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Probing elastic properties of graphene and heat conduction in graphene bubbles above 1000 ◦C
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The elastic and thermal properties of graphene were investigated by illuminating graphen bubbles with a laser
spot. Tempertures above 1000 ◦C were obtained in large (>10 µm) graphene bubbles. The formation of standing
optical waves lead to laser heating depending on the height of the garphene bubble, which results in Raman band
oscillations when scanning the laser spot across the bubble. The profile of the bubble under laser illumination can
be deduced from the Raman G band oscillations. A distinct swelling at the center of the bubble is observed which
is attributed to the strong softening of graphene above 1000 ◦C. From the size and height of the swelling it is
deduced that the elastic modulus is reduced by at least 40% at 1000 ◦C. On solving the heat equation for the heat
dissipation through the graphene only, analytical expressions are obtained for the isotherms on the bubble for
both symmetrical and asymmetrical positions of the laser spot. It was found that a large fraction of the absorbed
heat dissipates through the gas in the bubble using the finite volume method. Analytical expressions for the
temperature distribution in the bubble are deduced from the numerical results. Heat conduction through the gas
in the bubble influences the temperature distribution and needs to be taken into account in the heat dissipation in
graphene bubbles.

DOI: 10.1103/PhysRevB.107.195433

I. INTRODUCTION

Graphene has superior mechanical properties. The break-
ing force obtained experimentally and from simulation are
almost identical and the experimental value of the second-
order elastic stiffness is equal to E2D = 340 ± 50 Nm−1.
This value corresponds to a Young’s modulus of E = 1.0 ±
0.1 TPa, assuming an effective thickness of 0.335 nm [1]. The
ultimate tensile strength of 119 GPa at room temperature was
reported to have a high temperature stability [2]. Joule heat-
ing in transmission electron microscopy (TEM) reportedly
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showed that suspended graphene stays intact up to tempera-
tures of 1275 K and it was estimated that graphene stays stable
up to temperatures of 2600 K [3]. However, only a few theo-
retical studies are available on the elastic modulus of graphene
up to 1000 K [2] and there are no reported experimental
studies so far on the elastic properties of graphene at elevated
temperatures. It is reported that the presence of ripples and in-
teraction with the substrate can notably affect the mechanical
response of graphene [4], and it is therefore important to study
suspended graphene. In this context, graphene bubbles can be
effectively used since they can be heated with a laser beam and
since graphene is detached from the substrate in the bubble,
substrate interactions are avoided. Thus, heating graphene
bubbles by a laser beam provides a unique opportunity to
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explore the thermal and the elastic properties of graphene
since the bubble height to diameter ratio is directly related to
the Young’s modulus. The temperature at the laser spot on the
graphene bubble can be deduced from Raman spectral band
shifts. Since the laser intensity is not uniform in a direction
perpendicular to the substrate due to the formation of standing
waves, the Raman shift oscillates when scanning the laser spot
across the bubble (4). From the period of the standing wave,
the height of the bubble at the laser spot can be determined.
The temperature distribution in graphene bubbles heated with
a laser beam is reported to have a logarithmic dependence on
bubble radius [5] and the highest temperature which can be
reached at the center of the bubble increases with bubble size
for a given laser power. This means in large graphene bubbles,
very high temperatures can be reached, in contrast to simply
heating graphene below 1000 ◦C, which leads to only small
changes in the lattice constant since the contributions of the
transverse and in-plane phonon population with temperature
have opposite effects [6] on the lattice constant and this is
manifest at “lower” temperature. For example, the thermal
expansion coefficient (TEC) is slightly negative below 430 K
and is slightly positive above 430 K (4.2710–6/K@1000 K),
and the Debye temperature, which is a measure of the hard-
ness and heat capacity, for graphene (2100 K) [7] is higher
than in most solids except diamond (2200 K). With an increase
in temperature, one theory study suggested that from 0 K
to 1000 K, c11 softens by 2.51% and Young’s modulus E
decreases by 2.2%, and the ultimate strength decreases by
4.03% from 0 K to 1000 ◦C [2].

In our previous work on Raman spectroscopy of graphene
bubbles, we showed that large graphene bubbles (12 µm) can
be heated to above 1000 ◦C when illuminated with a laser
beam [5] leading to the formation of standing waves. This
means that laser heating of the bubble depends upon the
bubble height at the location of the laser spot assuming the
graphene does not influence the standing wave. Depending
upon the position of the standing wave with respect to the
graphene and the location on the bubble, oscillations of the
Raman peak position can be observed when scanning across
the graphene bubble. The spectral position of the phonon peak
depends on temperature [5] and from the Raman oscillation
one can extract the temperature of the graphene bubble for a
given laser power at a particular location as well as the contour
of the bubble. The highest so-deduced temperature was above
1000 ◦C.

Here, we revisited the Raman spectral data of graphene
bubbles since a closer examination of the Raman oscillactions
indicated smaller oscillations at the center of the bubble. Our
spectral analysis shows a clear “swelling” at the center of the
bubble where the temperature is highest, and the temperature
at the edge of the swelling is found to be close to 1000 ◦C.
Above 1000 ◦C, this swelling of the bubble indicates that
the graphene has softened so that there is a reduction in the
Young’s modulus. In the following, we take into account the
heat dissipation through the gas inside the bubble, and we
provide an analytical model calculation of the heat conduction
though the bubble wall for both symmetric and asymmetric
illumination. These model calculations indicate that heat con-
duction though the gas inside the bubble is significant and only
a part of the heat flows though the bubble wall.

FIG. 1. Raman G band across graphene bubble. Main oscilla-
tions due to optical standing wave are labeled and numbered (A:
minima, B: maxima). The smaller oscillations in the center portion
are shown with green and blue arrows.

II. EXPERIMENTAL RESULTS

Figure 1 shows the spectral position of the Raman G band
when scanning the laser spot (532 nm, 20 mW) across the
bubble. The graphene bubble was created by placing graphene
on a hot SiO2 (100 nm)/Si substrate; details of the preparation
and characterization are given in our previous publication [5].
Since the incident beam is reflected off the substrate, the two
beams interfere to form an optical standing surface wave and
its first maximum falls on the SiO2 surface of the substrate
[8]. The Raman G band shifts when the graphene is heated
and oscillations in Raman spectral shifts are observed when
scanning the laser beam across the bubble since the distance
between the graphene and the substrate changes across the
bubble. It is known that, in addition to temperature, spectral
shift in the Raman G band is also influenced by strain and
doping [9]. The doping-induced shift can be estimated by the
differences observed of the G band position at 0 and 35 µm
(2.6 cm−1) in Fig. 1, while the strain can be deduced by
the ratio of the circular arc to the bubble diameter (0.5%),
which results in a strain-induced downshift of 10 cm−1 [10].
Taking strain- and doping-induced reductions into account,
the remaining spectral shifts are then attributed to temperature
variations caused by the optical standing waves. The oscil-
lations in the temperature primarily arise from the location
of the maxima and minima of this standing wave. As the
spacing between the interference fringes in the standing wave
perpendicular to the substrate is half the wavelength, it is
possible to deduce the shape of the bubble under laser radi-
ation from the Raman spectral oscillations, and Fig. 2 shows
the so-determined shape of the bubble. In Fig. 1, a second
minimum is observed next to +B3,−B3 which are assumed
to be at the same height. When calculating the field near
the SiO2 (100 nm)/Si substrate, the optical standing wave
near the substrate has a local intensity which varies between
0.43 and 1.85 times the intensity in the incident beam [8].
The smaller amplitudes of the oscillations at the center are
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FIG. 2. The position of graphene above the substrate at the laser
spot is deduced from the Raman spectral oscillations in Fig. 1.
The bubble is higher at the center (“swelling”) due to the higher
temperature; the thermal resistance is highest at the center of the
bubble. The shape obtained from the graphene height (obtained at the
laser spot when scanning across the bubble), can be approximated
by a spherical shape: one for the bubble and one for the swelling
(h1 = 1.05 μm, r1 = 12.7 μm, h2 = 0.9 μm, r2 = 3.8 μm). The verti-
cal scale is enlarged to make the swelling region apparent.

attributed to the fact that the oscillations are closer spaced
and smaller than the size of the focal spot as compared to the
oscillations at the edge of the bubble.

The extracted profile in Fig. 2 shows that instead of a flat
top, the bubble has a pronounced swelling which is 7 µm in
size and 0.6 µm high. Graphene is heated at the laser spot
and the temperature increase is higher in the center region
where the swelling occurs due to its larger thermal resistance.
It is assumed that the shape when illuminated at the center
of the bubble is similar to the shape observed in Fig. 2.
The swelling is smaller when the laser spot is slightly off
center, and it is assumed that the shape will be similar but
asymmetric. It is important to bear in mind that the bub-
ble shape under illumination is not directly measured and
that the profile shown in Fig. 2 corresponds to the height of the
bubble when illuminated at a particular location on the bubble.
The bubble’s increased height at the center indicates that the
elastic constants and thus bending rigidity are reduced there.
The volume change is small because the pressure change is
small inside the bubble. The profile of this central region is
most likely similar to that shown in Fig. 2 when the laser
spot hits the bubble at the center. The higher curvature in the
“swelling region” means that the graphene elastic constant
is significantly reduced “in the swelling region” where the
temperature reaches more than 1000 ◦C. Clearly the size of the
swelling coincides with the region with temperatures higher
than 1000 ◦C (Fig. 3). The solid line in Fig. 2 shows a hemi-
spherical bubble shape which is adjusted to the bubble cross
section (radius 12 µm, height 1 µm). While the shape of the
bubble is not exactly spherical due to its constraints from the
edge, deviations from a spherical shape were not observed and
are considered to be small [5]. We note that the x and y axes
are not at the same scale and hence the spherical shape of the
bubble is not apparent. The larger curvature in the “swelling
region” (radius: 3.5 µm, height h = 0.6 µm) implies a larger
strain (2%) calculated from radius and height. Adopting this
strain-induced reduction for the Raman band frequency of
graphene this would imply a down shift of 40 cm−1 which

FIG. 3. Deduced temperature across the bubble from points A
and B in Fig. 1. The bubble temperature is above 1000 ◦C every-
where other than the edge. The temperature in the central region
of the bubble is higher but not well determined. The red curve
shows the temperature deduced from finite element analysis
(Sec. III C). The maximum temperature (full line) and mean tem-
perature (dashed line) across the bubble profile are shown.

is larger than the total reduction 29 cm−1. This indicates ei-
ther that the reduction of the elastic modulus in the swelling
reduces the strain-induced down shift of the Raman G band
or the graphene expansion is significantly larger at 1000 ◦C.
As a result, the deduced temperature for the swelling is not
accurate since the temperature-induced shift depends on the
elastic constants.

From the radius and height of the bubble and also of the
swelling region the volume and the surface of each can be
calculated yielding 208 µm3 and 6 µm3 and 418 µm2 and
24.5 µm2, respectively. The volume of the swelling corre-
sponds to 2.9% of the bubble volume and 5.9% of the bubble
surface. The surface of this “spherical cap” (“swelling re-
gion”) can be compared with the surface without this local
curvature due to local swelling, which gives an 0.8% increase
for the bubble (whole bubble) and 3.3% increase for the
swelling due to the large curvature.

Figure 3 shows the deduced temperature across the bubble
for the minima and maxima. Using the reported temperature-
induced shift of the G band 0.015 cm−1K−1 [11], we may
deduce that the temperature reaches 1000 ◦C at B3. In Fig. 1
three large oscillations are seen in the outer region (labeled
with A and B) and smaller oscillations are seen in the central
region (arrows). The temperature in the center of the region
cannot be deduced by the Raman shift since the strain-induced
shift is modified due to the smaller elastic constants and is not
known as such, however, the temperature at the edge can be
deduced.

III. THERMAL TRANSPORT

In our earlier work, analytical expressions were derived for
the temperature distribution when the bubble is illuminated
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at its center and the temperature distribution for of-center
illumination was obtained numerically [5]. Here, we show that
analytical expressions can be obtained also for off-axis illumi-
nation. For completeness, the derivation of the expression for
on-axis illumination is included. As a first step we consider
only heat conduction within the graphene layer of the bubble
with a fixed temperature at the edge. As the bubble height is
considerably smaller than the diameter, the bubble is repre-
sented by a flat disk of radius r2 which is illuminated through
a circular spot with radius r1. Since heat loss through radiation
is less than a couple of percent and through convection is less
than 0.2% they are both neglected. Further heat loss through
the fluid in the bubble is at first neglected (Sec. III A) and then
considered in detail in Sec. III B.

A. Heat conduction through graphene only

The effect of the laser spot on graphene is considered by
placing the laser beam at the center of the bubble and assum-
ing that the graphene is a thermally thin layer of thickness
z. The heat equation for steady-state and constant thermal
conductivity k is then, using cylindrical symmetry

d

dr

(
r

dT

dr

)
= 0, (1)

and integration yields T (r) = A1 ln(r) + A2, where A1 and A2

are constants that can be determined by considering the two
following boundary conditions:

Q = −k2πr1z

(
dT

dr

)
r=r1

, (2)

T (r2) = T2. (3)

The constants A1 and A2 can then be eliminated to give

T (r) = −Q

2πkz
· ln

(
r

r2

)
+ T2. (4)

In terms of thermal resistance (Rth) for r1 < r < r2 the tem-
perature distribution is:

T (r) = Q · Rth(r) + T2, (5)

where the thermal resistance Rth(r) between r and r2 is defined
by

Rth(r) = − ln(r/r2)

2πkz
, (6)

when placing the laser spot on the bubble but off center,
the temperature distribution is no longer one dimensional.
However, a coordinate transformation can be used to obtain
again a one-dimensional temperature distribution following
Carslaw and Jaeger [12]. This transformation uses the fact
that if ξ and η are conjugate functions of x and y defined
so that ξ + iη = f (x + iy). The temperature distribution T
satisfies the Laplace equation in the ξη-plane if it satisfies it
in the xy-plane. For two nonconcentric circles, the following
conjugate functions ξ and η of x and y are considered:

ξ = ln

(
BM

AM

)
, (7)

η = β1 − β2, (8)

where A and B are two points in the xy-plane at coordinates
(δ;0) and (−δ;0), respectively, and M is the point where the
temperature needs to be determined at coordinates (x; y). β1

and β2 are the angles ∠(
−→
Ox;

−→
AM ) and ∠(

−→
Ox;

−→
BM ) made by

AM and BM with the x axis (in the positive direction). With
this transformation, the xy-plane is given by −π < η < π and
−∞ < ξ < +∞. ξ is expressed as a function of x and y:

ξ = 1

2
ln

(
(x + δ)2 + y2

(x − δ)2 + y2

)
. (9)

For two nonconcentric circles in the xy-plane located at C1

and C2 on the x-axis (i.e., η = 0) and separated by the distant
�, this transformation makes the problem one dimensional in
the ξη-plane. The larger circle is defined by ξ2, while the
smaller circle is defined by ξ1 and two diametrically opposite
points of a circle have the same coordinate ξ . If for circle 1

ξ1 = ln

(
xC1 + r1 + δ

xC1 + r1 − δ

)
= ln

(
xC1 − r1 + δ

xC1 − r1 − δ

)
. (10)

It can be deduced that

δ2 = x2
C1

− r2
1 , (11)

the same is valid for circle 2

δ2 = x2
C2

− r2
2 . (12)

Using � = xC2 − xC1 , it follows that

xC1 = (
r2

2 − r2
1 − �2

)
/2�, (13)

and

xC2 = (
r2

2 − r2
1 + �2

)
/2�, (14)

and δ can be deduced from the coordinates of locations of the
center of the two circles

δ =
√(

r2
2 − r2

1 − �2

2�

)2

− r2
1 =

√(
r2

2 − r2
1 + �2

2�

)2

− r2
2 .

(15)
It follows that

ξ1 = ln

⎛
⎜⎝xC1 +

√
x2

C1
− r2

1

r1

⎞
⎟⎠ = arcosh

(
xC1

r1

)
, (16)

ξ2 = ln

⎛
⎜⎝xC2 +

√
x2

C2
− r2

2

r2

⎞
⎟⎠ = arcosh

(
xC2

r2

)
. (17)

In the ξη-plane the temperature field is the solution of the one-
dimensional Laplace equation

∂2T

∂ξ 2
= 0, (18)

and since the temperatures T1 and T2 are constant on the two
circles ξ = ξ1 and ξ = ξ2, the solution depends only on ξ and
is

T = T1
ξ − ξ2

ξ1 − ξ2
+ T2

ξ1 − ξ

ξ1 − ξ2
. (19)

Knowing the one-dimensional temperature field in the ξη-
plane, and integrating the Fourier law on the circle 1, the
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absorbed heat power Q can be expressed as a function of ξ1

and ξ2:

Q = −2kπr1z

(
dT

dξ

)
ξ=ξ1

= −2πkz
T1 − T2

ξ1 − ξ2
. (20)

The thermal resistance between the two circles is

Rth = T1 − T2

Q
= ξ1 − ξ2

2πkz
. (21)

Using the relation

arcosh(u) − arcosh(v) = arcosh(uv −
√

(u2 − 1)(v2 − 1)),

(22)

and the expression of the thermal resistance in the case of off-
center illumination is finally

Rth = 1

2πkz
arcosh

(
r2

1 + r2
2 − �2

2r1r2

)
(23)

and the temperature at the periphery of the laser spot is

T1 = Q · Rth + T2. (24)

The isotherms T are then, in the Cartesian ξη-plane, an
iso-ξ of coordinate

ξ = ξ2 − (ξ2 − ξ1)(T − T2)/RthQ. (25)

In the case of off-center illumination, the isotherms are dis-
placed circles whose location of the center xC (T ) and radius
r(T ) are (Fig. 4) given by

xC (T ) = − δ cosh ξ

1 + cosh ξ

1 + eξ

1 − eξ
= δ

e2ξ + 1

e2ξ − 1
, (26)

r(T ) = − δ

1 + cosh ξ

1 + eξ

1 − eξ
= δ

2eξ

e2ξ − 1
. (27)

While the amount of laser power absorbed by the bilayer
graphene is 4.6%, the laser power at a particular distance from
the substrate varies due to the formation of optical standing
wave. Taking into account the index of refraction of Si and
SiO2 the power at a maximum of the optical standing is 1.8
times the power of the incident field for Si/SiO2 substrate.
Note that this is not in contradiction with energy conserva-
tion because when averaged over the optical standing wave
only 0.9 times of the laser power is available. That means
0.046 × 1.8 = 0.083 of the laser power is absorbed in the
graphene in the standing wave maxima.

B. Symmetric heat conduction through graphene
including gas in bubble

Graphene exchanges heat with its environment either
through convection with air and radiation. The air inside the
bubble, however, is confined preventing any convection to
occur. Applying the energy balance between two circles of
radius r and radius r + dr at the center of the bubble in the
radial and perpendicular direction

2πkz
d

dr

(
r

dT

dr

)
− 2πhr(T − Tenv) = 0, (28)

along with the boundary conditions described by Eqs. (2)
and (3). Using θ = T − Tenv the energy balance can be

FIG. 4. Temperature distribution and isotherms on bubble when
illuminated with laser spot in off-axis position. Temperature exceeds
2000 ◦C near laser spot.

rewritten as

d2θ

dr2
+ 1

r

dθ

dr
− h

kz
θ = 0. (29)

This later equation is a zero-order Bessel differential equa-
tion with the solution

θ (r) = T (r) − Tenv = k1J0(iβr) + k2Y0(−iβr), (30)

where J0 and Y0 are Bessel functions of the first kind and
second kind, respectively, and with

β = (h/zk)−1/2.

The constants B1 and B2 can be expressed using the boundary
conditions

B1J0(iβr2) + B2Y0(−iβr2) = θ2, (31)

i B2βY1(−iβr1) − i B1βJ1(iβr1) = Q

2πzkr1
, (32)

and expressions for B1 and B2 are then

B1 = [2πzkr1βθ2Y1(−iβr1) − iQY0(−iβr2)]/D, (33)

B2 = [−2πzkr1βθ2J1(iβr1) + iQJ0(iβr2)]/D, (34)

with

D = 2πzkr1β[J1(iβr1)Y0(−iβr2)

+ J0(iβr2)Y1(−iβr1)].
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FIG. 5. Temperature at center of graphene sheet as function of
heat transfer coefficient h.

When including heat loss caused by convection and radia-
tion the heat conduction through the bubble wall is no longer
independent of the radial position of the laser spot. A thermal
resistance can, however, be defined as follows:

Rth = (T1 − T2)/Q = (T (r1) − T2)/Q, (35)

where T (r1) is calculated using Eqs. (30), (33), and (34), and
after substitution

Rth = (Tenv − T1)/Q + i[Y0(−iβr2)J0(iβr1)

− J0(iβr2)Y0(−iβr1)]/D.

The calculated temperature as a function of heat transfer
coefficient h at the graphene surface is shown in Fig. 5. To
reach a temperature at the center of the bubble of 1050 to
1200 ◦C according to experimental results, see Fig. 3, the
heat transfer coefficient h must be in the range of 20 000
to 40 000W m−2K−1. Assuming the gas in the bubble is air
with a thermal conductivity of 0.02 W m−1K−1, this heat
transfer coefficient corresponds to an equivalent conductive
layer varying from 1 to 0.5 µm which is compatible with the
height of the bubble shown in Fig. 2. This shows that the heat
transfer rate through the gas inside the bubble is not negligible
and needs to be taken into account. It represents 53% and up
to 74% when h varies from 20 000 to 40 000 W m−2 K−1.

C. Asymmetric heat conduction including gas inside bubble

When the laser spot is off center, the temperature field is
three dimensional for the gas inside the bubble. No analytical
solution of the heat equation can be found and temperature
distribution can be obtained by numerical finite volume cal-
culations. The finite volume method takes into account a
spherical cap and the bubble wall. Figures 6 and 7 show the
mesh structure used for the numerical calculations. The mesh
density is larger at the boundaries to account for the large
contrast of the thermal conductivity in the bubble wall and
the gas inside the bubble.

The heat transfer above the graphene bubble is neglected
and it is assumed that the silicon substrate remains at room
temperature; the edge of the bubble is maintained at room tem-
perature. The laser spot is modeled by a constant heat flow rate
imposed on a disk of radius 0.5 µm that is located at variable

FIG. 6. Mesh structure (grey) in bubble wall and in vertical plane
(yellow) across bubble. Laser spot shown in (blue). Rectangle on top,
left side shows variation of mesh size in vertical plane. Rectangle on
top, right side shows variation of mesh in bubble wall near border.

radial position. Symmetry allows to reduce the calculation to
half of the bubble. The calculations are carried out using a
commercial software (STAR-CCM+, Siemens) which allows to
solve the heat equation in the graphene layer using the thin
layer coupled with a full three-dimensional gas volume. The
heat flow in the bubble wall was considered two dimensional
(shell) while in the gas inside the bubble the heat flow was
considered three dimensional (see Siemens Simcenter STAR-
CCM + software for details).

The gas volume is small and narrow, particularly near the
bubble border where the section in the radial direction is
triangular. After testing mesh convergence, a highly refined
mesh was chosen (10 619 242 polyhedral cells in the air
and 3 119 582 shell cells in the graphene, see Figs. 6 and 7
to model correctly the high contrast of thermal conductivity
(kg/k f ≈ 50 000). The numerical solution is reliable since (i)
the residual is low and stable; (ii) the local and individual
heat balances is observed (less than 0.1% error). The nu-
merical calculation was also applied to the symmetric case
described in Sec. III A to test the numerical calculations.
Excellent agreement was obtained. The temperature of the

FIG. 7. Detailed view of mesh used in the numerical calculation
at the edge between laser spot, bubble wall, and vertical plane across
bubble. Mesh density increases near the border to accommodate large
contrast in thermal conductivity.

195433-6



PROBING ELASTIC PROPERTIES OF GRAPHENE AND … PHYSICAL REVIEW B 107, 195433 (2023)

FIG. 8. View from top of bubble and temperature field in
graphene and in gas inside bubble along symmetry plane for laser
spot centered at half radius, substrate temperature was 27 ◦C.

silicon substrate was verified to stay within 5 K of 300 K
during preliminary calculations and 300 K in the results pre-
sented here.

The calculations were first carried out considering constant
thermal conductivity and heat capacity and then compared
to when including the temperature dependence of the heat
conductivity. A significant influence was observed due to the
temperature variation of the thermal conductivity. The thermal
conductivity of the fluid varies by one order of magnitude
in the considered temperature range (0.025 W m−1 K−1 at
300 K and 0.2 W m−1 K−1 at 1300 K).

The laser spot was first placed at the center of the bubble
and the calculated temperature profile in the graphene, the
heat flow rate distribution within the graphene and the trapped
gas is stored. The laser spot was then placed on various
off center positions and the calculation repeated. For each
position of the laser spot the heat flow rate has been varied
according to the possible limiting values of the reflectance of
the substrate (0 < 
 < 1).

It is noted since the results described below are expressed
in terms of heat flow rate, they can also be used if the laser
power or the graphene absorbtion differs from the values used
here.

An example of the temperature field obtained is shown
shown in Fig. 8 in the case the laser spot being located
at xC2 − xC1 = r2/2. The maximum temperature rises up to
more than 1000 ◦C at the center of the laser spot and sharply
decreases in the radial direction. It is observed that in the
region where the heat flow rate is fixed the temperature varies
strongly, although the diameter of this zone is small: in Fig. 8
the temperature at the center of the laser spot is about 1040 ◦C
while the average temperature is 940 ◦C.

The maximum and mean temperatures of the spot re-
gion are then determined for various laser spot locations
and are compared to the experimental results in Fig. 3. A
good agreement with the experimental results is obtained and
the maximum calculated temperature remains in between the
maxima and minima of the Raman oscillations for all laser
spot positions.

D. Discussion of the volume element analysis

The heat flow from the laser spot to the substrate can be
described as the superposition of the heat flow from the spot

FIG. 9. Maximum and average spot temperature as function of
distance between center of the graphene and center of laser spot:
comparison of numerical results (symbols) with Eqs. (36) to (38)
(lines). Average temperature: empty symbols and dashed lines; max-
imum temperature: plain symbols and plain lines.

to the substrate through graphene alone and a series of radial
heat flows through graphene. The ratio of these two main
contributions depends predominantly on the spot location.

It is important to note that the temperature reached in
graphene at the laser spot (1040 ◦C) when including heat
conduction though the air inside the bubble is significantly
lower than when considering only heat conduction through
graphene (2100 ◦C).

The results of the finite volume analysis was to confirm a
semi-empirical correlation of the temperature of the laser spot
versus its position which is independent of the laser power, the
absortivity of graphene, and the reflectance of the substrate. To
derive this correlation we compare the bubble graphene ther-
mal resistance (i.e., thermal resistance of {graphene-trapped
gas}) with the thermal resistance Rth of the graphene alone
which is given by

Rth(�) = 1

2πkz
arcosh

(
r2

1 + r2
2 − �2

2r1r2

)
. (36)

The bubble thermal resistance is derived from the numerical
temperature field by either (Tmax − T2)/Q or (Tmean − T2)/Q
depending upon the temperature under consideration. The
correlation so obtained is given by

T (�) = Tenv + Q

(
� − T (� = 0)

1000

)
[Rth(�)]

4
5 , (37)

with

T (� = 0) = Tenv + �Q[Rth(� = 0)]
4
5

1 + Q
1000 [Rth(� = 0)]

4
5

. (38)

The value of � depends upon the temperature in the laser
spot, and either the maximum (� = 12) or the mean value
(� = 10.8) is adopted.

Both maximum and mean spot temperatures calculated
with Eqs. (36), (37), and (38) are compared to the numeri-
cal results in Fig. 9 for three different heat flow rates, good
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overall agreement is observed between numerical and analyt-
ical calculations.

IV. ELASTIC PROPERTIES

In was shown that large graphene bubbles can be described
by an elastic membrane [13]. This is justified by the small
height compared to its diameter. The bubble has, in this case,
a kink at the edge and the deflection of the membrane into a
bubble implies radial and circumferential strain components.
The strain at the edge is uniaxial and at the center it is equibi-
axial [13]. At equilibrium the total energy is minimized which
yields expressions for the pressure difference and the adhesion
energy. The adhesion energy and pressure difference can then
be expressed as a function of the ratio of the bubble height
and the radius of the bubble, the elastic modulus of graphene
and its Poisson’s ratio [13]. Recently it was reported [14] that
the shape of the bubble which can be described by a function
of the ratio of the bubble height to radius with an exponent q:
that varies between 2 and 2.3 depending on the ratio of height
to radius. Taking the height and radius of the bubble in Fig. 2
q = 2.15 [14]. The adhesion energy is given by


 = 5

8φ
E

(
h

a

)4

, (39)

where E is the elastic modulus of graphene, h the bubble
height, a the bubble radius, and φ is a function of the Poisson’s
ratio ν,

φ = 75(1 − ν2)

8(23 + 18ν − 3ν2)
, (40)

and ν = 0.16 [13].
Assuming that the same relations apply to the swelling,

the elastic modulus of graphene in the swelling region can be
deduced by the ratio of the height to radius

Es = Eb ·
(

hbas

hsab

)4

. (41)

Using for the diameter and height of the swelling and
the bubble as, ab and hs, hb, 3.6, 12.7 and 0.6, 1.0 yields
Es = 0.57 · Eb. This means the elastic modulus above 1000 ◦C
is reduced by at least 43% of its value at room temperature.
However, the dependence on the fourth power makes the result
depend strongly on the errors in the measurement of the h
and a. Assuming a relative error in the measurement of the
radius and height of of 3% results in overall error of 24%. The
value given here represents a lower limit of the reduction of
the elastic modulus at 1000 ◦C.

Alternatively, the reduction of the Young’s modulus can
be estimated by the temperature dependence of bending
rigidity of graphene using molecular dynamics simulations
[15]. Bending rigidity in graphene is reduced from 0.88 eV
to 0.46 eV when increasing the temperature from room tem-
perature to 1000 ◦C [15], a reduction of 52%. The graphene
we consider is a bilayer graphene. Bending rigidity for a plate
is proportional to the third power of the elastic thickness, but
drastically reduced in few-layer graphene. Bending stress is
relieved through shear and slip rather than in-plane stress.
For bilayer graphene the bending rigidity is double the value
for single-layer graphene [16]. The reduction of the bending
rigidity with temperature is assumed the same and accordingly
the same reduction of the Young’s modulus with temperature
is assumed. Since the bending rigidity is proportional to the
Young’s modulus for membranes this means that the Young’s
modulus is reduced by the same amount, which is reasonably
consistent with reduction of 43% in the Young’s modulus
described above.

V. CONCLUSION

Laser heating of “large” graphene bubbles enabled heating
graphene bubbles above 1000 ◦C. Reduction of the Young’s
modulus and bending rigidity at elevated temperature leads
to the appearance of a swelling on the bubble. The swelling
geometry is deduced from Raman G band oscillations which
measure the distance of the graphene with respect to the sub-
strate under laser excitation. When taking into account heat
transport through graphene only, analytical expressions for
the temperature are derived. The so-determined temperature
exceeds 2000 ◦C at the center of the bubble. When including
heat conduction through the gas inside the bubble employing
finite volume analysis, it is found that heat conduction through
the gas in the bubble is significant and lowers the maximum
temperature at the center of the bubble to below 1400 ◦C.
Semi-empirical expressions were deduced for the temperature
distribution as a function of the position of the laser spot. The
appearance of a swelling in large graphene bubbles when laser
heated might eventually find application for creating a central
hole in graphene membranes.
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