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We study the collective excitation modes of the Chern insulator states in magic-angle twisted bilayer graphene
aligned with hexagonal boron nitride (TBG/BN) at odd integer fillings (ν) of the flat bands. For the 1×1
commensurate double moiré superlattices in TBG/BN at three twist angles (θ ′) between BN and graphene,
self-consistent Hartree-Fock (HF) calculations show that the electron-electron interaction and the broken C2z

symmetry lead to the Chern-insulator ground states with valley-spin flavor polarized HF bands at odd ν. In the
active-band approximation, the HF bands in the same flavor of TBG/BN are much more separated than those of
the pristine TBG with TBG/BN having a larger intraflavor band gap so that the energies of the lowest intraflavor
exciton modes of TBG/BN computed within the time-dependent HF method are much higher than those of
TBG and reach about 20 meV and the exciton wave functions of TBG/BN become less localized than those of
TBG. The interflavor valley-wave modes in TBG/BN have excitation energies higher than 2.5 meV, which is
also much larger than that of TBG, while the spin-wave modes all have zero excitation gap. In contrast to TBG
with particle-hole symmetric excitation modes for positive and negative ν, the excitation spectrums and gaps of
TBG/BN at positive ν are rather different from those at negative ν. The quantitative behavior of the excitation
spectrum of TBG/BN also varies with θ ′. Full HF calculations demonstrate that more HF bands besides the
two central bands can have rather large contributions from the single-particle flat-band states; then the lowest
exciton modes that determine the optical properties of the Chern insulator states in TBG/BN are generally the
ones between the remote and flatlike bands, while the valley-wave modes have similar energies as those in the
active-band approximation.
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I. INTRODUCTION

Flat bands with vanishing bandwidths and well separated
from other remote bands occur around the Fermi level in
magic-angle twisted bilayer graphene (TBG) [1–7] and the
experimental realization of such TBG intrigued great interest
in exploring various electronic, transport, and optical proper-
ties associated with the flat bands [8–30]. The emergence of
correlated insulator states at integer filling of the flat bands
in TBG and the superconductivity in the vicinity of these
insulating states have been observed and theoretically com-
prehended [8–22,24,31–55]. There are eight single-particle
flat bands taking into account the spin and valley degrees in
TBG; then the electron filling of the flat bands per moiré
supercell relative to charge neutrality point (CNP) is in the
range of −4 to 4. At odd ν, the ground states are Chern
insulators with spontaneously broken symmetry in the valley
and spin degrees due to the electron-electron (e-e) interaction
[39–41,43,46–48,50,51,55]. The alignment of TBG with BN
breaks the C2z symmetry in the relaxed atomic structure and
the single-particle Hamiltonian [51,56–61] and thus enhances
the energy gaps of such Chern insulator states [39,43,46,51].

*xqlin@zjut.edu.cn

In particular, the quantum anomalous Hall effect associated
with their finite Chern numbers has been experimentally re-
alized in TBG aligned with BN (TBG/BN) [62,63]. For such
insulating correlated states, low-energy collective excitation
states may appear within the gap due to the Coulomb inter-
action between the particle and hole states. In experiments,
the observed Pomeranchuk effect from the measured electron
compressibility in TBG at extremely low temperatures implies
the presence of the low-energy collective excitations for the
correlated insulator states [24]. The optical excitations in the
infrared regime have also been observed in twisted graphene
systems around the integer fillings of the flat bands [23,25,26].
It is also noted that the experimentally observed low-energy
response properties of the correlated states in TBG at positive
and negative filling factors exhibit particle-hole asymmetry
[11,17–19,62,64].

For the pristine TBG or the TBG with a sublattice potential
difference [46,53,54,65–67], theoretical analysis or Hartree-
Fock (HF) calculations indeed demonstrated the occurrence
of the low-energy collective excitation modes of interflavor
spin wave, valley wave, and intraflavor exciton at odd ν. The
spin-wave excitation states are Goldstone modes with a zero
excitation gap [46,53,54,66]. The valley-wave modes have
an extremely small excitation gap for the pristine TBG [66]
and a sublattice potential difference increases their excitation
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FIG. 1. Single-particle and HF band structures of TBG and TBG/BN. (a) The schematic view of the commensurate double moiré
superlattices in TBG/BN. The twist angle (θ ) between the graphene layers and that (θ ′) between graphene and BN are labeled. (b) The
single-particle band structures of TBG at the magic θ = 1.08◦ and a commensurate supercell of TBG/BN at θ ′ = 0.54◦. The red and blue lines
represent bands in the ξ = + valley and the ξ = − valley, respectively. (c) The HF band structures of the Chern-insulator ground states at odd
ν in the active-band approximation for the TBG and TBG/BN systems in (b). The HF bands of each flavor are plotted separately along the
k-point path same as that in (b) and the flavor is labeled by the valley (+ or −) and spin (↑ or ↓) indices. The conduction and valence bands are
represented by the red and blue lines, respectively. The intraflavor energy gap (�intra) between the conduction and valence bands in the same
flavor and the interfavor energy gap (�inter) between the highest valence band in one flavor and the lowest conduction band in another flavor
are labeled by the green shades. The spin-wave excitation between the valence and conduction bands in two different flavors with the same
valley index but the opposite spin indices, and the valley-wave excitation between the bands in two flavors with the same spin index but the
opposite valley indices, and the exciton excitation between bands in the same flavor are indicated by the dashed green lines.

energies [46]. For the pristine TBG, low energy exciton states
of a few meV also appear [66]. We note that all the previous
calculations focused on one odd ν of −3 or 3 and adopted
the active-band approximation that considers only the exci-
tations between flat bands [46,66]. A full HF calculation of
the excitation states at all odd ν may provide more excitation
modes and can influence the excitation energy spectrums.
For TBG/BN with enhanced Chern insulator states at odd ν,
previous studies have established that BN induces not only the
sublattice potential difference in graphene but also spatially
varying effective moiré potentials and the structural defor-
mation due to the interlayer vdW interaction between BN
and graphene also strongly breaks the C2z symmetry of the
single-particle Hamiltonian [51,57]. Moreover, the correlated
band structure of TBG/BN changes with the twist angle (θ ′)
between TBG and BN [51,56]. Therefore, it is desirable to
explore systematically the collective excitation modes at all
odd ν for all the possible commensurate configurations of
TBG/BN.

Here, we demonstrate that the energies of the lowest in-
traflavor exciton modes of TBG/BN are much higher than
those of TBG and reach about 20 meV, the interflavor valley-
wave modes have excitation energies higher than 2.5 meV,
which is also much larger than that of TBG, while the spin-
wave modes all have zero excitation gap. The excitation
spectrums and gaps of TBG/BN at positive ν are rather
different from those at negative ν, which contrasts with the
particle-hole symmetric excitation modes for positive and
negative ν in TBG. Full HF calculations indicate that the
lowest exciton modes that determine the optical properties
of the Chern insulator states in TBG/BN are generally the

ones between the remote and flatlike bands, while the valley-
wave modes have similar energies as those in the active-band
approximation. Moreover, the quantitative behavior of the
excitation spectrum of TBG/BN also varies with θ ′.

II. HF BANDS AND EXCITATIONS IN THE ACTIVE-BAND
APPROXIMATION

For TBG with the magic twist angle of θ = 1.08◦ aligned
with BN, we consider the 1×1 commensurate supercells of
TBG/BN at three twist angles θ ′ between BN and its ad-
jacent graphene layer of 1.64◦, 0.54◦, and −0.56◦, as seen
in Fig. 1(a), and their structural parameters are detailed in
the Appendix. At the origin of the TBG/BN supercell, both
the local stackings between the graphene layers and between
graphene and BN are taken to be the AA stacking. The moiré
superlattices of TBG/BN and the pristine TBG are fully re-
laxed based on the continuum elastic theory to obtain their
stable atomic structures [51,57].

For the fully relaxed TBG/BN, an effective single-particle
tight-binding model (H0) of the graphene layers can be built
taking into account the relaxation effect and the full moiré
Hamiltonian induced by BN; the on-site energies and hop-
ping terms of the tight-binding Hamiltonian within a moiré
supercell have been given in Refs. [51,57]. To describe
the low-energy electronic properties of TBG/BN, H0 can
be expressed in the plane-wave-like basis, as detailed in
the Appendix. The Hamiltonian element between two plane-
wave-like basis functions 〈α, Kξ + q|H0|β, Kξ + q + Q〉 for
the ξ valley is denoted by H0

ξ,αβ (q, q + Q) with α and β

the sublattice indices, q a k point in the supercell Brillouin
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zone (BZ), and Q a reciprocal lattice vector of the supercell.
All the large Hamiltonian elements for the pristine TBG and
the TBG/BN with the three different θ ′ are listed in the
Supplemental Material (SM) [68] and can be used to repro-
duce the calculation results. The single-particle flat bands
around the Fermi level (EF ) in TBG are well separated by
the effective moiré potentials induced by BN, as shown in
Fig. 1(b). The C2z symmetry in the pristine TBG is broken
in TBG/BN. In a rigid TBG/BN, the effective Hamiltonian
induced by BN lacks the C2z symmetry as reflected in the in-
plane inversion asymmetric terms of the moiré potentials. The
structural relaxation of TBG/BN also leads to the in-plane
atomic deformation without the C2z symmetry. The strain
fields in a relaxed structure lead to modification of the on-site
energies of the tight-binding Hamiltonian and also alteration
of the intralayer hopping terms due to the changes of the bond
lengths. The structural relaxation also breaks strongly the ap-
proximate particle-hole symmetry of the flat-band dispersions
in rigid TBG, as seen in Fig. 1(b) for both relaxed TBG
and TBG/BN. It can be anticipated that the full relaxation
of the trilayer heterostructure in TBG/BN may give rise to
greater particle-hole asymmetry in the excitation spectrums
than those in TBG. It is noted that only a staggered sublattice
potential is added to TBG to model the breaking of the C2z

symmetry due to BN in previous studies of the collective exci-
tations of the TBG systems [46], where all the other intralayer
H0

ξ,αβ (q, q + Q) elements with nonzero Q were neglected. In
the full H0, the strength of the effective moiré potential by
BN varies with θ ′, giving rising to θ ′-dependent flat bands, as
shown in Fig. S1(a) of the SM. The widths of the flat bands
are much larger at θ ′ = 0.54◦ and −0.56◦ than those at 1.64◦,
while the valence and conduction bands are more separated
at θ ′ = −0.56◦. The system at θ ′ = −0.56◦ also has a much
smaller energy difference between the flat and remote bands
due to the wider flat bands and the larger gap at EF .

Upon inclusion of the e-e interaction, TBG/BN and
TBG become Chern insulators at odd ν. We employ the
self-consistent HF (SCHF) method [41,51] to obtain the
mean-field ground states of the systems at odd ν; then
the time dependent HF (TDHF) approach [46,66] is adopted
to explore the collective excitations of TBG/BN and TBG
based on the SCHF ground states as detailed in the Appendix.
We first perform the HF calculations in the active-band
approximation and the computationally expensive full HF cal-
culations are then done for further exploration of the collective
excitations as presented in the next section. For the active-
space approximation, only the two central HF bands of each
flavor are updated during the SCHF iterations and they are
only expanded in the basis of the single-particle flat bands;
the lower remote bands are kept frozen but still contribute to
the mean-field Hartree and Fock operators of the active-band
Hamiltonian. In addition, the HF operators contributed by the
isolated fixed and rotated graphene layers with EF at CNP are
subtracted from the HF Hamiltonian to avoid double counting
of the e-e interaction.

The HF band structures of the Chern-insulator ground
states at odd ν are exhibited in Fig. 1(c) for TBG/BN with
θ ′ = 0.54◦ and the pristine TBG. In TBG, sublattice polar-
ization within one layer spontaneously occurs at odd ν. In
the ξ = + valley, the lower band has a Chern number of +1

and the higher band has a Chern number of −1. The Chern
numbers of the bands in the ξ = − valley are just opposite to
those in the ξ = + valley. At each odd ν, the ground states of
TBG and TBG/BN are Chern insulators with the total Chern
numbers of ±1. For each ν, three of the four flavors have the
same quantitative band properties, such as the intraflavor band
gaps and the bandwidths, and one flavor has different prop-
erties, which is taken to be the (+,↑) valley-spin flavor, as
shown in Fig. 1(c). At ν = −1 for TBG/BN with θ ′ = 0.54◦,
we have also calculated the band structures and energies of
the HF states with two of the three filled bands in the same
flavor and also with the total Chern numbers of ±1. We find
that such states are all metallic with overlapping HF bands and
their energies are higher than the ground state with the three
filled bands in three different flavors by about 20 meV per
moiré supercell. It is also confirmed that the HF ground state
at ν = 1 has three empty bands in three different flavors. Such
HF ground states at odd ν are consistent with the previous
HF studies of the pristine TBG [41] and TBG/BN [51]. At a
flavor with the two bands both filled or empty, the two bands
of TBG/BN are well separated, while those of the pristine
TBG have close energies around the K̄ point. For TBG/BN at
ν = −3, the two empty bands in the same flavor are separated
by 17 meV. When one flat band is filled and the other one
is empty in a flavor, the intraflavor band gap (�intra) between
them in TBG/BN is much larger than that in the pristine TBG.
Compared to �intra, the interfavor band gap (�inter) between
the highest valence band in one flavor and the lowest conduc-
tion band in another flavor generally has a smaller value, so
the global band gap is just �inter. The calculated �inter is still
larger than about 10 meV at all odd ν for both the pristine TBG
and TBG/BN with θ ′ = 0.54◦. Such large �inter can be due to
the general trend of overestimation of the band gaps within the
HF method and may be corrected by a higher theoretical level
employing the density matrix renormalization group [69,70].

The HF bands at ν = 3 and ν = 1 appear to be the particle-
hole symmetric correspondences of the bands at ν = −3
and ν = −1, respectively, while the band gaps can still be
quite different between positive and negative ν, as shown
in Figs. 1(c) and 2(b). The θ ′ of TBG/BN influences the
quantitative properties of the HF bands, as seen in Fig. S1(b).
At ν = ±3, �inter at θ ′ = 0.54◦ is much larger than those at
other θ ′. The �intra at θ ′ = −0.56◦ is the largest for ν = 3. In
addition, when two bands in a flavor are both filled or empty,
they have a much larger energy difference at θ ′ = −0.56◦.

We employ the TDHF method to obtain the collective
excitation modes based on the HF ground states at odd ν.
We consider the collective modes with the momentum q ex-
pressed as [46,66]

|�{I}(q)〉 =
∑

I,k

uI,k(q) f †
pI ,k+q fhI ,k|0〉, (1)

where |0〉 is the HF ground state, I represents an excitation
process from the occupied band with index hI to the empty
band with the index pI, and the operator f annihilates an
electron in the HF band states. A collective mode is charac-
terized by its set of excitation processes, which are labeled
in Fig. 1(c) for the interflavor spin-wave, valley-wave, and
intraflavor exciton modes. For a spin-wave mode, the hI and pI
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FIG. 2. Collective excitation modes of TBG/BN and the pristine TBG at odd ν. (a) The energy spectrums of the two or one lowest
excitation modes as a function of the wave vector q for the spin-wave, valley-wave, and exciton excitations. The blue and red lines represent
the excitation bands of the pristine TBG and the TBG/BN at θ ′ = 0.54◦, respectively. K̄ ′ in the k-point path is just the opposite of K̄ . The
valley-wave excitation gap (�̃inter) and the exciton excitation gap (�̃intra) at q = 0 are labeled by the green shades. The tilde in �̃ is used
to differentiate the excitation gap from the HF band gap �. (b) The HF band gaps and the corresponding excitation gaps at different ν for
TBG/BN and TBG.

states have the same valley but the opposite spin indexes and
their valley-spin indexes are respectively taken to be (+ ↑)
and (+ ↓) at ν = −3 as an example. For a valley-wave mode,
the hI and pI states have the same spin index but the opposite
valley index and their valley-spin indexes are respectively
taken to be (+ ↑) and (− ↑) at ν = −3 as an example. The hI

and pI states for an exciton mode have both the same valley
and spin indexes and are taken to be in the flavor with one
filled flat band and one empty flat band.

For the pristine TBG, all the excitation spectrums exhibit
approximate particle-hole symmetry and are almost the same
for all odd ν, as shown in Fig. 2(a). The spin-wave mode has
a zero excitation gap, the valley-wave mode has an extremely
small gap of about 0.5 meV, and the exciton mode has a gap of
about 5 meV. Such finite gaps of the valley-wave and exciton
modes are slightly larger than those predicted for the TBG de-
scribed by the Bistritzer-MacDonald model [66], which can be
attributed to the in-plane structural deformation in the relaxed
TBG. For the pristine TBG, both the spin-wave and valley-
wave excitations have two low-energy collective modes in the
gap at each q. In contrast, the excitation spectrum of TBG/BN
at positive ν is rather different from those at negative ν and
those with the same sign of ν are quite similar. The lowest
spin-wave mode at positive ν has a larger spectrum width
than that at negative ν but they all have zero excitation gap.

For the valley wave, all the excitation energies are higher than
2.5 meV, which is much larger than that of the pristine TBG.
This is consistent with Ref. [46] for TBG with a sublattice
potential difference. The valley wave has a higher excitation
gap (�̃inter) at positive ν. For both the spin wave and the valley
wave, the lowest modes become much more apart than those
in TBG. The lowest exciton modes of TBG/BN have much
higher energies than those of TBG. The exciton gap (�̃intra)
decreases with ν from −3 to 3, with the gap still reaching
about 16 meV at ν = 3.

In comparison to the HF band gaps, the �̃inter of the val-
ley wave modes are much smaller than the �inter for both
TBG and TBG/BN, while the �̃intra of the exciton modes
of TBG/BN reaches about half of the �intra, which is a sig-
nificant contrast to the much smaller �̃intra/�intra for TBG,
as shown in Fig. 2(b). For the exciton modes, the two-body
exciton wave function as a function of the electron (re) and
hole (rh) positions can be calculated as

�(re, rh) = 1

Nk

∑

k

ukψpk(re)ψ∗
hk(rh), (2)

where ψpk and ψhk are the HF conduction and valence
band states corresponding to the exciton excitation. Figure 3
exhibits the wave function of the lowest exciton mode at q = 0
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FIG. 3. Spatial distribution (|�(re, rh )|2) of the exciton wave
function of the lowest mode at q = 0 as a function of the electron
position re with the hole position rh at the origin of a supercell where
the bilayer is locally AA stacked for TBG at ν = −3 (a), ν = 3 (b),
and TBG/BN with θ ′ = 0.54◦ at ν = −3 (c), ν = 3 (d).

with rh at the origin of a supercell where the bilayer graphene
is locally AA stacked. The particle and hole are strongly
bound at all the odd ν for the pristine TBG with the particle
localized around the origin. The spatial map of the exciton
wave functions in TBG/BN spread a much larger range with

the particle mainly distributed around the nonzero smallest
superlattice vectors. Unlike TBG, TBG/BN at ν = 3 has a
quite different exciton wave function from that at ν = −3 with
the wave function at ν = 3 less spatially localized.

The quantitative behavior of the excitation spectrum varies
with θ ′, as seen in Fig. 4. The systems with the negative θ ′ of
−0.56◦ tend to have a smaller valley-wave excitation energy,
while their exciton energies are much higher than those at
positive θ ′ for the positive ν. For the valley-wave modes, the
�̃inter at the two positive θ ′ have similar values for the negative
ν, while they differ by about 1 meV for the positive ν. The
exciton energy at θ ′ = 0.54◦ is higher than that at θ ′ = 1.64◦
for the negative ν but has similar values for the positive ν. The
excitation spectrums of TBG/BN with θ ′ = 0.54◦ at ν = ±3
are also compared with those of the system with only the stag-
gered sublattice potential difference in H0 of 16 meV and with
all the other intralayer H0

ξ,αβ (q, q + Q) elements with nonzero
Q neglected in Fig. 4(b). Their rather different single-particle
and HF band structures are displayed in Fig. S2 of the SM.
The excitation spectrums of TBG with the staggered potential
are approximately particle-hole symmetric at ν = ±3, which
is similar to the pristine TBG but contrasts with TBG/BN. For
the spin-wave and valley-wave modes, the lowest excitation
energy bands of the two systems have similar values, while the
second bands of TBG/BN are much higher. For the exciton
modes, the lowest excitation energies of TBG/BN are much
larger than those of TBG with only the staggered potential.
In experiments, particle-hole asymmetry has been observed
for the low-energy response properties of the correlated states

FIG. 4. (a) Energy spectrums of the lowest spin-wave, valley-wave, and exciton excitation modes at different ν for TBG/BN with
θ ′ = 1.64◦, 0.54◦, and −0.56◦. (b) The excitation spectrums for TBG with only the staggered sublattice potential difference in H0 of 16 meV
(blue lines) and TBG/BN with θ ′ = 0.54◦.
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in TBG [11,17–19,62,64]. The comparative calculations of
the collective excitation modes in the pristine TBG, the TBG
with staggered potential, and TBG/BN thus suggest that
the full Hamiltonian of TBG, especially the nonlocal effect
and the relaxation effect with TBG under various external
perturbations such as alignment with BN, is required to under-
stand the experimentally observed particle-hole asymmetry
in TBG. Regarding the possible experimental verification of
our computational predictions, the behavior of the spin-wave
and valley-wave modes in TBG/BN at different excitation
energies can be compared for the positive and negative ν in ex-
periments to show whether the observations of the excitations
at positive and negative ν are more different at a higher energy.
Moreover, the rather distinct exciton energies of TBG/BN at
ν = ±3 may be confirmed in the future experimental mea-
surements of the interband optical transitions of the Chern
insulators in TBG/BN.

III. FULL HF BANDS AND EXCITATIONS

Since the remote bands are frozen in the active-band
approximation of the SCHF calculations, the excitation pro-
cesses between the remote and flat bands have been ignored
and the quantitative properties of the flat bands can be modi-
fied when the remote bands are allowed to be updated in the
SCHF calculations. Full SCHF calculations have also been
performed to obtain the full HF bands of TBG/BN and the
excitation spectrums are computed by considering the exci-
tation processes between the five highest valence HF bands
and the five lowest conduction HF bands. It is noted that the
convergent spin-wave spectrum requires the possible excita-
tion processes between all the HF bands, which are beyond
our calculation capability, so only the interflavor valley-wave
and the intraflavor exciton modes are considered based on the
full SCHF ground states.

To compare the active-band approximation with the full
SCHF description of the central HF bands, the projection
of each HF band state on the single-particle flat bands is
computed as

∑
m |〈ψ0

m(σ, k)|ψi(σ, k)〉|2 with |ψ0
m(σ, k)〉 rep-

resenting the two single-particle flat-band states of flavor σ

and |ψi〉 a HF band state. We find that at a k point rather away
from the �̄ point, only two low-energy HF band states of a
flavor are mainly contributed by the single-particle flat-band
states, as shown in Fig. 5 for TBG/BN with θ ′ = 0.54◦. These
HF bands are termed as flatlike bands to distinguish them from
the single-particle flat bands. In contrast, several other HF
bands near the �̄ point can have substantial contribution from
the flat-band states, especially for the flavor with one flatlike
band occupied and the other flatlike band empty. In particular,
the flat-band contribution becomes very small for some low-
energy HF states at �̄. When the flatlike bands of a flavor
are both occupied or empty, they are generally well separated
from the remote bands and the intraflavor gap around EF

between the remote and flatlike bands is denoted by �′
intra. The

flatlike bands become entangled with the remote bands when
EF lies between them and the intraflavor gap between these
flatlike bands is denoted by �intra. Similar to the active-band
approximation, the interflavor gap �inter is also between the
flatlike bands. For the full HF bands, the global gap among
all flavors is just �′

intra. �intra has large and similar values

FIG. 5. Full HF band structures of TBG/BN at θ ′ = 0.54◦ for
each flavor at different ν. The magnitude of the projection of each
HF band state on the single-particle flat bands is represented by the
size of the red circle. The band gap �intra between the intraflavor
flatlike bands, the �inter between the interflavor flatlike bands, and the
�′

intra between the remote and flatlike bands are labeled by the green
shades. The interflavor valley-wave excitation mainly between the
flatlike bands, the intraflavor exciton excitation mainly between the
flatlike bands, and the intraflavor exciton excitation mainly between
the flatlike bands and the remote bands are indicated by the dashed
green lines.

for all the negative and positive ν, which is similar to the
active-band approximation. However, the systems at positive
ν have much smaller �′

intra and �inter than those at negative
ν, which indicates the strong breaking of the particle-hole
symmetry for the full HF band structures. At each ν, there are
also three flavors with the same quantitative band properties,
as seen in Fig. 5.

195434-6



COLLECTIVE EXCITATIONS OF THE CHERN-INSULATOR … PHYSICAL REVIEW B 107, 195434 (2023)

FIG. 6. (a) Band gaps �intra, �inter , and �′
intra and the corresponding excitation gaps �̃intra, �̃inter , and �̃′

intra from the full HF calculations
at different ν for TBG/BN with θ ′ = 0.54◦. (b) The energy spectrums for the valley-wave excitation, the exciton excitation mainly between
flatlike bands, and the exciton excitation (dented by exciton′) mainly between empty flatlike bands and the filled remote bands at ν = −3.

We consider the interflavor valley-wave excitation modes
corresponding to �inter and the intraflavor exciton modes cor-
responding to �intra and �′

intra, based on the full HF ground
states. The excitation spectrum and the excitation gaps of
these modes are displayed in Fig. 6 for TBG/BN with θ ′ =
0.54◦. The valley-wave excitation gap �̃inter becomes slightly
higher than that obtained from the active-band approximation
and reaches about 3 meV, but is still rather small compared
with �inter. The excitation gaps �̃intra of the exciton modes
between the flatlike bands have similar values as those from
the active-band approximation and are below half of �intra. In
contrast, the gaps (�̃′

intra) of the exciton modes between the
flatlike bands and the remote bands are just slightly smaller
than �′

intra. This indicates that the exciton modes between
the flatlike bands and the remote bands are composed of
weak-bound particle-hole pairs, while strong binding of the
particle-hole pairs occurs in the exciton modes between the
flatlike bands. At ν = −3, 1, 3, �̃intra is higher than �̃′

intra and
even the gap �′

intra. Only at ν = 1 does �̃intra have a lower
value than �̃′

intra. In addition, the excitation energies of the
lowest modes for the exciton modes between the flatlike bands
and the remote bands are much more dispersive as a function
of q than those of the valley-wave modes and the exciton
modes between the flatlike bands, as shown in Fig. 6(b).

The optical properties of the Chern insulators are de-
termined by the intraflavor exciton modes and the optical
conductivity within the TDHF method is given by [66]

Reσxx = γ

h̄ωNk�0

∑

i

1

(h̄ω − h̄ωi )2 + γ 2

×
∑

Ik,I ′k′
J∗

x,Ikui,Iku∗
i,I ′k′Jx,I ′k′ , (3)

where ω is the frequency of the incident light, h̄ωi is the
energy of an exciton mode labeled by i, ui is the state vector
of the exciton mode, Jx,Ik = 〈ψpI k| − e/h̄∂Hk/∂kx|ψhI k〉 is the
element of the current density operator between the empty

and occupied states of the excitation process I , γ is a small
energy for broadening of the excitation energy, �0 is the area
of the moire supercell, and Nk is the number of k points.
So at ω = ωi, the contribution of the exciton mode i to σxx

is proportional to σi ≡ h̄2/(e2Nk )
∑

Ik,I ′k′ J∗
x,Ikui,Iku∗

i,I ′k′Jx,I ′k′ .
We find that the σi of the lowest exciton mode between the
remote and flatlike bands at ν = −3 reaches 0.102 eV Å2 and
is even much larger than that of the lowest exciton mode be-
tween the flatlike bands, which is just 0.022 eV Å2. Therefore,
the lowest-frequency optical properties associated with the
intraflavor excitations are mainly determined by the exciton
modes between the remote bands and the flatlike bands at
ν = −3, 1, 3, while they are mainly contributed by the exciton
mode between the flatlike bands at ν = −1.

At the other two θ ′ of 1.64◦ and −0.56◦, �′
intra from the

full SCHF calculations can become larger than �inter, but are
all much smaller than �intra, as seen in Figs. S3 and S4 of the
SM [68]. For θ ′ = −0.56◦, the system at ν = −3 becomes
metallic with the highest occupied band of the (+,↑) flavor
slightly overlapping with the lowest empty bands of other fla-
vors. The systems at θ ′ = 1.64◦ generally have smaller �′

intra
than those at other θ ′. For the exciton modes, the excitation
gaps �̃′

intra are also much smaller than �̃intra and the systems
with θ ′ = −0.56◦ have the largest �̃intra, as seen in Fig. S4
of the SM. In addition, �̃′

intra can even become larger than
the indirect gap �′

intra for some systems with θ ′ of 1.64◦ and
−0.56◦. The �̃inter for the valley-wave modes all have similar
values of about 3 meV.

IV. SUMMARY AND CONCLUSIONS

In the 1×1 commensurate supercells of TBG/BN, the
single-particle flat bands around EF are gapped due to the
broken C2z symmetry and the SCHF ground states at odd ν

are the Chern insulators with flavor-polarized HF bands. In
the active-band approximation, the two active HF bands in
the same flavor are well separated in TBG/BN when they are
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both filled or empty and the intraflavor gap �intra in TBG/BN
is much larger than that in the pristine TBG. The energy
spectrums of the collective excitation modes for the Chern
insulator states are obtained with the TDHF method. The spin-
wave modes in both TBG/BN and TBG have a zero excitation
gap, while the gaps of the valley-wave and exciton modes in
TBG/BN are much larger than those in TBG. The excitation
gaps �̃inter and �̃intra in TBG/BN reach about 2.5 meV and
20 meV, respectively, with �̃intra almost half of the intraflavor
band gap �intra. In contrast to TBG with almost particle-
hole symmetric excitation modes for positive and negative ν,
the excitation spectrums and gaps of TBG/BN at positive ν

are rather different from those at negative ν. The exciton
wave functions in TBG are also much more spatially localized
than those in TBG/BN. Full SCHF calculations show that
more HF bands besides the two central bands can have rather
large contribution from the single-particle flat-band states in
TBG/BN and the intraflavor gap �intra between the flatlike
bands is much larger than the �′

intra between the remote and
flatlike bands. The excitation gap �̃′

intra of the exciton modes
between the remote and flatlike bands is just slightly smaller
than �′

intra, but is generally lower than the �̃intra between the
flatlike bands, so the optical properties of the Chern insulator
states are mainly determined by the exciton modes between
the remote and flatlike bands. The valley-wave modes from
full HF calculations have similar energies as those in the
active-band approximation. In addition, the quantitative be-
havior of the excitation spectrums varies with θ ′ of TBG/BN.
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APPENDIX

1. Geometry of the moiré superlattice

In the trilayer heterostructures of TBG/BN, moiré super-
lattices arise between the graphene layers and between the
middle graphene layer and BN, as shown in Fig. 1(a). To
establish the geometry of TBG/BN, the middle graphene
layer (G1) is taken to be fixed, the top graphene layer (G2) is
rotated by θ counterclockwise, the bottom BN layer is rotated
by θ ′ counterclockwise (positive θ ′) or clockwise (negative
θ ′), and graphene has a smaller lattice constant (aG) than
that (aBN ) of BN by ε = aG/aBN − 1. The ab initio calcu-
lations using the local density approximation (LDA) [71]
functional give aG = 2.447 Å and ε = −1.70%. A position
r in G1 is transformed to Tθ r in G2 and Sr in BN with
Tθ the rotation matrix by θ and S = Tθ ′/(1 + ε). When G2
and BN have not been rotated, the spanning vectors of a
unit cell of the honeycomb lattice in each layer are taken
to be a1 = a[

√
3/2,−1/2] and a2 = a[

√
3/2, 1/2], where a

is the lattice constant of graphene or BN. The sublattice-
A and sublattice-B atoms in a graphene or BN unit cell
are located at (a1 + a2)/3 and (2a1 + 2a2)/3, respectively.
At θ = 1.0845◦ around the magic-angle of TBG, the moiré

superlattice in G2/G1 becomes exactly periodic with the
supercell spanned by the basis vectors L1 =Na1+(N +1)a2
and L2=T60◦ L̃1=−(N+1)a1+(2N+1)a2 at N = 30. Such a
1×1 supercell becomes commensurate with the moiré su-
perlattices in G2/BN when (S−1 − I )L̃1 = −a2 + m(a1 − a2)
at θ ′ = 1.64◦, 0.54◦,−0.56◦ with m = 1, 0,−1, respectively
[51,56–59]. The reciprocal lattice of the 1×1 commensu-
rate supercell of TBG/BN is spanned by b(s)

1 = 2π/(1 +
3N + 3N2)/a[(2 + 3N )/

√
3,−N] and b(s)

2 = 2π/(1 + 3N +
3N2)/a[−1/

√
3, 1 + 2N].

2. Single-particle Hamiltonian

We employ the effective single-particle tight-binding
Hamiltonian (Ĥ0) of a relaxed TBG/BN commensurate super-
cell in Refs. [51,57] to obtain its single-particle Hamiltonian
elements in the plane-wave-like basis. The tight-binding
model of Ĥ0 reads

Ĥ =
2∑

n=1

∑

i

εn,ic
†
n,icn,i +

2∑

n=1

∑

〈i, j〉
t (n,n)
〈i, j〉 (c†

n,icn, j + H.c.)

+
∑

i, j

t (1,2)
i, j (c†

1,ic2, j + H.c.), (A1)

where c†
n,i (n = 1, 2) is the creation and cn,i is the annihilation

operator of a pz-like orbital at the site i in the Gn layer and
〈i, j〉 denotes the intralayer nearest neighbors. The depen-
dence of intralayer on-site energies (εn,i) and hopping terms
(t (n,n)

〈i, j〉 ) and the interlayer hopping terms (t (1,2)
i, j ) on the site

positions in relaxed TBG/BN were given in Refs. [51,57].
In the plane-wave-like basis, the basis functions are labeled
with the valley index (ξ = ±), the sublattice and layer index
(α = A1, B1, A2, B2), a k point (k) in the supercell BZ, and a
reciprocal lattice vector (G) of the supercell. They are defined
as [51,57]

|α, k + Kξ + G〉 = 1√
Ñ

∑

rα

ei(k+Kξ +G)·rα |rα〉, (A2)

where Kξ is the center of one of the supercell BZs containing
the Dirac points of G1 at their corners in the ξ valley and rα

is the rigid in-plane position of a site in the sublattice α of
the corresponding layer. K+ is taken to be −Nb(s)

2 and K− =
−K+. The H0 element between two basis functions is given
by [51,57]

〈α, Kξ + q|Ĥ0|β, Kξ + q + Q〉

= 1

N

∑

rα∈SC

∑

rβ

e−i(Kξ +q)·rα+i(Kξ +q+Q)·rβ 〈rα|Ĥ0|rβ〉, (A3)

where q is a k point in the supercell reciprocal space and Q is
a supercell reciprocal lattice vector. The summation over rα is
done in a supercell and N is the number of graphene unit cells
in one layer of the supercell. 〈rα|Ĥ0|rβ〉 represents the on-site
and hopping terms in the tight-binding Hamiltonian.

The H0 elements with norm larger than 0.2 meV are in-
cluded for the calculations. The large H0 elements are listed
in Tables SI– SV of the SM [68] to compare the different H0

of the pristine TBG and TBG/BN with varying θ ′ and can
be used to reproduce our results. The Hamiltonian element
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〈α, Kξ + q|H0|β, Kξ + q + Q〉 for the ξ valley is denoted by
H0

ξ,αβ (q, q + Q). The nonlocality of Ĥ0 is fully taken into
account with H0

ξ,αβ (q, q + Q) depending both on q and Q
and the expansion of each element up to linear order of q as
C0 + Cxqx + Cyqy is given in the SM. The time reversal sym-
metry in H0 leads to H0

−,αβ (q, q + Q) = H0∗
+,αβ (−q,−q − Q)

and the Hermiticity of the H0 matrix gives H0
ξ,βα (q, q + Q) =

H0∗
ξ,αβ [q + Q, (q + Q) − Q]. So only the H0 elements with

α � β and ξ = + are listed.
The listed H0 elements show that the interlayer Hamil-

tonian is almost unaffected by alignment with BN. For the
intralayer Hamiltonian in G2, the elements H0

+,αβ (q, q + Q)

with α = A2, β = B2, and |Q| = |b(s)
1 | have almost the same

amplitude for all systems and their nonzero values are due
to the relaxation induced modulation of the intralayer hop-
ping. However, three of the six H0

+,αβ (q, q + Q) elements

with α = A1, β = B1, and |Q| = |b(s)
1 | of TBG/BN are much

larger than those of the pristine TBG, indicating that the
spatial modulation of the intralayer hopping becomes stronger
upon alignment with BN and the C2z symmetry is broken.
The Q with the large elements depends on θ ′ of TBG/BN
and the phases of the complex values of the elements vary
with θ ′. Both the intralayer and interlayer Hamiltonian exhibit
nonlocality. The alignment with BN greatly enhances the non-
locality of the intralayer Hamiltonian in G1, while it does not
affect that of the interlayer Hamiltonian.

3. Self-consistent HF and time-dependent HF methods

For a valley-spin flavor, each plane-wave basis state with
momentum k in the sublattice α corresponds to a creation
operator c†

k,αμ, where μ indexes the flavor. Then the e-e in-
teraction Hamiltonian can be expressed as

Ĥee = 1

2N

∑
V (q)c†

k+q,αμc†
k′−q,βμ′ck′,βμ′ck,αμ, (A4)

where V (q) = e2/(�4πεrε0)2π/|q| with � the supercell area
and the dielectric constant εr is taken to be 10 considering the
screening by both the BN substrates and electric gates. We
consider the correlated insulator states at odd ν with flavor-
polarized HF band states.

In the mean-field HF Hamiltonian [41,51], the Fock opera-
tor (�̂F ) is expressed as

�̂F = − 1

Nk

∑

μαβkq

∑

G′+Q′=G+Q

V (|k + G − q − Q′|)

× 〈c†
q+Q′,βμ

cq+Q,αμ〉 c†
k+G′,αμ

ck+G,βμ. (A5)

The 〈c†
q+Q′,βμ

cq+Q,αμ〉 is the density matrix element and is

denoted by ρβQ′,αQ(μ, q). Then the matrix elements of �̂F

for each μ and k are

�F
αG′,βG(μ, k) = − 1

Nk

∑

q

∑

G′+Q′=G+Q

V (|k + G

− q − Q′|) ρβQ′,αQ(μ, q). (A6)

ρ is calculated from the HF band states as

ρβQ′,αQ(μ, q) =
∑

n=occ

ψ∗
n,βQ′ (μ, q)ψn,αQ(μ, q), (A7)

where ψn(μ, q) represents an occupied HF band state with the
flavor μ at the k point q in the supercell BZ. The Fock operator
(�̂H ) is given by

�̂H = 1

Nk

∑

μσαβkq

∑

G′+Q′=G+Q

V (|Q − Q′|)

×〈c†
q+Q′,βσ cq+Q,βσ 〉 c†

k+G′,αμck+G,αμ. (A8)

The matrix elements of �̂H do not depend on μ and k and can
be expressed as

�H
αG′,αG = 1

Nk

∑

σβq

∑

G′+Q′=G+Q

V (|Q − Q′|) ρβQ′,βQ(σ, q).

(A9)

The Fock matrix (�F
iso) contributed by the density matrix

(�iso) of the isolated fixed and rotated graphene layers at
CNP is subtracted from the HF Hamiltonian to avoid double
counting of the e-e interaction. The Hartree term contributed
by �iso is zero. Then the HF Hamiltonian matrix for the SCHF
calculations becomes

H = H0 + �H + �F − �F
iso. (A10)

For the active-band approximation, the filled remote bands
are frozen and the states in the two active low-energy HF
bands are only projected on the two single-particle flat-band
states of each flavor. The projected HF Hamiltonian matrix
of the two active bands in the basis of the single-particle flat
bands for each flavor and k point can be obtained by

H̃mn = ψ0†
m Hψ0

n , (A11)

where ψ0
n is the single-particle flat-band state vector in the

plane-wave basis. The obtained active bands from H̃ and the
frozen bands are then used to calculate the density matrix ρ

in the plane-wave basis by Eq. (A7), which gives the H in
Eq. (A10).

Within the TDHF method [51,57], the excitation modes in
Eq. (1) can be obtained by the eigenvalue equation

[A(q) + �(q)]u(q) = ω(q)u(q), (A12)

where ω(q) represents the excitation energy. �(q) is a diag-
onal matrix with �Ik(q) = εpI (q + k) − εhI (k), and εn(k) is
the HF band energy. The matrix element of A(q) is

AIk,Jk′ (q)

= 〈ψp(k+q)(r)ψh′k′ (r′)|V (r − r′)|ψhk(r)ψp′(k′+q)(r′)〉
− 〈ψp(k+q)(r)ψh′k′ (r′)|V (r − r′)|ψp′(k′+q)(r)ψhk(r′)〉,

(A13)

where (h, p) and (h′, p′) are shorthands of (hI , pI ) and
(hJ , pJ ), and ψhk(r) is the wave function of a HF band state.

The first term in Eq. (A13) is only nonzero for intraflavor
excitations with the h and p (h′ and p′) states having the same
flavor and can be computed in the plane-wave basis. Having
k + q + T1 = k̃ and k′ + q + T2 = k̃′ with k̃ and k̃′ in the
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supercell BZ and T1 and T2 the reciprocal lattice vectors of
the supercell, this term can be calculated as

〈ψp(k+q)ψh′k′ |V |ψhkψp′(k′+q)〉
=

∑

αβ

∑

G′+Q′+T1=G+Q+T2

ψ∗
pk̃,αG′ψ

∗
h′k′,βQ′ψhk,αGψp′k̃′,βQ

×V (k′ + Q′ − k̃′ − Q), (A14)

where ψhk represents the HF state vector in the plane-wave
basis. The second term in Eq. (A13) is nonzero for both the
intraflavor and interflavor excitations and can be computed as

〈ψp(k+q)ψh′k′ |V |ψp′(k′+q)ψhk〉
=

∑

αβ

∑

G′+Q′+T1=G+Q+T2

ψ∗
pk̃,αG′ψ

∗
h′k′,βQ′ψp′k̃′,αQψhk,βG

×V (k′ + Q′ − k − G). (A15)

With the general density matrix defined as

ρβQ′,αQ(h′k′, p′k̃′) = ψ∗
h′k′,βQ′ψp′k̃′,αQ, (A16)

the terms in Eqs. (A14) and (A15) can then be expressed and
efficiently calculated as

〈ψp(k+q)ψh′k′ |V |ψhkψp′(k′+q)〉
=

∑

αβ

∑

G′+Q′+T1=G+Q+T2

ρ∗
αG,αG′ (hk, pk̃)ρβQ′,βQ(h′k′, p′k̃′)

×V (k′ + Q′ − k̃′ − Q) (A17)

and

〈ψp(k+q)ψh′k′ |V |ψp′(k′+q)ψhk〉
=

∑

αβ

∑

G′+Q′+T1=G+Q+T2

ρ∗
βG,αG′ (hk, pk̃)ρβQ′,αQ(h′k′, p′k̃′)

×V (k′ + Q′ − k − G). (A18)
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