnetic field normal
to the 2D semiconductor layers. The corresponding shift can
be written as

�E0
d = CB2 (39)

where C for 1S and 2S optically active 2D excitons can be
written as

C1,0 = e2

8μ
〈1, 0|ρ2|1, 0〉 = e2

8μ

3a2
1,0

8
,

C2,0 = e2

8μ
〈2, 0|ρ2|2, 0〉 = e2

8μ

117a2
2,0

8
, (40)

where μ is the reduced mass of the exciton, |1, 0〉 and |2, 0〉
denote the 1S and 2S exciton states, and a1,0, a2,0 are the
radii of the 1S and 2S exciton wave functions described in
Eqs. (A5) and (A6).

The separation of variables for an exciton in an external
magnetic field, B, is not a trivial problem. The problem was
first solved by Gor’kov and Dzyaloshinskii [35] who showed
that this procedure results in the mixing of the electron/hole
relative coordinate r and the exciton center-of-mass motion
momentum h̄K,

Ĥmix = eh̄

Mc
(K × B) · r, (41)

where M is the mass of the exciton center-of-mass motion, c is
the speed of light, and e is the electron charge. Equation (41)
shows that diamagnetic shift of the exciton with some nonzero
momentum K decreases with increase in K. This happens be-
cause the mixing term Ĥmix leads to second order corrections
to the ground exciton level, which are proportional to B2 and
are always negative. In the case of 2D excitons this correction
can be estimated as

�Ed (K ) = −
(

eh̄BK

Mc

)2 ∑
m=±1

〈1, 0|r|2, m〉2

|E1,0 − E2,m| , (42)

where E1,0 and E2,±1 are the energies of the 1S and 2P two-
dimensional excitons relative to the band gap, and the matrix
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(a) (b) (c) (d)

FIG. 6. The dependence of the diamagnetic coefficients that describe the diamagnetic shift of the 1S exciton line versus inorganic layer
thickness, d in monolayers (ML). Panels (a) and (b) are cartoons showing 2D perovskites with 1 and 2 ML thickness, respectively. The shift,
which is seen in absorption is connected with the K = 0 excitons and is described by the C10 coefficient. The photoluminescence (PL) is
connected with the indirect minimum of the Rashba exciton dispersion at KR (see Fig. 1). This leads to the additional negative diamagnetic
shift described by the G10 coefficient. As a result the total diamagnetic shift of the exciton line in PL is described by the sum C10 + G10.
Calculations were conducted using material parameters in Table I and the exciton parameters in Table II; panel (c) shows the calculation for
Rashba splitting only in the conduction band, while panel (d) shows the results calculated with Rashba splitting in both the conduction and
valence bands.

element 〈1, 0|r|2,±1〉 is taken between the eigenfunctions
|1, 0〉 and |2,±1〉 of the 1S and 2P states respectively. Equa-
tion (42) shows that there is a negative correction proportional
to B2 and K2.

In the case of the Rashba exciton, the exciton dis-
persion has a minimum at some KR (see Fig. 1) whose
magnitude is controlled by the Rashba coefficients of the
conduction and valence bands and the electron and hole
effective masses. The exciton emission can occur via this
minimum. The binding energy of the ground exciton de-
creases with 2D perovskite thickness while exciton radius
increases. As a result the decrease of the diamagnetic shift
connected with the mixing Ĥmix increases in thicker 2D per-
ovskite layers, if we neglect the modification of the Rashba
coefficient.

The momentum-dependent correction to the diamagnetic
shift coming from Eq. (42) can be written for the 1S exciton
as �Ed (KR) = G10B2 where

G1,0 = − 2

(
2μBKR |〈1, 0|x|2, 1〉|

M/m0

)2 1

|E1,0 − E2,1| . (43)

Here, μB is the Bohr magneton, KR is the Rashba k-vector
minimum, M is the total exciton mass, and m0 is the free
electron mass. The factor of 2 comes from the sum over m
in Eq. (42). We see that G10 is always negative.

In principle, the quantitative analysis of this shift allows
extraction of KR. Consequently if we know the carrier effec-
tive masses we can determine the Rashba coefficients. It is
useful to plot the diamagnetic coefficients versus the thickness
of the inorganic layer in monolayers of lead-halide octahedra.
This is shown in Fig. 6 using the material parameters listed
in Table I and the calculated exciton parameters for different
layer thickness in Table II. Panels (a) and (b) of the fig-
ure depict 2D perovskites with 1 and 2 monolayer thickness,
respectively. For layers thicker than 1 ML, we assume that
the Rashba coefficients and effective masses are unchanged
from the single ML values in Table I. Panel (c) shows the
calculation of the diamagnetic shift for Rashba splitting only
in the conduction band, while panel (d) shows the results
calculated with Rashba splitting in both the conduction and
valence bands. The coefficient C10 is identical in these two
cases. This is the diamagnetic shift that would be observed in
absorption since it is connected with the direct K = 0 exci-
tons. However, the correction G10 connected to the Rashba
terms differ for the two cases as it is associated with the
indirect minimum in the exciton dispersion (see Fig. 1), which
occurs at different values for the different Rashba parameters.
For the calculation in panel (c), with Rashba coefficients αe =
187 meV nm and αh = 0, the indirect minimum occurs at
KR = 0.42 nm−1 while in panel (c), when αe = 187 meV nm
and αh = −82 meV nm, the position KR of the indirect

TABLE II. Exciton radius and energy for 1S, 2P, and 2S excitons calculated for a series of model 2D perovskite structures with thickness
d ranging from 1–5 monolayers (ML), using the material parameters in Table I. The energies En,m are given relative to the band gap Eg.
The parameter Ar , which pertains to the effect of Rashba splitting in the exciton internal motion of the 1S exciton, is calculated from the
variationally optimized values for a10 and a21 using Eq. (B3) (see Appendix B).

d(ML) a10 (nm) E10 (meV) a21 (nm) E21 (meV) a20 (nm) E20 (meV) Ar

1 3.05 −313.5 1.73 −73.3 1.95 −59.9 0.249
2 3.78 −231.7 1.92 −65.9 2.14 −53.1 0.284
3 4.33 −190.0 2.08 −60.2 2.3 −48.6 0.301
4 4.79 −163.6 2.23 −55.6 2.44 −45.1 0.311
5 5.19 −144.9 2.36 −51.9 2.57 −42.2 0.318
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minimum is nearly unchanged as a function of layer thickness,
at KR ≈ 0.61 nm−1. Since photoluminescence is connected
with the indirect minimum of the Rashba exciton dispersion
at KR, the total diamagnetic shift of the exciton line in PL is
described by the sum C10 + G10 shown in Fig. 6.

V. SUMMARY

The search for 2D and bulk semiconductors with large
Rashba spin-orbit terms is stimulated by the usefulness of
such materials in multiple opto-electronic applications in-
cluding spintronic and quantum computing. In many device
applications these terms allow replacement of operations that
traditionally require an external magnetic field to be per-
formed using an external electric field, which is much easier
to apply and whose application does not require low temper-
ature operation. The most obvious examples of such use of
the Rashba terms is electron spin manipulation by electric
fields [9,36], and in chiral structures, where spin-selective
absorption and emission could be realized without external
magnetic fields [37–41]. Unfortunately, large Rashba terms
are often connected with surface asymmetry and its origin and
magnitude is very difficult to control [42–44].

In this article we show two experimentally reliable, rather
simple, magneto-optical measurements, which could be used
to confirm the existence of Rashba terms in the spectra of
electrons and holes even in samples of unoptimal quality,
where the exciton line width is comparable to or larger than
the Landau level splitting. The first of these is MCD, where
a giant MCD signal should be observed at the energy gap
band edge in the presence of Rashba terms. The second is
the comparison of the exciton diamagnetic shift measured in
absorption and photoluminescence. We hope that these simple
approaches can provide experimentalists with unique tools to
confirm the existence of the Rashba terms in the spectra of
multiple novel spintronic semiconductors.
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APPENDIX A: EXCITON BINDING ENERGY
AND OSCILLATOR STRENGTH

We start with a description of the quasi-2D exciton in a
2D layered perovskite structure. The exciton relative motion
is analyzed first neglecting Rashba splitting, Eq. (1) and the
mixing term Eq. (41); these effects are added once the ba-
sic 2D exciton structure is determined. In layered perovskite

structures, the inorganic semiconductor layer, thickness d , is
surrounded by organic layers with a lower dielectric constant.
Consequently, the internal motion of the exciton is modified
by dielectric confinement, resulting in a modified electron-
hole interaction potential [45,46]. We describe this modified
potential using the image charge method introduced by Hana-
mura et al. [47] and used previously to calculate exciton
binding energies in layered 2D HOIPs by Hong et al. [48].
In terms of the relative radial coordinate of the electron and
hole in the plane, ρe,h, and the z coordinates ze, zh of the
electron and hole, the interaction potential can be written in
CGS units,

V 3D
eh (ρ, ze, zh) = −e2

εi

n=∞∑
n=−∞

qn√
ρ2

e,h + (ze − zh,n)2
, (A1)

where qn = q−n = [(κ − 1)/(κ + 1)]|n| and zh,n =
(−1)|n|zh + nd , where

κ = εi/εo (A2)

is the dielectric contrast ratio, the ratio of the dielectric con-
stants of the inorganic layer (εi) and the surrounding organic
layer (εo). We note that the interaction potential Eq. (A1)
is three dimensional. We make an adiabatic approximation,
which assumes that the motion perpendicular to the inorganic
layer is much faster than the relative electron-hole motion in
the layer. Within this assumption we can derive an adiabatic
potential Vd (ρ) describing the relative electron-hole motion
by averaging Eq. (A1) over the wave functions of the lowest
energy confined electrons, ψc(ze) = √

2/d cos(πze/d ), and
holes, ψv (zh) = √

2/d cos(πzh/d ), in the inorganic layer,
respectively,

V Ad
d (ρ) =

∫ d/2

−d/2

∫ d/2

−d/2
dzedzhψ

∗
c (ze)ψ∗

v (zh)V 3D
eh (ρ, ze, zh)

× ψc(ze)ψv (zh). (A3)

This results in an effective Hamiltonian for the electron/hole
relative motion given by

Ĥ0,REL = − h̄2∇2
ρ

2μ
+ V Ad

d (ρ). (A4)

To find the energy and the wave function of the various
2D exciton states identified by principle quantum number
n � 1 and azimuthal quantum number m with |m| � n − 1,
we use the variational procedure with 2D hydrogenic ansatz
functions [49]. For the 1S ground state, with n = 1, m = 0
we have the ansatz function,

ϕ1,0(ρ, φ; a) = 4

a

1√
2π

e−2ρ/a, (A5)

while for the excited states with n = 2, m = 0,±1,
which we denote as the 2S and 2P states respectively,
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FIG. 7. Exciton binding energy and its radius vs inorganic layer thickness d in monolayers (MLs). Panel (a) shows the thickness
dependence of the energy of the 1S, 2S, and 2P excitons En,m relative to the bandgap calculated for the exciton state with principal quantum
number n = 1, 2 and angular momentum projection m = 0, 1. Panel (b) shows the thickness dependence of the effective radius of 2D exciton
an,m. Calculations are conducted for equal electron and hole effective mass equal to 0.174 m0 with the interior dielectric ε = 5.4 and dielectric
contrast κ = 2.11 as summarized in Table I.

we have

ϕ2,0(ρ, φ; a) = 4e− 2ρ

3a

(
1 − 4ρ

3a

)
3
√

3a

1√
2π

;

ϕ2,±1(ρ, φ; a) =
8
√

2
3ρe− 2ρ

3a

9a2

1√
2π

e±iφ, (A6)

where for each case the effective Bohr radius is taken as a
variational range parameter. These trial functions are used to
compute the energy using

En,m(a)=
∫ 2π

0

∫ ∞

0
ρ dρ dφ ϕ∗

n,m(ρ, φ; a) Ĥ0,REL ϕn,m(ρ, φ; a).

(A7)

The variationally calculated energy for the 1S, 2S, and 2P
exciton levels are shown in Fig. 7 for an idealized 2D per-
ovskite modeled after PEPI, plotted versus the inorganic layer
thickness d . We note that due to the noncentral force nature of
the e/h interaction potential, Eq. (A1), the exciton in the 2D
perovskite system is nonhydrogenic, as manifested by the fact
that the effective Bohr radii for the 2S and the 2P levels are
distinct. Table II gives the numerical values determined for a
series of model structures with thickness d ranging from 1–5
ML using the material parameters in Table I.

Using the variationally optimized wave functions, it is
straightforward to find the matrix element 〈1S|r|2P〉 in
Eq. (42), which is given by

|〈ϕ1,0|x|ϕ2,1〉| = |〈ϕ1,0|y|ϕ2, 1〉| = 18
√

6a3
1,0a2

2,1

(a1,0 + 3a2,1)4
. (A8)

The matrix element is the same for |〈ϕ1,0|x|ϕ2,−1〉|.
With the exciton relative motion wave functions deter-

mined above we can also write expressions for the oscillator
strength f ±

n,m per unit area A of the exciton states (n, m) for
σ̂± polarized light. For the 2P exciton the oscillator strength
vanishes, since it is of odd parity. For the 1S and 2S excitons
the oscillator strength per unit area is found from Eq. (25) and

Bloch function definitions in Eqs. (22) and (23) as [13](
f ±
1,0

A

)
= Ep

Eg + E10
cos2 θ |ϕ1,0(0)|2;

(
f ±
2,0

A

)
= Ep

Eg + E20
cos2 θ |ϕ2,0(0)|2. (A9)

It is useful to note that since |ϕ1,0(0)|2 = 8/πa2
10 and

|ϕ2,0(0)|2 = 8/27πa2
20, the oscillator strength of the excited

2S exciton level is substantially smaller than that of the
lowest 1S level, even accounting for the different exciton
radii of the two levels, which are given in Table II. Neglect-
ing the binding energy difference, the ratio of the oscillator
strengths of the 2S to the 1S level is ∼9% in a single layer
perovskite.

APPENDIX B: EXCITON FINE STRUCTURE
AND DISPERSION OF THE RASHBA EXCITON

The problem of the energy and center-of-mass dispersion
of the Rashba exciton was solved in Swift et al. [14]. Here
we simply state the results. We define me, mh as the elec-
tron and hole effective masses, with reduced effective mass
μ defined in the usual way; and αe, αh as the electron and
hole Rashba coefficients. We further adopt a quasitetragonal
approximation for the 1S exciton fine structure [20,22]. This
results in the short-range exchange eigenvalues for the 1S
exciton: E0,0 = Ed = 0, E1,±1 = Et = w cos2 θ , and E1,0 =
Ez = 2w sin2 θ where w = C� with the short-range exchange
constant C [29], and θ is defined in Eq. (24). Finally the
overlap integral � is given by [50]

� = �

∫∫
V

d3red3rh f ∗(re, rh)δ(re − rh) f (re, rh)

= 3

2d
�|ϕ1,0(0)|2, (B1)
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where � is the volume of unit cell and ϕn,m(r) is the rel-
ative motion wave function of 2D exciton. Additionally, if
Rashba splitting is present in both the conduction and va-
lence bands, and if the inversion asymmetry is taken along
the z direction, we find that the effect of Rashba split-
ting on the relative electron/hole motion takes the form
of an effective electron-hole exchange interaction of the
form [14]

Ĥ rel
R = 2ArER

(
ĵe
x ĵh

x + ĵe
y ĵh

y

)
, (B2)

where ĵe
x , ĵe

y and ĵh
x , ĵh

y are Pauli operators representing the
electron and hole angular momentum projections along x, y;
ER = αeαhμ/h̄2 is the exciton Rashba energy; and Ar , which
is a numerical coefficient whose value depends on the 1S and
2P exciton radii. This is given in Ref. [14] as

Ar = 4a2
10

384a2
10a2

2±1

(a10 + 3a2±1)6

⎛
⎝ h̄2

2μa2
10

E1,0(a1,0) − E2,±1(a2,±1)

⎞
⎠.

(B3)

Numerical values for Ar calculated from the variationally
optimized values for a10 and a21 for a series of model 2D
perovskite structures with thickness d ranging from 1–5
monolayers, using the material parameters in Table I, are
tabulated in Table II. The combined effect of SR exchange
splitting and the internal motion Rashba terms above is then

E0,0 = Ed = −4ArER, E1,0 = Ez = 2w sin2 θ − 4ArER,

E1,1 = E1,−1 = Et = w cos2 θ (B4)

These expressions completely describe the fine structure of
the lowest energy 1S exciton at zero center-of-mass motion.
We note that if the electron and hole Rashba coefficients, αe

and αh, respectively, have opposite signs, then the conduction
electron and valence band electron coefficients have the same
sign due to the sign inversion in going from the electron to
the hole picture for the valence band. This, coupled with the
fact that the angular momentum and the spin are antiparallel
for the conduction bands in perovskites implies that the spin
textures are cohelical [15], i.e., the outer spin-split branches
of the conduction and valence bands have parallel spins. In
this case, ER < 0, which, depending on parameter values, can
result in a level order inversion between the Z and D exciton
at K = 0. To continue, we must determine the dispersion in
the plane associated with center-of-mass K where P = h̄K. A
complete description of the exciton dispersion requires that
we also include not only the exciton fine structure splitting
due to electron-hole exchange and the internal motion Rashba
terms as described in Eq. (B4), but additional terms connected
to center-of-mass motion, which mix the fine structure levels,
resulting in the following Hamiltonian:

ĤTetr
tot, (K ) = ĤTetr

INT + ĤTetr
COM(K ), (B5)

The Rashba term contribution to the COM motion, ĤR,COM

is [51]

ĤR,COM(P) = 1

M

[(
me

αe

h̄
ĵe
x + mh

αh

h̄
ĵh
x

)
Py

−
(

me
αe

h̄
ĵe
y + mh

αh

h̄
ĵh
y

)
Px

]
. (B6)

The total exciton dispersion is described by diagonalizing
Eq. (B5), giving the Rashba exciton dispersion. This is found
to separate into two branches: Branch A, representing the
coupled Z and T (X,Y ) excitons [14]

E±
A (K ) = E0,0 + h̄2K2

2M
+ Et + Ez

2

±
√

(Et − Ez )2 + 4K2(α+
ex)2

2
, (B7)

while Branch B represents the coupled D and T excitons [14],

E±
B (K ) = E0,0 + h̄2K2

2M
+ Ed + Et

2

±
√

(Ed − Et )2 + 4K2(α−
ex)2

2
. (B8)

In these expressions, α±
ex = (αeme ± αhmh)/M, where M =

me + mh is the exciton total mass.
The exciton multiplet has its minimum energy Emin on a

circle in K space defined by K2
x + K2

y = K2
R , where for the

case that αe and αh have opposite signs, or if αe �= 0 and αh =
0, the minimum occurs on branch B−, and has its minimum at
KR with energy given by

EB
min = E0,0 + Ed + Et

2
− M(α−

ex)2

2h̄2 − (Ed − Et )2h̄2

8M(α−
ex)2

,

K2
R = (Mα−

ex)2

h̄4 − (Ed − Et )2

4(α−
ex)2

. (B9)

The dispersion of the Rashba exciton shown in Figs. 1(b) and
1(c) have indirect minima. The dispersion is calculated for
two set of parameters describing a single mono-layer HOIP.
Panel (b) shows the exciton dispersion calculated for nonzero
Rashba coefficient in the conduction band, αe �= 0. In panel
(c) the calculations are conducted for the both Rashba co-
efficients not equal to zero. In the last case αe and αh have
opposite signs, corresponding to cohelical spin textures in
the conduction and valence bands, as expected from DFT
calculations in 2D perovskites [16] and three-dimensional per-
ovskites [52]. This results in a level-order inversion between
the Z and D exciton as described above in Eq. (B4).
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