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Electrons (or holes) confined in two-dimensional (2D) semiconductor layers have served as model systems for
studying disorder and interaction effects for almost 50 years. In particular, strong disorder drives the metallic 2D
carriers into a strongly localized Anderson insulator (AI) at low densities whereas pristine 2D electrons in the
presence of no (or little) disorder should solidify into a Wigner crystal (WC) at very low carrier densities in order
to optimize their Coulomb potential energy. The ability to tune the carrier density continuously in a fixed sample
allows the 2D semiconductor system to go from a high-density metallic Fermi liquid to a low-density disorder
dominated Anderson insulator, or, if the sample is particularly clean, to a Coulomb interaction dominated
low-density quantum Wigner crystal. Since the disorder in 2D semiconductors is mostly Coulomb disorder
arising from random unintentional quenched charged impurities in the environment, the applicable physics is
complex as the carriers interact with each other as well as with the random charged impurities through the
same long-range Coulomb coupling. In addition, the Wigner crystallization occurs at such low carrier densities,
that in most situations the relevant carrier density is comparable to the background charged impurity density
even in ultraclean samples. By critically theoretically analyzing the experimental transport data in depth using
a realistic transport theory to calculate the low-temperature 2D resistivity as a function of carrier density in 11
different experimental samples covering nine different materials, we establish, utilizing the Ioffe-Regel-Mott
(IRM) criterion for strong localization, a direct connection between the critical localization density for the 2D
metal-insulator transition (MIT) and the sample mobility deep into the metallic state, which for particularly
clean samples could lead to a localization density low enough to make the transition appear to be a Wigner
crystallization. We believe that the insulating phase is always an effective Coulomb disorder-induced strongly
localized AI, which may have short-range WC-like correlations at very low carrier densities. Our theoretically
calculated disorder-driven critical MIT density agrees well with experimental findings in all 2D samples, even
for the ultraclean samples where the critical density approaches the WC transition density. In particular, the
extrapolated critical density for the 2D MIT seems to vanish when the high-density mobility goes to infinity,
indicating that transport probes a disorder-localized insulating ground state independent of how low the carrier
density might be.
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I. INTRODUCTION

Phases (e.g., crystals, fluids, ferromagnets, paramagnets,
superconductors, insulators, …..) and transitions among them
are the central themes of condensed matter physics. Typ-
ically, phase transitions are thermodynamically driven by
temperature at a critical temperature (Tc), but quantum phase
transitions at T = 0 are also possible, tuned by system param-
eters such as density, doping, electric field, magnetic field,
pressure, etc. An early quantum phase transition prediction
by Wigner is that an electron Fermi liquid (FL) interacting
via the long range Coulomb interaction crystallizes into a
quantum “Wigner crystal” (WC) at a sufficiently low elec-
tron density (n) at T = 0 [1]. Electrons in normal metals
remain a Fermi liquid (assuming no superconductivity) even
at T = 0 because of the strong zero-point energy associated
with the finite Fermi energy [2]. But with decreasing n, the
relative energy cost (i.e., the ratio of the Coulomb potential
energy to the kinetic energy EF) increases in an electron liquid
as rs, where rs ∼ n−1/d is the dimensionless Wigner-Seitz

radius (with n the electron density in d dimensions) defined
as the average electron separation measured in the effective
Bohr radius. The precise definition of rs for our 2D systems
of interest is rs = (πn)−1/2/(κ h̄2/me2), where κ and m are
respectively the background lattice dielectric constant and the
carrier effective mass. Typical rs values of interest for 2D MIT
being discussed in the current paper depend strongly on the
effective amount of disorder in the system and varies between
rs = 4 and 50 for the systems studied in the current paper,
with higher (lower) rs applying to lower (higher) disorder in
the system (see Table I for the details). Therefore, at some
low (high) n (rs), the electrons should solidify into a WC
to minimize its potential energy at some cost to the kinetic
energy. In 2D, the critical rs value (rc) for the FL-WC transi-
tion in clean systems at T = 0 has been calculated by many
groups through quantum Monte Carlo (QMC) simulations,
and although different simulations obtain somewhat different
results, rc ∼ 30 − 40 is accepted to be a reasonable theoretical
estimate [3–6]. The same liquid-crystal transition, of course,
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TABLE I. A meta-summary of our theoretical analysis of 2D MIT experimental data in 11 different systems as shown in the first column.
Anderson localization (Wigner crystallization) is implied by rWC (rAI) in column 2(3) being generically closer to (or smaller than) O(1).
Additional support for AI (WC) comes from ri (rc) in column 4(5) being generically of O(1) (being ∼36 or larger). The last column shows the
sample quality as measured by the maximum 2D mobility (for each sample) deep in the metallic phase n � nex. We note that the mobility is
measured at different temperatures and densities for different samples. See text for details on this meta-summary.

would also happen thermodynamically with the creation of a
classical WC with the lowering of temperature at a fixed low
density where the electrons are nondegenerate. Such a classi-
cal WC was indeed experimentally observed a long time ago
for two-dimensional (2D) nondegenerate electrons confined
on the surface of liquid He4 by the image force [7]. We do not
consider the thermodynamic finite-T transition at all in the
current paper. Our interest in the current paper is a theoretical
understanding of density-tuned low-T experimental transport
properties of 2D carriers localized in various semiconductor
layers [8,9], which are occasionally claimed to reflect an un-
derlying WC transition by virtue of the extreme low density
where the system manifests an effective metal-insulator tran-
sition from a higher-density metallic transport behavior to a
lower-density insulating transport behavior. Since dc transport
can only distinguish between conducting (finite conductivity
at T = 0) and insulating (zero conductivity at T = 0) phases,
our paper focuses on a critical analyses of a large set of ex-
perimental 2D transport publications reporting density-tuned
effective metal-to-insulator transition (2D MIT), conclud-
ing that such generically observed density-tuned 2D MIT is
more appropriately described as a disorder-induced Ander-
son (conductor-to-insulator) localization crossover rather than
a correlation-induced (electron liquid-to-electron solid) WC
transition.

Of course, both disorder and correlation effects are simul-
taneously present in any sample, but the important question
is whether a particular low-temperature density-tuned 2D
MIT experimental observation should be construed as the
manifestation of disorder-induced Anderson localization or
interaction-induced Wigner crystallization since the data
only reflect a sharp density-tuned crossover from a higher-
density (n > nc) metallic resistivity (i.e., resistivity being
T -independent at low enough T ) to a lower-density insulating
resistivity behavior (i.e., resistivity decreasing exponentially
with increasing T ) around a critical density nc. The observed

experimental behavior, although sharp, happening within a
narrow density range of nc, is consistent with a crossover
(rather than a phase transition) with the resistivity around
nc manifesting a complicated sample-dependent nonuniversal
temperature dependence, which cannot clearly be charac-
terized as conducting or insulating. However, the resistivity
behavior for n � (�)nc is unambiguously metallic (insulat-
ing) at low temperatures, thus allowing for an estimation of
the crossover critical density nc.

By using the Boltzmann transport theory taking into ac-
count carrier scattering by screened random charged impurity
scattering, we calculate the system resistivity in the metal-
lic phase (n > nc) as a function of carrier density, and then
obtain the (unknown) disorder parameters for each sample
by comparing with the experimental density-dependent re-
sistivity. Using these disorder fit parameters, we then obtain
the effective critical density for the 2D MIT crossover to
the strongly localized AI by using the well-known Ioffe-
Regel-Mott (IRM) [10,11] criterion for strong localization. A
comparison between the experimental and theoretical critical
density across all 2D materials shows excellent agreement,
strongly suggesting that the observed 2D MIT is essentially an
Anderson-like disorder-induced localization crossover rather
than a Wigner-like interaction-induced crystallization, even
for rather clean samples where the transition occurs at very
low carrier densities. To compare and contrast with the WC
transition, we follow the experimentalists, who typically claim
a WC transition whenever the experimental 2D MIT occurs
at a sufficiently low nc so that it is approximately consis-
tent with the corresponding theoretical estimates based on
microscopic Monte Carlo simulations [12–15] for the 2D
WC transition. We find that for most materials, the theo-
retical WC Monte Carlo predictions occur at much lower
densities than the experimentally observed nc, and even for
few samples where the experimental nc is consistent with the
Monte Carlo WC predictions, the experimental nc is actually
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in better agreement with the IRM prediction for the AI
transition.

We consider essentially the whole gamut of semiconduc-
tor systems experimentally reporting 2D MIT observations
in transport measurements: n-GaAs [16,17], p-GaAs [18,19],
Si 100 [20–23], Si 111 [22], p-Ge [24], and ZnO [25].
We have actually studied many more experimental sys-
tems/samples encompassing essentially all of the published
2D MIT measurements in semiconductor layers, but the the-
oretical analyses for the 11 samples presented in the current
paper cover the entire physics rather compellingly, and pre-
senting more results for additional samples would be an
overkill with no new physics whatsoever.

The key physics underlying our rather compelling find-
ing of all observed 2D MIT being consistent with the AI
crossover, including the ones putatively claimed to be the
WC transition, is the fact that the dominant disorder in semi-
conductor layers arises from random quenched unintentional
charged impurities in the environment, which interact with
the carriers through exactly the same long-range Coulomb
coupling as the direct electron-electron interaction does. Thus,
for a fixed charged impurity disorder in a given sample,
decreasing carrier density, going toward the MIT, leads in-
variably to enhanced impurity scattering along with increased
correlation effect associated with increasing rs(∼n−1/2). For
a fixed 2D charged impurity density nimp, a possible dimen-
sionless measure of disorder is nimp/n, which also increases
as n(rs) decreases (increases). In fact, for low enough n, the
dimensionless disorder (∼1/n) must always dominate over
the dimensionless interaction strength (∼1/n−1/2). Therefore,
the ultimate asymptotic fate of the low-density system is al-
ways an effective AI, and a WC phase can only at best be a
fragile and unstable phase at some intermediate density with
the high- and low-density phases always being a Fermi liquid
metal and a disorder-dominated AI. We do not think that it is
possible to identify such an unstable fragile intermediate WC
phase based just on dc transport measurements, since transport
by itself cannot distinguish between AI and WC, both phases
are localized (or pinned) insulators showing activated low-
temperature transport. Thus, the claims of the observation of
2D WC based only on very low-density dc transport measure-
ments are at best speculative since the AI is always the more
likely insulating phase at low carrier densities.

“Just so the readers are not misled, we emphasize that
this paper is not about the properties of the 2D low-density
effective metallic phase (n > nc), which have been extensively
studied in the literature because of the interesting temperature
and magnetic field dependence of the low-temperature metal-
lic resistivity [9,26–31]. There are numerous theoretical works
over the last 25 years providing possible explanations for the
properties of the 2D effective metallic phase, including studies
emphasizing the similarity between the temperature and the
magnetic field dependence of the resistivity in the metallic
phase (i.e., n > nc) [32,33]. Our paper is focused entirely on
discerning the nature of the density-tuned 2D MIT crossover
from an effectively metallic phase at higher density (n > nc),
where the resistivity increases with increasing temperature,
to an effectively insulating phase at lower density (n < nc),
where the resistivity deceases with increasing temperature,
and not on the detailed properties of the effective metal and

the effective insulator. In particular, we want to be able to ap-
proximately predict the values of nc for a large number of 2D
systems using screened Coulomb disorder as the underlying
mechanism for this metal to insulator crossover. While much
work has focused on the properties of the 2D effective metal,
very little work has gone into understanding what controls
the value of nc, which is what we study in the current paper,
establishing that nc for 2D MIT is quantitatively consistent
with the Anderson localization crossover in Coulomb disorder
landscape.”

The rest of this article is organized as follows. In Sec. II, we
provide and discuss, without any technical details, a summary
of our primary findings and conclusions in order to guide the
reader and as a theme for the rest of the article. In Sec. III
we provide the basic theory. In Sec. IV, we present our results
along with discussions. In Sec. V, we conclude emphasizing
our findings and suggesting future directions.

II. SUMMARY OF THE KEY RESULTS

In Fig. 1 we show three examples [16,19,21] of the typical
2D MIT data we theoretically analyze in the current paper.
Figures 1(a)–1(c), taken from the published experimental lit-
erature, depict respectively the 2D MIT in nGaAs, pGaAs, and
nSi 100 systems.

What is plotted in all three figures is the 2D resistivity as a
function of T for different values of the 2D carrier density
n. It is the low-T behavior, which is of interest to us for
understanding MIT, and it is clear that all three figures show
a transition at low T from a metal (high n) to an insula-
tor (low n), with the low-T resistivity changing its behavior
qualitatively. The experimental critical density nex, the key
parameter of interest to us, for the MIT is the value of n
separating the two behaviors at T = 0. Obviously, nex is not
known precisely, but this matters little for our analysis, and
we accept the best value of nex quoted in the experiment.
The other experimental quantity of interest is the resistivity
ρex for n = nex separating the metal from the insulator: the
system is a metal (insulator) for n > (<)nex and ρ < (>)ρex.
The distinction is not sharp close to n ∼ nex, and therefore
the precise values of both nex and ρex are approximate, in
particular, ρex could be uncertain by factors of 2–3 easily
(because the resistivity varies exponentially with T on the
insulating side), but not by orders of magnitude. Our theo-
retical task is to obtain nth and ρth, which are the theoretical
crossover density and resistivity for the MIT, and compare
them (particular the critical density) with the experimen-
tal data across all the samples involving different materials
where nex varies by orders of magnitude. Arguments claim-
ing WC transitions manifesting as 2D MIT are based almost
entirely on two premises: (1) the sample is very clean, as
reflected in very high mobility (i.e., very long scattering time)
deep in the metallic phase (n > nex) so the correlation ef-
fects are presumably much stronger than disorder effects; and
more importantly, (2) MIT happens at a very low nex, where
the corresponding rs value, rex = (nexπa2

B)−1/2, with aB being
the effective Bohr radius for the appropriate material, is suf-
ficiently large to be consistent with the estimated theoretical
critical value rc ∼ 35 for the WC transition as deduced by the
QMC numerical simulations. So far, every experiment, with
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FIG. 1. Measured resistivity as a function of temperature at different carrier densities for (a) nGaAs [16]; (b) pGaAs [19]; and (c) nSi
100 [21]. Each figure shows a typical MIT behavior of the temperature dependence of resistivity near the critical carrier density. See the
experimental references for the details.

the exception of one [shown in Fig. 1(b)] [19], where 2D
MIT happened for nex low enough for the effective rc ∼ 30
or above, has been claimed to be an FL-WC phase transition
driven by interaction effects overcoming the zero-point kinetic
energy leading to crystallization. The three such claims for the
WC observation based on the 2D MIT critical density being
low enough so that rex ∼ rc are the pGaAs system [18] of
Yoon et al., 2D ZnO system [25] of Falson et al., and very
recently, the 2D nAlAs [34] system, with rex ∼ 34, 30, 38
respectively in these three systems. (We mention that Ref. [34]
is too recent to be included in our analysis and is cited here
only for the sake of completeness although we see no reason
why our general conclusion would not apply to Ref. [34]
also.) Ironically, Manfra et al. [19], with its 2D MIT behav-
ior shown in Fig. 1(b), who reported the highest observed
rex ∼ 50(� rc ∼ 30) for any 2D MIT, did not claim a WC
transition, instead attributing the metal-to-insulator crossover
in their experiment in terms of a low-density disorder-driven
Anderson localization transition. This is in fact our conclusion
also in the current paper, where we posit the possibility that
all density-tuned 2D MIT observed in transport measurements
of 2D semiconductor layers (of the type presented in Fig. 1),
even the ones with rex > rc, are actually disorder-driven AI
transition (rather than correlation-driven WC transition) can-
not be ruled out.

To buttress this claim (i.e., 2D MIT is fundamentally a
disorder-driven Fermi liquid-metal to a localized-insulator
transition), we provide in Table I the meta-summary of our
theoretical analysis (presented in the next sections of this pa-
per), which leads to our conclusion that 2D MIT manifesting
in transport is dominated by disorder.

Each experimental system we analyze (three examples are
in Fig. 1, and there are eight more systems as shown in the
table with appropriate references) manifests 2D MIT at a
critical density nex, whereas nth is our theoretical prediction
(as explained in the next sections of the paper) for the criti-
cal density assuming the transition to be the disorder-driven
Anderson localization, with nWC being the QMC theoretical
prediction (assuming rc = 36) for the critical density to the
correlation-driven WC phase. The next to the last column, rex

c ,

shows the effective rs value for nex itself to be compared with
rc = 36 as predicted by QMC calculations to check whether
the experimental transition is occurring at or away from the
predicted WC transition closer rex

c is to 36 (particularly if it
exceeds 36) the more likely it is that the transition is to a
WC. Columns 2 and 3 provide the dimensionless numbers
for rWC = nex/nWC and rAI = nex/nth, which respectively in-
dicate whether the transition should be construed as a WC [if
rWC ∼ O(1)] or as an AI [if rAI ∼ O(1)]. Finally, the column
4 is a dimensionless ratio between two theoretical densities
(both explained and calculated in the next sections of the
paper), where nth1 is the calculated theoretical value for the
critical density for Anderson localization based on a minimal
single-parameter disorder model, where the disorder is en-
tirely characterized by a single random 2D charged impurity
density ni1 in the 2D layer. If this ratio ri = nth1/ni1 is of
O(1), the theoretical framework is consistent in the sense
that the experimental 2D MIT is driven mainly by increas-
ing effective disorder with decreasing carrier density rather
than by increasing effective interaction with decreasing carrier
density.

We emphasize that low-T dc transport measurements can
only distinguish between a metal and an insulator easily, ef-
ficiently, and accurately, but cannot by itself discern a WC
from an AI since both are expected to manifest strongly in-
sulating temperature dependence. In addition, a pure WC in
the presence of no disorder is in fact a supermetal as it would
collectively slide in an infinitesimal applied electric field. The
insulating behavior of a WC necessarily requires the presence
of disorder to pin the solid. Thus, disorder is the essential
key to the insulating behavior at low carrier density, either by
causing direct Anderson localization or by indirectly pinning
the WC.

The simplest theoretical idea, which is popular among the
experimentalists, is to compare the experimental MIT critical
density nex to the putative QMC WC critical density nWC,
and when the ratio rWC = nex/nWC < 1, the WC transition
is asserted. The column 2 in Table I provides rWC values
for the 11 systems we emphasize that this column does not
involve any theoretical work on our part. We simply take nex
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from the respective experiments and choose rc = 36 (from
QMC theories in the literature) to ascertain nWC. We note
that column 2 indicates what we already know: Only three
samples, two GaAs holes (rWC = 0.5 and 1.1) and one ZnO
electrons (rWC = 1.4), have rWC ∼ 1, and the sample with the
smallest value of rWC (= 0.5) does not claim the observation
of WC, instead analyzes its results in terms of disorder-driven
strong AI localization. All other eight samples have rWC � 1,
and cannot therefore have anything to do with a transition to
the WC at the MIT, and for the three samples with rWC ∼ 1
(or 0.5 for [19]), the WC scenario cannot necessarily be ruled
out.

Columns 3 and 4, both based on our theoretical results
obtained in the current paper, show that the 2D MIT in all
11 samples is consistent with Anderson localization. [This is
true, independent of the specific value of rWC given in column
2 whether it is of O(1) or O(� 1).] Column 2, a key finding
of our current detailed meta-analysis of all existing 2D MIT
experiments, shows that the experimentally extracted effective
crossover density nex for all samples is always consistent with
the 2D MIT being a crossover from an effective metal (for n >

nex) to an effective strongly localized AI (for n < nex). This
is clearly seen in the dimensionless ratio rAI = nex/nth being
of O(1) for all samples independent of whether nex is much
higher than or even lower than nWC, the QM-predicted WC
transition density. Here nth is our calculated sample-dependent
critical density for the AI transition for each sample, which
strongly depends on the details of each sample, varying from
nth ∼ 1011 cm−2 for dirty Si samples to nth ∼ 1010 cm−2 for
Ge, all the way to nth ∼ 109 cm−2 for the ultraclean n-GaAs
sample. In addition, column 4 shows that a single-disorder
parameter approximate theory always gives the dimensionless
disorder parameter ri = nth1/ni1 to be of O(1) for all samples,
where nth1 is the theoretically calculated AI crossover density
and ni1 is the necessary best fit value of the disorder parameter
ni1 needed to quantitatively describe the metallic transport
data (n > nex). Essentially, columns 2–4 together make a
compelling case for all observed 2D MIT being disorder-
dominated Anderson localization crossover with the observed
critical MIT density nex being very low in the cleanest samples
simply by virtue of the relevant impurity density being very
low. This very low nex in clean samples may accidentally be
comparable to the corresponding value of the QMC-predicted
WC transition density (as it is for three samples in Table I), but
no particular significance can be attached to this coincidence
since columns 3 and 4 strongly suggest that the MIT, even
in these clean samples, is an AI transition, as was already
concluded in Ref. [19], which manifests by far the largest
effective value of critical rs(>36) for the 2D MIT.

The column 5 in Table I provides the values of nex in
units of effective Bohr radii in each sample so that one can
see that the effective critical sample dependent rs value co-
incidentally lies close to the QMC WC value 36 for three
samples (two pGaAs and one nZnO). The last column shows
the measured high-density mobility deep in the metallic
phase (n � nex), providing a rough measure of the sample
quality or cleanliness. One interesting fact reflected in this
column 6 is that the mobility in the three samples where
rc (column 2) ∼ O(1) is by no means spectacularly high in
fact the highest mobility sample by far [16] ∼107 cm2/V s

has a modest rWC ∼ 7.7 whereas the nZnO sample, which has
a modest mobility ∼6×105 cm2/V s, has rWC = 1.4.

In the next two sections, we describe and discuss our theory
and results for 2D MIT underlying the meta-summary pre-
sented in Table I.

III. THEORY

The basic theory has two parts. In the first part, which
is laborious, we develop a theory for impurity scattering
low-T transport in 2D semiconductors, and vary the impu-
rity disorder parameter to obtain the best possible fits to the
density-dependent resistivity of each sample for the whole
range of density over which the experimental results are
available always staying in the metallic regime n > nex. In
order to avoid any unnecessary complications arising from
the temperature dependence of the resistivity, we consider
only the lowest-T experimental data at the base temperature
and compare it to our calculated T = 0 density-dependent
resistivity. The temperature-dependent 2D resistivity itself is
a subject of considerable interest and importance [27], but
it is beyond the scope of the current paper where we focus
on the MIT itself, which is an effective T = 0 crossover, so
our interest is on how the resistivity changes as a function
of carrier density at T = 0 in going from the metal (n > nex)
to the insulator (n < nex). We calculate the density-dependent
metallic resistivity ρ(n) at T = 0 as a function of disorder
parameters in the 2D sample by calculating the scattering time
or the relaxation time τ (k, n), given by

1

τ (k, n)
= 2π

h̄

∫
dzNi(z)

∑
k′

|uk−k′ (z)|2

× (1 − cos θk,k′ )δ(εk − εk′ ), (1)

where εk = h̄2k2/2m is the usual parabolic energy dispersion
with k = |k|, θk−k′ is the angle between the wavevector of the
incoming (k) and outgoing (k′) states, and Ni(z) denotes the
disorder defined by a random 3D charged impurity density
along the z direction, which is normal to the 2D layer along
the x-y plane located at z = 0. The scattering time has no
directional dependence due to the rotational symmetry of the
energy dispersion, and thus can be written as τ (k, n) instead
of τ (k, n). In Eq. (1), uk−k′ is the screened disorder potential
arising from the Coulomb interaction between the 2D carriers
and the random charged impurities in the environment, which
is described in more detail in Eq. (2). Equation (1) defines the
well-established and extremely successful time-tested mini-
mal metallic transport model for 2D [8,27]. Note that we
ignore all complications of weak localization in Eq. (1) which
is semiclassical in nature—this is simply because of the
fact that at high density (n > nc), Eq. (1) is quantitatively
valid since weak localization corrections are negligibly small
showing up as very weak logarithmic effects at very low
temperatures [35].

At T = 0, the only relevant scattering is at the Fermi sur-
face, q = kF and we define τ (q = kF) = τ . Note that Eq. (1)
simplifies for T = 0 since the delta function associated with
the energy conservation guarantees that the momentum trans-
fer insider the integral cannot exceed 2kF. The screened
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disorder potential uq(z) is given by

uq(z) = vq

ε(q)
e−qz = 2πe2

ε(q)κq
e−qz. (2)

Here vq is the 2D Coulomb coupling in momentum space,
vq = 2πe2/κq, with κ as the background lattice dielectric
constant (typically, κ ∼ 10, but it varies with the semiconduc-
tor). The exponential factor in Eq. (2) arises from the charged
impurities being quenched in the 3D environment around the
2D semiconductor layer where the electrons are confined in
the z = 0 plane. In Eq. (2), the dielectric (screening) function
introduces strong carrier density dependence in the effective
(screened) disorder since the 2D polarizability function 
(q)
depends on the 2D carriers themselves, given by


(q) = − m

π h̄2

⎡
⎢⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎥⎦. (3)

Here, m is the system-dependent carrier effective mass, and kF

is the density-dependent 2D Fermi momentum defined by

kF =
√

2πn

gv

(4)

A spin degeneracy of 2 is assumed in Eq. (4) and gv is the
system dependent valley degeneracy with gv = 1 (p-Ge, p-
and n-GaAs, and ZnO), 2 (n-Si 100), 6 (n-Si 111) for the
systems under consideration. If the spin degeneracy is lifted
(as in one sample we consider), the factor of 2 in Eq. (4)
is replaced by 4. Inserting the 2D polarizability function in
the dielectric screening function, we find that the screened
disorder potential in Eq. (1) is given by the following simple
formula:

uq(z) = 2πe2

κ (q + qTF)
e−qz. (5)

Here the Thomas-Fermi screening wavevector qTF suppress-
ing the long wavelength q = 0 divergence of the Coulomb
coupling is defined as

qTF = 2me2gv

κ h̄2 . (6)

Again, a spin degeneracy gs = 2 is assumed in Eq. (6) for
gs = 1 the factor of 2 becomes just unity in Eq. (6). We note
that the T = 0 transport theory simplifies with the screened
disorder u(q) given simply by Eq. (5) because the energy
conservation associated with the elastic impurity scattering
assures that all scattering wavevector q < 2kF. 2D screen-
ing is momentum-independent for q = 0 to 2kF by virtue of
the 2D density of states being a constant. All we need is
τ = τ (kF). We see, from the theory described above, that
the system and sample details enter transport through four
parameters: gs, gv , κ , m. Carrier density enters through kF.
All one needs now is the impurity distribution function Ni(z)
and then Eq. (1) directly gives the scattering time for the
resistivity. Unfortunately, we face a serious problem at this
point because, by definition, the details of charged impurity
disorder are unknown since the charged impurities are unin-
tentional, and little independent information is available about

them. In fact, transport data are invariably the best source of
information for the impurity disorder since the experimental
density-dependent resistivity can be compared with the trans-
port theory results to derive the impurity distribution. This is
precisely what we do for each sample.

Since the 3D disorder distribution Ni(z) is, in principle,
defined by an infinite number of parameters, an extensively
used convenient model is a simple 2-parameter [ni and d
in Eq. (7) below] effective disorder model, where the full
impurity distribution is replaced by

Ni(z) = niδ(z − d ), (7)

where a 2D charged impurity layer with impurity density ni is
placed at a distance d from the 2D layer. The model simplifies
even further into a 1-parameter model if d = 0 is used with
the charged impurities of 2D density ni1 placed in the same
plane (z = 0) as the 2D layer itself,

Ni(z) = ni1δ(z). (8)

We utilize both of these 2- and 1-parameter models in our
theory, tuning the disorder parameters to produce the best
overall agreement between the theory and the experimental
transport data to extract ni and d . We emphasize that we do
not allow ni and d to be carrier density dependent as one
may typically do in device simulations. Our extracted disorder
parameters vary from sample to sample (and cleaner samples
with higher mobility typically have smaller/larger ni/d), but
for a given sample, the disorder parameters are fixed and do
not vary, so that all the variations in the resistivity as a function
of carrier density in a given sample arise only from the intrin-
sic effects of the carrier density. The single-parameter disorder
model obviously provides poor fits to the data because of
its physical inapplicability to 2D semiconductors where the
dominant disorder is never in the 2D layer itself. Once
the scattering time is calculated, the resistivity is given by the
standard T = 0 Drude formula,

ρ = m

neτ 2
. (9)

We note that n and m enter again in the calculation of the
resistivity [in addition to the implicit dependence of τ itself
on n and m through Eqs. (1)–(7)]. Thus, even within our
minimal transport model, the resistivity depends on seven
independent parameters n, m, gs, gv , κ , ni, d in a complex
manner, and such a high-dimensional parameter dependence
cannot be described by any simplistic considerations.

The first part of our theory described above involves cal-
culating ρ(n) for each sample as a function of the disorder
parameters ni and d , and then obtaining the recursive best fit
of the experimental resistivity at the lowest T to the theoret-
ical results over the whole metallic density regime (n > nex).
These recursive fits provide two disorder parameters ni and
d (or just one parameter ni1) as described in Eqs. (7), (8) for
2-parameter (1-parameter) disorder models. Although the 1-
parameter fit is by definition the minimal mathematical model
for disorder, the 2-parameter fit is the minimal physical model
describing the experimental data much better. We do, how-
ever, carry out extensive fitting using the 1-parameter model
also because the 1-parameter model enables a direct consistent
microscopic distinction between the strong- or weak- disorder
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regime based on whether the extracted impurity density pa-
rameter ni1 is larger or smaller than the relevant carrier density
n itself.

Once the disorder parameters are extracted by our recur-
sive fits of the experimental data, we calculate the theoretical
critical density nIRM (which we refer to as nth, implying that
it is our best theoretical estimate for the critical density).
This of course explicitly assumes the MIT to be an Anderson
localization crossover, with the system being a metal (Ander-
son insulator) for n > (<)nIRM, by using the Ioffe-Regel-Mott
criterion,

EFτ = h̄. (10)

Here τ is the scattering time of Eq. (1), which depends on
the system parameters (e.g., m, gs, gv , κ), the carrier density
n, and the disorder parameters (e.g., ni/d or ni1). The Fermi
energy EF is given by

EF = h̄2k2
F

2m
= h̄2

2m

4πn

gsgv

. (11)

Writing � = h̄/τ , Eq. (10) is sometimes rewritten as

EF = � (12)

where � is the incoherent (level) broadening arising from
impurity scattering, and Eq. (12) or (10) simply implies that
coherent or metallic transport carried by well-defined quasi-
particles becomes impossible once the density (disorder) is
low (high) enough to satisfy Eq. (10)/(12). This condition is
precisely equivalent to the better-known IRM criterion written
as kFl = 1, where l is the mean free path given by l = vFτ

with vF = h̄kF/m, the Fermi velocity.
We note that one immediate theoretical consequence [ob-

tained by combining Eqs. (9)–(11)] of the IRM criterion is that
the theoretical 2D resistivity at the MIT crossover is given by
the simple formula

ρIRM = 2

gsgv

h

e2
. (13)

Although one should not take this crossover resistivity as a
sharply defined critical resistivity, the 2D AI transition should
generically show a crossover resistivity ∼h/e2 ∼ 26 k ohms
for gs = 2 and gv = 1 with the metallic (insulating) phase typ-
ically having resistivity below (above) 26 k ohms provided the
MIT is an AI transition. No such special crossover resistivity
value should, however, characterize a WC-based 2D MIT.

Using the best-fit disorder parameters obtained (in the first
part of our theoretical work) for each sample by analyzing the
experimental data in the metallic (n > nex) regime, we then
solve the integral equation defined by the IRM criterion in
Eq. (10) for the Anderson localization crossover (critical) the-
oretical density nIRM. We emphasize that our calculated nIRM

provides the theoretical estimate for the 2D MIT transition
nex explicitly assuming the MIT to be Anderson localization,
with no consideration of Wigner localization whatsoever. The
theory uses the IRM criterion for the AI crossover and the
underlying physics driving the MIT is exclusively random dis-
order in the environment (and not electron correlation effects,
which are responsible for the WC transition from a FL metal
to a WC insulator). We discuss our results for all 11 samples
in the next section.

IV. RESULTS

We show in Figs. 2–4 our density-dependent resistivity
results in 11 different panels (three panels in Fig. 2 for 2D
GaAs, six panels in Fig. 3 for Si samples, and two panels
in Fig. 4 for Ge and ZnO), combining the results of both
parts of our theory (fitting our 2-parameter transport theory
to the experimental metallic resistivity and then using the
extracted disorder parameters to obtain the critical density for
2D MIT).

Before discussing our 2D MIT results, it is important to
emphasize, in the context of the 11 sets of results presented in
Figs. 2–4, that our theory obviously does not do an equally
good job in quantitatively describing all the data in all the
samples; in fact, for some samples, [e.g., ZnO in Fig. 4(b)]
the theory is simply poor. This is a combined reflection of
two completely different problems: (1) our 2-parameter disor-
der model including only random charged impurity scattering
could be a very poor approximation for specific samples;
(2) the theory itself is approximate as it is based explicitly
on the Boltzmann-RPA transport theory within the relaxation
time approximation, which could break down for specific
samples, particularly at low carrier densities. Unfortunately,
neither problem allows for any systematic resolution, and
it is essentially impossible to go beyond the approximation
schemes used in the current paper. For the first problem, the
background disorder details are unknown in the experimental
samples, and forcing agreement with the experimental data by
simply introducing a large number of disorder parameters in
the theory is a meaningless empirical data-fitting procedure,
which would shed little light on the underlying physics. For
the second problem, we know of no systematic quantitatively
predictive transport theory in strongly disordered and strongly
interacting electron systems, and the theory used in the current
paper is essentially exact in the high-density metallic regime
(except for weak localization corrections, which are not of
much significance here). Indeed, if we restrict the theory deep
into the metallic phase at very high carrier densities, we can
obtain essentially exact agreement between theory and exper-
iments (except for a few samples with possible pathological
disorder distributions), but such a high-density description
does not extrapolate well to the low carrier densities, and
hence the effective disorder parameters obtained from only
a high-density fit to the data in general does not do as good a
job of describing the experimental 2D MIT the whole-density-
range approximate fits used in Figs. 2–4. The RPA-Boltzmann
transport theory is an effective mean field kinetic theory,
which provides an excellent qualitative and semiquantitative
description of the metallic transport properties as long as the
system can be described in terms of quasiparticles scattering
off impurities, i.e., as long as it is in an effective metallic phase
(n > nIRM). The theory becomes progressively less accurate
quantitatively as the 2D MIT is approached from the metallic
side. Obviously, the theory fails completely for n < nIRM, by
definition, but should remain valid qualitatively all the way
down to nIRM where the quasiparticle kinetic description pre-
sumably no longer applies as the system has lost all coherence
with no Fermi surface in the momentum space. Until the MIT
occurs, however, no part of the RPA-Boltzmann transport the-
ory manifests any pathology except for the carrier mean free
path smoothly and continuously decreasing in magnitude and
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FIG. 2. The experimental data and our best fit theory along with the theoretically estimated disorder parameters and 2D MIT density
using the IRM criterion for (a) n-GaAs [17]; (b) p-GaAs [18]; (c) p-GaAs [19]. Red (blue) up (down) triangles are the experimental data for
the resistivity ρ and the incoherent broadening � respectively, and the solid lines are the best theoretical recursive fits in the whole metallic
density regime. The red dashed lines are the Fermi energy EF. The IRM condition � = EF defines the 2D MIT crossover point. Both carrier
density n and the corresponding dimensionless interaction parameter rs are shown in each panel. Units for ni/nIRM and d are 1010 cm−2 and
nm respectively.

passing through 1/kF at the crossover. In fact, the theory itself
remains perfectly mathematically consistent independent of
how large (small) the broadening (mean free path) becomes
except the physical basis of its foundation on the existence
of well-defined quasiparticles is no longer valid for � > EF.
We emphasize, however, that the theory is sometimes only
in qualitative (or at best semiquantitative) agreement with the
experimental data (as for Fig. 3 and a few other places), and
this is expected of a single parameter first principles calcula-
tion. The important point is that even for these quantitatively
inaccurate situations, it seems clear that the AI description of

the 2D MIT is far superior to the WC description, which is our
central qualitative claim.

We emphasize that although it may not be obvious from
a visual inspection of the results in Figs. 2–4, our fits of the
2-parameter theory to the experimental resistivity is indeed a
recursive least squares fit over the whole available metallic
density regime, leading to the estimates for the two disorder
parameters ni and d . We have also carried out a 1-parameter fit
theory (taking d = 0), which is generically far worse than the
2-parameter fit results shown in Figs. 2–4. The 1-parameter
fit produces a single disorder parameter ni1, which should

FIG. 3. Same as in Fig. 2 for 6 different 2D Si samples: (a) Ref. [20]; (b) Ref. [21]; (c) Ref. [21]; (d) Ref. [22]; (e) Ref. [23]; and
(f) Ref. [36].
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FIG. 4. Same as in Figs. 2 and 3 for (a) 2D p-Ge [24] and (b) n-
ZnO [25].

be construed as the impurity density right in 2D electron
layer itself, and then use of this ni1 enables a cruder estimate
for the 2D MIT crossover density, which we call n1th. We
thus have two disorder models and two estimates for the 2D
MIT crossover density: 2-parameter model (ni and d) and
1-parameter model (n1i) with the MIT crossover density nIRM

and n1th, respectively. These calculated theoretical crossover

densities for the AI transition (as defined by the IRM criterion)
are to be compared with the experimentally measured 2D MIT
crossover density ∼nex. In Table II, we provide a summary of
our results for all 11 samples along with the relevant experi-
mental results as well as several other important quantities for
a detailed comparison between theory and experiment as well
for coming to an informed conclusion about the nature of the
2D MIT phenomenon (i.e., AI or WC).

It is clear, from the extensive numbers and comparisons
provided in Table II, that all 2D MIT experimental observa-
tions are consistent with disorder-driven AI crossover, and
most are inconsistent with correlation-driven WC crossover.
Since the experimental signatures and characteristics of the
2D MIT phenomenology are essentially identical in all the 11
representative samples we study, we conclude that 2D MIT is
a primarily a disorder-driven Anderson localization crossover
rather than an interaction-driven Wigner crystallization, even
if in a few particularly clean samples, the crossover MIT
critical density just happens to be low enough coinciden-
tally to be consistent with the QMC-predicted WC transition
density.

TABLE II. Theoretical and experimental numbers of relevance to 2D MIT in eleven 2D samples (columns 1 and 2); column 3 shows the
experimental mobility (in units of 105 cm2/V s) deep into the metallic phase indicating sample quality; column 4 gives the experimental MIT
density to be compared with the theoretically derived disorder-driven critical density for the AI transition in column 5 for the 2-parameter
disorder model; column 6 gives the QMC-derived theoretical correlation-driven transition density to a WC; column 7 provides the theoretical
percolation density for the classical percolation MIT in the 2-parameter disorder model (for the 1-parameter model, the percolation density is
the same as the impurity density itself); columns 8 and 9 provide respectively the experimental and theoretical critical resistance at the MIT;
columns 10 and 11 give the best-fit disorder parameters for the 2-parameter disorder model; columns 12 and 13 give respectively the calculated
MIT crossover density and the impurity density for the 1-parameter model; column 14 gives the effective 3D impurity density, n3 = ni/d in
the 2-parameter model; column 15 gives the effective interaction rs parameter value for the experimental critical density (to be compared with
the corresponding QMC prediction for 2D WC transition at rs = 36); column 16 gives the ratio of ni1 (column 12) to nth1 (column 13) in the
1-parameter model. All densities are in units of 1010 cm−2 and all resistance in units of 104 ohms.
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We now elaborate on the salient features of Table II (and
by extension, of Figs. 2–4) in the context of the underlying
physics controlling 2D MIT.

(1) The most important finding in Table II is that nex/nth is
of O(1) essentially for all the samples with the exceptions of
two samples [20,24], where this ratio is of O(3). But this dis-
crepancy arises in these two samples because the experiments
were done here at the relatively high T ∼ 1 K rather than in a
dilution fridge with T < 100 mK as in all other samples. The
experimental MIT critical density nex decreases with decreas-
ing T because of the T dependence of the metallic resistivity
at lower densities (this is obvious in Fig. 1), and we believe
that the true T = 0 nex values in these two samples are much
smaller than the ones reported experimentally, which would
imply that nex/nth is actually of O(1) in these two cases too.
The consistent agreement between our theoretically calculated
AI transition density and the experimentally observed MIT
critical density strongly argues for the scenario that the 2D
MIT is a generic disorder-induced AI transition, independent
of how low nex might be.

(2) In looking for consistency with the WC scenario for
2D MIT, we follow the main argument of the experimental-
ists where any consistency between nex and nwc (the putative
QMC predicted critical density in the relevant sample for the
Fermi liquid to the WC transition, assuming it happens at
rs ∼ 36) is taken to be evidence supporting the WC transi-
tion. In Table II, nex � nwc for all, except for three samples:
nex/nwc ∼ 0.64 (p-GaAs 99 [19]); 1.3 (p-GaAs 82 [20]); 1.6
(ZnO [25]). For the other eight systems, nex/nwc � 1, and
therefore the WC scenario simply is not relevant at all. Of
the three samples where nex/nwc ∼ O(1), only one, pGaAs 99,
has nex < nwc, and this particular work concluded that the 2D
MIT observed therein is a strong localization transition, not
Wigner crystallization. One can therefore question the claims
in Refs. [18,25] that the 2D MIT reported in these works are
decisively the observation of Wigner crystallization. The cur-
rent paper indicates that the experiments are more consistently
interpreted as low-density crossovers to the AI phase because
of low disorder in these clean systems. The fact that the crit-
ical MIT density is consistent with the Wigner crystallization
theoretical prediction may simply be a coincidence in these
particularly clean samples.

(3) The 1-parameter disorder model, while being quanti-
tatively not very accurate, provides important insight into the
physics of 2D MIT. First, we note that for most samples the
1-parameter model gives an nIRM = nth1, which is comparable
to the result nth for nIRM obtained in the 2-parameter disorder
model, i.e., nth1/nth ∼ O(1). But the significant point about
the 1-parameter disorder model is that the extracted impurity
parameter ni1 is comparable to the calculated MIT critical
density nth1 for essentially all the samples, nth1/ni1 ∼ O(1–3).
This means that the 2D MIT happens when the sample carrier
density roughly equals the putative sample impurity density,
and not when the carrier density roughly equals the putative
QCM WC theoretical critical density (except for some sheer
coincidences).

(4) We note as a minor point of interest that the approx-
imate 2D percolation density nper ∼ 0.1

√
ni/d [37–40] in

Table II obtained on the basis of our 2-parameter extracted
impurity parameters is always smaller than the experimental

critical density nex and also the calculated IRM critical density
nth. This implies that, although the low-density 2D system
would invariably undergo a classical percolation transition
from a metal to an insulating disordered nonmetal due to
the failure of screening in random charged impurity envi-
ronment, the percolation transition is effectively preempted
by the strong Anderson localization crossover defined by the
IRM criterion where the coherent quasiparticle transport is
no longer possible, thus leading to an effective Anderson
insulator [41]. The idea that the 2D MIT is consistent with
a quantum Anderson localization crossover defined by the
IRM criterion, even in the percolating long-range disorder
environment of random Coulomb disorder, is also directly
supported by the values of the approximate experimental “crit-
ical” crossover resistivity at the transition, ρex, in Table II,
which is always typically of O(h/e2) ∼26 k ohms (within
a factor of 2) in Table II, except for the two samples where
the transport measurements are carried out at very high tem-
peratures (and eventual low-T measurements are likely to
change the corresponding ρex closer to 26 k ohms). This is, of
course, consistent with the IRM criterion where ρth = ρIRM ∼
26 k ohms. For a WC transition, it is a challenge to explain
an experimental ρex ∼ 26 k ohms, which appears generically
almost in all 2D MIT measurements.

(5) The fact that ri is of O(1), and rc is typically <36
in Table II again support the AI interpretation of 2D MIT
phenomenon.

(6) Finally, the four distinct measures of the disorder
strength in Table II, μ, nper, ni1, n3, all tend to indicate that
by far the cleanest system studied in the 2D MIT experimen-
tal literature is the n-GaAs 94 [17] sample, which, however,
manifests 2D MIT at a rather small effective rs value of 13,
far below the QMC prediction of rc ∼ 36, thus questioning
the validity of equating 2D MIT in clean systems necessar-
ily as a WC transition since the cleanest system seems to
be undergoing an IRM-controlled AI transition. In Table III,
we provide an ordered list of all 11 samples showing their
cleanliness ranking from the top to the bottom, which shows
that the 2D MIT is not likely a WC transition since the two
cleanest samples [17,19] do not manifest the WC transition at
all, instead manifesting the AI transition.

Table III reinforces our contention that the experimental
claims of the WC manifestations in 2D samples arising from
the sample cleanliness (i.e., relatively small amount of disor-
der leading to ultrahigh mobility) does not hold up to a factual
scrutiny. By far the cleanest two samples, nGaAs [17] and
pGaAs 99 [19] in our list (Table III), manifest disorder-driven
2D MIT leading to the AI phase and Wigner crystallization.
What Table III suggests is that the experimental critical den-
sity for 2D MIT varies primarily with the sample disorder,
becoming smaller with decreasing sample disorder, and it
is possible for the observed critical density, for some clean
samples, purely fortuitously to be low enough to be consistent
with the corresponding QMC-predicted 2D WC transition
density. To make this disorder dependence explicit, we show
in Fig. 5 both the experimental and the theoretical critical
density, for the 11 samples studied in the current paper, plotted
as a function of the (high-density) disorder scattering rate
and the mobility (deep in the metallic state). The abscissa in
Fig. 5 is simply an approximate quantitative measure of the
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TABLE III. An ordered list of all the samples from the “cleanest” (top) to the “dirtiest” (bottom) along with the MIT crossover densities.

strength of the quenched Coulomb disorder in the system. In
spite of some (expected) fluctuations in the plots, the average
qualitative trend is clear: The critical 2D MIT density de-
creases monotonically with decreasing (increasing) scattering
rate (mobility) with nothing special happening around the
theoretical WC critical density. In fact, the 2D MIT critical
density varies as a function of the scattering rate according to
an approximate power law

nc ∼
(

1

τ

)p

(14)

where p ∼ 0.7 over a broad range (∼3 orders of magnitude) of
the scattering rate. Such a dependence of the critical density
on the sample mobility in the context of 2D MIT was first
noted empirically in a little-known paper a long time ago [42],
and is consistent with the Ioffe-Regel-Mott criterion under the
strong screening approximation at high density [27,41].

We point out that the relationship between mobility μ and
scattering time τ is the following identity:

μ = eτ

m
(15)

FIG. 5. Shows the experimental (red) and theoretical (blue) plots
for the critical 2D MIT density as a function of scattering rate
(left panel) or mobility (right panel) deep in the metallic phase.
The dashed straight lines are best fits with the exponent p = 0.71
(experiment); 0.67 (theory). Note that the critical 2D MIT density
decreases monotonically with decreasing (increasing) scattering rate
(mobility) with nothing special happening around the theoretical WC
critical density.

and the effective mass m varies quite a bit (from 0.07 for
nGaAs to 0.4 for pGaAs) among the 11 samples considered
in the current paper.

A reasonable empirical question in this context is about the
fate of 2D MIT in the limit of vanishing disorder: Does 2D
MIT survive zero disorder? We can only address this question
by extrapolating from the current experimental results (as pre-
sented in Table II or Fig. 5, for example), and whether such an
extrapolation to zero disorder is meaningful or not is beyond
the scope of the current paper. In Fig. 6, we show a recursive
least squares best fit extrapolation of the 2D MIT critical
density to vanishing disorder (i.e., 1/τ going to zero, where
τ is the high-density scattering time as measured deep in the
metallic phase), finding that the extrapolated nc also vanishes
(within the numerical accuracy) in the limit of a divergent
scattering time! We find from our numerical extrapolation of
the existing 2D MIT experimental data,

nc = A

(
1

τ

)p

+ B (16)

FIG. 6. Shows the extrapolation of the experimental critical
density to vanishing disorder with the extrapolated nc(1/τ = 0) ∼
106 cm−2, which implies that the 2D MIT is an AI crossover from an
effective metal to a strongly localized Anderson insulator.
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that B ∼ 106 cm−2, strongly suggesting (based only on the
extrapolation of the experimental 2D MIT data) that nc in-
deed vanished in the limit of zero disorder. This is of course
completely consistent with the 2D MIT being an AI crossover
from an effective metal to a strongly localized Anderson insu-
lator as we claim in the current paper.

We mention that once weak localization, which we ig-
nore in our paper because it is unobservably small in the
experimental temperatures and densities in 2D semiconductor
systems, is included in the theory, the 2D system is strictly
speaking always an insulator for all densities in the presence
of any finite disorder, but with essentially exponentially long
localization length, which therefore has no experimental or
physical significance except perhaps at extremely low tem-
peratures [35]. Strictly speaking, the 2D MIT crossover being
discussed in this paper is from a weakly localized metal for
n < nc to a strongly localized insulator for n > nc.

V. CONCLUSIONS

We present our detailed RPA-Boltzmann theory based
analysis of low-temperature density-dependent resistivity in
a large number of representative 2D semiconductor layers,
finding that the extensively observed density-tuned effective
2D metal-insulator transition is in all likelihood a universal
disorder-driven crossover from a high-density effective 2D
metal to a low-density strongly localized Anderson insulator.
In particular, we find that the claimed interaction-driven tran-
sition from a metal to a Wigner crystal based on the very low
crossover density for the 2D MIT in some ultraclean samples
is inconsistent with the quantitative details of the MIT, and
is more likely a transition to the Anderson insulator phase
in low-disorder samples, which automatically leads to very
low transition density. Our calculated critical density, assum-
ing the MIT to be a disorder-driven crossover to a strongly
localized Anderson insulator phase characterized by the Ioffe-
Regel-Mott criterion, agrees with the experimentally reported
transition density in essentially all the samples (11 overall),
including the samples where the Wigner crystallization has
been claimed. In addition, the observed “critical” resistance
at the 2D MIT for all 11 samples is approximately consistent
with the Ioffe-Regel-Mott criterion, and hence an Anderson
localization transition, again ruling out the dominance of
Wigner crystallization in any sample, including the ones man-
ifesting MIT at very low carrier densities. We emphasize that
our paper is not a theory for the localized Wigner glass like
low-density localized phase, we only focus on the effective
metal-to-insulator crossover showing that the crossover itself
is consistent with a disorder induced Anderson localization
transition and not a transition to a pristine Wigner crystal as
often claimed in the experimental literature. Our current the-
ory is also not a theory for the effective high-density metallic
phase, which is essentially a disordered Fermi liquid as has
been already studied extensively in the literature.

Our paper points to the following appealing physical
picture underlying 2D MIT: The dominant disorder in 2D
semiconductor layers is Coulomb disorder, arising from
quenched random charged impurities in the environment (our
theory includes only Coulomb disorder). At high carrier den-
sity, the disorder is strongly screened, leading to weak carrier

scattering of well-defined quasiparticles and consequently,
effective metallic transport. With decreasing carrier density
and associated weakened screening, the effective disorder
becomes stronger although the bare disorder in a sample is
by definition fixed (e.g., the spatial distribution of random
charged impurities) and is independent of the carrier density.
This effective carrier density dependent screened Coulomb
disorder eventually becomes strong enough at low enough
carrier density to drive a higher-density effective metal to an
effective strongly localized lower-density Anderson insulator,
which is sharp enough to look like a transition (although the
MIT is in actuality a crossover from a weakly localized ef-
fective metal to a strongly localized Anderson insulator). The
point, which has not been emphasized before in the literature,
is that in a given sample, no matter how low the charged impu-
rity density might be (i.e., no matter how ultraclean the sample
might be), the decreasing carrier density will eventually lead
to strong effective disorder when the carrier density goes be-
low the impurity density. Thus, the eventual low-density phase
of the 2D semiconductor is always a strongly localized An-
derson insulator! Of course, with decreasing carrier density,
the dimensionless interaction coupling rs ∼ n−1/2 increases,
but the effective Coulomb disorder increases as ni/n ∼ n−1,
where ni is the effective charged impurity density. Thus, even-
tually, when rs is large enough at low enough carrier density,
Coulomb disorder must prevail over electron-electron inter-
action. The QMC estimate for the pristine 2D WC transition
at rs ∼ 36 is simply irrelevant, unless the system is so clean
that the condition n � ni applies at the WC transition point.
This condition is NEVER satisfied in any experimental sample
as is obvious from Table II. We therefore contend that all
reported 2D MIT are Anderson localization crossovers from
a high-density effective metal to a low-density strongly local-
ized insulator.

At low densities, correlation effects are obviously strong
(along with disorder effects), and our theory becomes progres-
sively poor quantitatively, but the theory remains internally
consistent as long as quasiparticles are well defined. Thus,
the theory, while not being quantitatively very accurate, re-
mains applicable all the way to the MIT (defined by the
IRM criterion in our theory) from the metallic side. One
should think of the low-density AI phase (for n < nIRM) as
a strongly correlated and strongly localized insulator, which
is a quantum electron glass. The WC correlations may very
well exist in this system for n < nWC, but such correlations
are necessarily short-ranged, and the system is closer to an
AI than a WC [43]. This physical “glassy” picture of low-
density disorder-dominated short-range correlated crystallites
may be akin to the microemulsion phase hypothesized a long
time ago [44], and the nonperturbative importance of both
disorder and interaction makes this large rs and strong dis-
order (n ∼ ni) situation theoretically intractable. The great
advantage of our RPA-Boltzmann transport theory is that it
makes quantitative predictions for realistic systems taking
into account the key physics of density-dependent screened
disorder as the underlying mechanism for 2D MIT, which
simply cannot be and has not been done for any other the-
oretical models all of which must assume nc to be a given
experimental parameter. The reasonable agreement between
our theory and experiment for many different 2D systems, as
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described in great depth in the current paper, argue in favor
of the approximate validity of our theory. Doing a reliable
and well-controlled theory for such a disordered correlated
localized insulator is essentially impossible, and our theory
provides a reasonable methodology for extracting the critical
density for 2D MIT. We emphasize that the way to confirm the
WC existence is not through transport measurements (which
is incapable of distinguishing between AI and WC anyway),
but by decisively establishing a property, which exists only in
a solid/crystal, and not in a liquid. This could, for example, be
the direct observation of the WC lattice structure (or at least, a
characteristic wavevector corresponding to the lattice period)
and/or observing the phonon modes of the WC. Establishing
these characteristic WC properties necessitate going beyond
transport measurements. There are claims of WC observations
in 2D transition metal dichalcogenides, where the physics is
very different, and our theory does not apply there [45,46]
although the possibility of disorder-induced AI transition in
dichalcogenides has also been considered in the literature
[47,48].

Finally, we note that strictly speaking 2D metals do not
exist by virtue of the scaling theory of localization [49]. This
is, however, irrelevant for the 2D MIT considerations since the
metal here is an effective metal as appearing experimentally.

At T = 0 in the thermodynamic limit, the 2D system is always
a strongly localized AI even in the presence of infinitesimal
disorder. But our interest is a finite (but, low)-T effective
metal, crossing over from a weakly localized insulator to a
strongly localized Anderson insulator as the carrier density
(effective disorder) decreases (increases). This crossover is
very sharp for Coulomb disorder because of the rapid failure
of screening at n ∼ nIRM. Just as the nonexistence of a true
quantum critical 2D localization is irrelevant for the 2D MIT
crossover phenomenology, the fact that there cannot be any
2D WC at any finite T is also irrelevant since all that matters
for an effective WC is the existence of some spatial order. The
physics discussed in this paper is strictly speaking crossover
physics as observed experimentally and not quantum critical
physics, which does not exist here strictly theoretically.

Note added. A recent experiment [34] claims Wigner
crystallization in 2D nAlAs, and, although we believe our
conclusion applies to this paper, we cannot be definitive since
we have not analyzed this system using our transport theory.
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