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Nonlinear density waves on graphene electron fluids
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The hydrodynamic behavior of charged carriers leads to nonlinear phenomena such as solitary waves and
shocks, among others. As an application, such waves might be exploited on plasmonic devices either for modula-
tion or signal propagation along graphene waveguides. We study the nature of nonlinear perturbations following
an approach similar to Sagdeev potential analysis and also by performing the reductive perturbation method
on the hydrodynamic description of graphene electrons, taking into consideration the effect of Bohm quantum
potential and odd viscosity. Thus, deriving a dissipative Kadomtsev-Petviashvili-Burgers (KPB) equation for the
bidimensional flow as well as its unidimensional limit in the form of Korteweg–de Vries–Burgers (KdVB). The
stability analysis of these equations unveils the existence of unstable modes that can be excited and launched
through graphene plasmonic devices.
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I. INTRODUCTION

The advent of graphene, and other two-dimensional ma-
terials, opened the way for remarkable and exciting physics
and phenomena, particularly in the domains of charge trans-
port and plasmonics where high mobility of electrons is
required. Such areas are crucial to the development of next-
generation devices that are compatible with integrated circuit
technology [1], such as transistors [2], quantum dots [3],
radiation detectors, and emitters or waveguides [4]. Indeed,
the absence of gap in monolayer graphene, being problematic
for digital devices, placed the focus of research on con-
tinuous wave applications, especially in the highly sought
after THz range [5]. Much of the research on the THz
problem in graphene devices take place within the hydrody-
namic framework [5–8], a feature that has been motivated
by the recent theoretical and experimental works supporting
the hydrodynamic regime of electrons in graphene [9–16].
Recent works in graphene hydrodynamics involve viscome-
try [17,18], electron-phonon coupling [19,20], and nonlocal
resistivity [21–23]. Consequently, the investigation of hydro-
dynamic plasmonic instabilities has received a new breath
within the different communities, namely through mecha-
nisms such as Coulomb drag [24,25], and Dyakonov-Shur and
Ryzhii-Satou-Shur instabilities [26–29], the plasmonic boom
instability [30] and surface-plasmon polaritons [31,32].

A prominent advantage of the hydrodynamic formula-
tion of graphene electrons in respect to the quantum kinetic
formulations is the study of nonlinear phenomena: the hy-
drodynamic equation is more suitable for analytical and
numerical methods [33], despite ignoring some microscopic
aspects of the momentum distributions in out-of-equilibrium
situations. Though the nonlinear effects in optical setups—
resorting to surface plasmon polaritons—have been reported
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[34–36], the study of nonlinear dynamics in graphene plas-
monic systems is still elusive.

In this article, we explore the dynamics of nonlinear elec-
tron waves in graphene field-effect transistors (gFETs) within
the framework of the hydrodynamic transport, achievable
provided the following scale separation between the electron-
electron free path (�e−e), the inelastic free path (�e−imp), and
the system size (L) [9,10]

�e−e � L � �e−imp, (1)

a condition that has been reported in several experimental
papers [12–15]. Despite the apparent simplicity of treating the
electron transport in graphene via hydrodynamic equations,
there are three major points which set this models apart from
regular hydrodynamics. The first one is the fact that the effec-
tive mass is compressible and relativistic, i.e., depends on the
number density n and on the flow speed v = |v| as [37]

M = m�

1 − v2/v2
F

, (2)

where m� = h̄
√

πn/vF is the Drude mass [10,29,38]. Sec-
ondly, the existence of a nondiffusive, odd viscosity term,
arising in two-dimensional systems with broken time-reversal
symmetry [39], arising either from the presence of magnetic
fields [40,41] or from anisotropy of the Fermi sphere [42].
Finally, it has recently introduced corrections in the form of
a quantum (Bohm) potential [43,44], which can be obtained
from a more complete quantum kinetic description [37]. All
of these factors contribute to a peculiar competition between
dispersion and nonlinearity in the graphene hydrodynamics,
which has profound implications in the physics of the nonlin-
ear, as we explain below.

In order to examine the several possibilities that lead to
nonlinear waves, this work is organized in the following man-
ner: in Sec. II, the base hydrodynamical model is presented;
then, in Sec. III, we derive the Hamiltonian description of
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finite amplitude one-dimensional waves in the absence of
viscosity. In Sec. IV, we proceed to a perturbative method that
allows us to deal with viscous terms, and finally, concluding
remarks are presented in Sec. V.

II. GRAPHENE HYDRODYNAMIC MODEL

We consider monolayer graphene in the field-effect tran-
sistor (FET) configuration, in which the gate—located at
a distance d0 away from the graphene sheet—effectively
screens the Coulomb interaction between carriers [28]. In the
fully degenerate limit, where the Fermi temperature is much
higher than room temperature, the flow of electrons in gated
graphene can be described by the following hydrodynamic
model [29,37], comprising the continuity equation

∂n

∂t
+ ∇·(nv) = 0, (3)

and the momentum conservation equation

∂

∂t
(nm�v) + ∇ · (nm�v ⊗ v) + ∇ · � + en∇φ

+ Bm�
0√

n0
∇ · (∇⊗∇√

n) = 0. (4)

Here, n and v = (u, v) are the density and the velocity fields,
φ is the electrostatic potential, � is the stress tensor. The
last term in Eq. (4) is the quantum (Bohm) potential re-
cently derived in Ref. [37], with magnitude governed by the
quantum mechanical coefficient B = n0 h̄2/(32m�

0
2), given in

terms of the equilibrium density n0 and equilibrium mass m�
0.

The stress tensor comprises both the Fermi quantum pressure
p = h̄vF

√
πn3/3 and the shear and odd viscosities ηs and ηo

such that [40]

∇ · � = ∇p − ηs∇2v − ηo∇2(v × ẑ). (5)

Regarding the electric potential φ, we assume the gradual-
channel approximation [6,45], i.e., the electric potential is
dominated by the gate potential, which effectively screens
the Coulomb potential in the long wavelength limit kd0 � 1.
Thus, the electrostatic force term in Eq. (4) reads

∇φ � ed0

ε0εr
∇n + ed3

0

3ε0εr
∇∇2n + O

(
d5

0

)
, (6)

where d0 and ε0εr are the thickness and permittivity of the
dielectric between the gate and graphene. The second term in
the expansion of Eq. (6) gives origin to dispersive corrections
of order ∼d0/L to the plasmon velocity, and the associated
effects were described in Ref. [46]. Here, we are interested
in long channel devices with strong gate shielding, mean-
ing that d0/L � 1; hence, we will retain only the first-order
term and drop further corrections. Nonetheless, if desired, the
next-order term can be easily incorporated as a rescaling of
the Bohm term, since the differential operator has a similar
structure.

To consider infinitesimal perturbation along the channel,
we linearize Eqs. (3) and (4) around the equilibrium n =
n0 + n1eikx−iωt , v = v1eikx−iωt , which leads to the dispersion

relation

ω = Sk − i
νs

2
k2 − B/n0 − ν2

o + (νs/2)2

2S
k3, (7)

with S = √
e2d0n0/ε0εrm�

0 being the plasmon group velocity
and νs,o ≡ ηs,o/n0m�

0 the kinematic viscosity. Thus, it is clear
that the inclusion of odd viscosity and quantum potential
terms does not impact the attenuation of the plasma waves
but rather enhances the nonlinearity of the spectrum even in
the limit when νs � 1. The presence of this strong dispersion
already hints for the possibility of solitonic solutions, as found
in other quantum [47] and relativistic plasmas [48], and as we
show in what follows.

III. FINITE AMPLITUDE NONLINEAR WAVES

We start by considering the inviscid limit of the model
ηs = ηo = 0 in order to get a better understanding of the Bohm
potential effects. Following the approach by Sagdeev [49,50],
one can look for one-dimensional traveling wave solutions
of Eqs. (3) and (4) by introducing the variable ξ = x − ct ,
with c denoting the wave velocity. This allows us to recast the
hydrodynamic equations as

−cn′ + (nu)′ = 0 (8)

and

− cu′ +
(

u2

4
+ v2

F

2
log n + 2S2

√
n

n0

)′
+ B

n3/2
(
√

n)′′′ = 0.

(9)

Integrating the previous equations once, and imposing the
asymptotic conditions n = n0 and u = 0 at infinity, one gets
the equation of motion governing the density perturbations

Bn′′ − 3B
4n

(n′)2 + n2
0c2

[
1 − n

n0
− log

n

n0

+ v2
F

2c2

(
n2

n2
0

− 1

)
+ 4S2

5c2

(
n5/2

n5/2
0

− 1

)]
= 0. (10)

The latter can then be multiplied by the quantity n′/n3/2 and
be integrated once more to reveal the first integral of motion

J = B (n′)2

2n3/2
+ V (n), (11)

where V is the Sagdeev potential

V (n) = 2n2
0c2

√
n

[
1 − n

n0
+ log

n

n0

+ v2
F

2c2

(
n2

3n2
0

+ 1

)
+ 4S2

5c2

(
n5/2

4n5/2
0

+ 1

)]
(12)

Moreover, by defining the canonical vector (q, p) =
(n,Bn′/n3/2), it can be shown that the Hamiltonian

H (p, q) = p2q3/2

2B + V (q) (13)

retrieves the equation of motion in Eq. (10). Hence, given
the form of the pseudopotential V , it is clear that the two-
dimensional Hamiltonian flow has two fixed points. One

195432-2



NONLINEAR DENSITY WAVES ON GRAPHENE ELECTRON … PHYSICAL REVIEW B 107, 195432 (2023)

FIG. 1. (a) Pseudopotential from Eq. (12) scaled by its value at
the separatrix Vsep. for B = 1, S/vF = 2, and c/vF = 4 (blue solid
line) or c/vF = 1.2 (red dashed line). (b) Transcritical bifurcation
diagram of Eq. (10), showing the position and nature of the fixed
points and the turning point of the separatrix (blue dot-dashed line).
The bifurcation swaps the equilibrium (black solid line) and saddle
(red dashed line) points.

located at (q, p) = (n0, 0) independently of the model param-
eters, besides mean density, and a second point wandering
along the q axis (q, p) = (nc, 0), where nc is a function of
the model parameters. Such two points undergo a transcriti-
cal saddle-center bifurcation governed by the parameter μ =
c2/(S2 + v2

F /2) − 1 as made evident by Fig. 1, where we
can see the fixed points colliding and swapping their nature.
Furthermore, the position of the mobile fixed point is taken
to be, up to first order, nc/n0 ≈ c2/(S2 + v2

F /2). The nature
of this bifurcation ensures persistence of the stable center
and saddle pair, and thus one can deduce the occurrence of
nonlinear oscillations around the center point, provided that
the Hamiltonian level is lower than that of the saddle point,
which defines the separatrix, i.e., �H = H − Hseparatrix < 0.
Figure 2 illustrates the phase space of the system showing the
stable region enclosed by the separatrix. It is evident that the
system sustains nonlinear oscillations around the stable center
point. Those are similar to cnoidal waves although, in fact, not
elliptic functions, given the nonrational nature of the potential
V (q). Yet, the soliton solutions that live along the separatrix
are more narrow than the usual profile. Moreover, it is interest-
ing to note that, while for μ > 0 the soliton amplitude scales
as A ∼ μ ∼ c2, in the case of μ < 0, i.e., for the slow solitons,
the amplitude strongly deviates from the linearity on μ (cf.
Fig. 1). Particularly in the limit of c → 0 we have A ∼ μ−3/2.

The possibility to maintain and propagate solitary waves
of substantial amplitude can be exploited to transmit pulsed
signals along a graphene channel. However, to accommodate
the dissipative effects on the analysis, we must resort to per-
turbative methods.

FIG. 2. (a)–(b) Phase space of the Hamiltonian defined in
Eq. (13) for B = 1, S/vF = 2, and c/vF = 4 (a) or c/vF = 1.2 (b).
The fixed points (n0, 0) and (nc, 0) are marked by highlighted dots,
and the initial conditions of the oscillatory numerical solutions are
indicated by the arrow tip. Bounded orbits exist inside the separatrix
(red dashed line). (c)–(f) Numerical solutions of orbits on the phase
space. The solitary (c)–(d) and oscillatory (e)–(f) numerical solutions
(red solid line) are compared against cnoidal analytical expressions
of the same amplitude and wavelength (black dashed line).

IV. SMALL AMPLITUDE NONLINEAR WAVES

Although finite amplitude waves can be excited in the
studied inviscid regime, the inclusion of viscous effects is
central to a more faithful description of nonlinear waves in
Dirac electronic fluids. In this section we will deal with the
viscosities, both shear and odd, and with the dynamics in the
transverse direction; to do so, we will now restrict ourselves
to waves in the perturbative regime.

The general procedure to implement the reductive pertur-
bation method (RPM) [51–54] starts with casting the model
Eqs. (3) and (4) in a general quasilinear form[

∂

∂t
+ Ax ∂

∂x
+ Ay ∂

∂y
+ K

(
∂2

∂x2
+ ∂2

∂y2

)

+ Hx
(

∂3

∂x3
+ ∂3

∂x∂y2

)]
U = 0, (14)

with the state vector U = (n, u, v)T and the matrices

Ax =

⎛
⎜⎝ u n 0

S2√
n0n

u
2 0

0 − v
2 u

⎞
⎟⎠, Ay =

⎛
⎜⎝ v 0 n

0 v − u
2

S2√
n0n 0 v

2

⎞
⎟⎠

K =
⎛
⎝0 0 0

0 −νs −νo

0 νo −νs

⎞
⎠, Hx = B

2n2
0

⎛
⎝0 0 0

1 0 0
1 0 0

⎞
⎠. (15)

In the derivation of Eq. (15), we dropped the Fermi pressure.
This approximation is justified since the electrostatic force
dominates over Fermi pressure as S2/v2

F � 1 in most scenar-
ios. Also, the inclusion of the Fermi pressure would simply
translate to a redifinition of the wave velocity at linear order.
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Moreover, we linearized the Bohm term; in fact, only the
zeroth order of Hx plays a role in the RPM as will become
evident in what follows.

A. Dissipative Kadomtsev-Petviashvili equation

Performing a Gardiner-Morikawa transformation [53,54]
on Eq. (14), with the introduction of the set of stretched
variables

ξ = ε1/2(x − λt ),

ζ = εy, and

τ = ε3/2t, (16)

where ε is a small perturbation parameter being also used for
the expansion of the variables

n = n0 + εn1 + ε2n2 + · · ·
u = εu1 + ε2u2 + · · ·
v = ε3/2v1 + ε5/2v2 + · · · (17)

as well as for the matrices, e.g., Ax = Ax
0 + εAx

1 + · · · and so
on. The choice of the exponents of ε is such that propagation
along x is predominant, and the dispersion relation Eq. (7)
remains invariant. Additionally, in order to capture the effect
of the dissipation of the second term on the RHS of Eq. (7),
the shear viscosity must also be scaled as νs = ε1/2ν̃s.

Moreover, in the context of the RPM, we can introduce the
first-order perturbation field ϕ such that

U1 = (±n0/S, 1, 0)T ϕ, (18)

where the plus and minus sign refer to right or left propagat-
ing waves, respectively, and then we can derive a dissipative
generalization of the Kadomtsev-Petviashvili (KP) [55] equa-
tion (see Appendix 1)

∂

∂ξ

(
∂ϕ

∂τ
+ 3 ± 1

4
ϕ

∂ϕ

∂ξ
− ν̃s

2

∂2ϕ

∂ξ 2
± B/n0 − ν2

o

2S

∂3ϕ

∂ξ 3

)

± S

2

∂2ϕ

∂ζ 2
= 0, (19)

akin to what is found in the literature for other quantum
plasmas [56–58].

In the one-dimensional limit of Eq. (19) one retrieves
a dissipative generalization of the well-known Kortweg–de
Vries–Burgers (KdVB) equation

∂ϕ

∂τ
+ 3 ± 1

4
ϕ

∂ϕ

∂ξ
− ν̃s

2

∂2ϕ

∂ξ 2
± B/n0 − ν2

o

2S

∂3ϕ

∂ξ 3
= 0. (20)

This equation admits both oscillatory and shock-type solu-
tions [59–61]. While the traveling shocks may be valuable
for signal propagation engineering schemes, the oscillatory
modes may trigger instabilities that could, in future techno-
logical applications, be harnessed to excite radiative emission.

Regarding the instance of unstable modes, let us devote our
attention to right-propagating solutions, setting χ = ξ − cτ as
independent variable, Eq. (20) can be cast to the dimension-
less form

−ϕ′ + ϕϕ′ − εϕ′′ + βϕ′′′ = 0, (21)

FIG. 3. Parameter space regions with distinct qualitative behav-
ior, bounded by ε4 = 16β2. Regions II, III, VI, and VII only sustain
bounded solutions along the heteroclinic orbit connecting the two
fixed points. Whilst the remaining areas (labeled with o.) feature os-
cillatory solutions, either decaying or growing in time. Shaded region
ε � 0 indicating the achievable region of positive shear viscosity.

with

ε ≡ ν̃s

2cL
and β ≡ B/n0 − ν2

o

2ScL2
, (22)

such that the global stability and qualitative behavior of
Eq. (21) can be analyzed in terms of such parameters, as we
show below. Integration of Eq. (21) yields

−ϕ + 1
2ϕ2 − εϕ′ + βϕ′′ = r, (23)

with r being an integration constant. Requiring the perturba-
tion field to vanish at infinity, we set r = 0. As such, the flow
linearization around the fixed points of Eq. (23), to wit,

(ϕ−, ϕ′
−) = (0, 0) and (ϕ+, ϕ′

+) = (2, 0), (24)

yields the eigenvalues

λ1,2(ϕ−) = ε ±
√

ε2 + 4β

2β
and (25)

λ1,2(ϕ+) = ε ±
√

ε2 − 4β

2β
. (26)

As consequence, the global behavior of the dynamical system
can be categorized by the regions bounded by ε2 ± 4β = 0 as
illustrated in Fig. 3, while the behavior of the fixed points is
listed in Table I.

Equation (21) can be seen as a combination of KdV
and Burger’s equations and, indeed, its solutions present a
crossover between the characteristic solutions of either KdV
and Burger’s, corresponding to the limits of negligible viscos-
ity or dispersion, respectively.

Notably, for regions I, IV, V, and VIII, i.e., |β| > ε2/4 the
eigenvalues of one of the fixed points are complex conjugates,
leading to stable (region IV) or unstable (region I) spirals.
And, even though the presence of viscosity breaks the homo-
clinic orbit, the system sustains oscillatory solutions, either
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TABLE I. Schematic diagrams and behavior of the phase portrait
of Kortweg–de Vries–Burgers equation [Eq. (23)] around the fixed
points for the regions of parameters I through VIII.

Region Phase Portrait Behavior ϕ− Behavior ϕ+

I saddle unstable spiral

II saddle unstable node

III stable node saddle

IV stable spiral saddle

V unstable spiral saddle

VI unstable node saddle

VII saddle stable node

VIII saddle stable spiral

decaying or increasing in time (cf. Fig. 4). For longer times,
the self-growing modes will either collide with the hyperbolic
point, reaching a local equilibrium, or not being able to sup-
port themselves indefinitely and the nonlinear effects of the
next order terms (that is, the response of n2, u2 and so on) will
lead to the saturation or collapse of the wave. Nonetheless,
even if short-lived, these modes can be used to trigger or
reinforce other wave instabilities.

Further, for |β| < ε2/4, as all eigenvalues are real, the only
bounded solutions are those advancing on the heteroclinic
orbit ϕ′ = (ϕ2/2 − ϕ)/ε connecting the fixed points. Conse-
quently, the allowed solutions are sigmoidlike shock waves,
similar to the solutions of Burger’s equation. In particular,
for |β| = 6ε2/25 there is an analytical solution [62,63] in

the form 8
3 (1 + e(ξ−cτ−C1 )/

√
6)−2, for other values of the ratio

β/ε2 the numerical solutions follow a similar profile.
It has been argued in Ref. [64] that only the shock solutions

can have physical significance, the reasoning being that in the
common scenarios—often astrophysical ones—the parame-
ters of KdVB equation are not independent. However, in our
system the coefficients are determined by a variety of physical
parameters that can be set independently, viz., permittivity and
thickness of the dielectric, Fermi level of the carriers, and both
viscosities.

B. Modulational instability and nonlinear Schrödinger equation

So far in this work, we considered only unmagnetized sce-
narios, where the quantum correction of the Bohm potential
is crucial for the dispersive behavior of the waves. However,
in the presence of a magnetic field, the onset of the cyclotron
frequency (ωc) gap in the dispersion relation causes the mag-
netic effects to dominate over those of the quantum potential.
Therefore, we will now drop the Bohm contribution and focus
on the nonlinear effects under a magnetic field.

Introducing a weak magnetic field [29] to the model, with
the addition of a ωcv × ẑ source term in Eq. (4), leads to yet
another nonlinear behavior: the emergence of modulational
instability. Indeed, from the hydrodynamic model written as[

∂

∂t
+ A

∂

∂x
+ K

∂2

∂x2
+ B

]
U = 0, (27)

we can obtain the dispersion relation

ω2 = ω2
c + S2k2 + ν2

o k4 − 2νoωck2. (28)

Then, following once again the prescription of the reductive
perturbation method, now for the wave amplitude envelope

U = U0 +
∞∑

p=1
|�|�p

ε pU(�)
p e−i�(ωt−kx), (29)

FIG. 4. Phase space (left, streamline plots) and numerical solutions (right, red solid line) of Eq. (21) for the positive viscosity regions,
showing: (a) the growing oscillations ε = 0.1, β = 1, (b) shock propagation ε = 0.1, β = 1, (c) idem ε = 5/

√
6, β = −1, (d) decaying

oscillations ε = 0.1, β = −1. On panel (c) the analytical solution is superimposed (black dashed line) and on (b) a solution of the same form
is also plotted for comparison. At the phase space plots the fixed points (ϕ±, ϕ′

±) are highlighted (red dots).
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and defining the scalar ψ from the first harmonic of the first-
order term and the appropriate right eigenvector of the differ-
ential operator of Eq. (27), i.e., U(1)

1 ≡ (n0,±ω/k, i(k2νo −
ωc)/k)T ψ , one can derive (see Appendix 2 for details) a
nonlinear Schrödinger equation (NLSE) for the perturbation
field, in the form

i
∂ψ

∂τ
+ ω′′

2

∂2ψ

∂ξ 2
+ Q|ψ |2ψ = 0, (30)

where ω′′ ≡ ∂2ω/∂k2 and Q the Kerr-like nonlinear term
which can be cast as

Q = q(ω,ωc, S, νo)

48n2
0ωωc

(
4k4ν2

o − ω2
c

) , (31)

with q a somewhat complex polynomial given by

q(ω,ωc, S, νo) = − 4ωc
(
11ω4 + 9ω2ω2

c − 8ω4
c

) + k2[S2ωc
(
4ω2 + 177ω2

c

) + 16νo
(
3ω4 + 3ω2ω2

c − 20ω4
c

)]
+ 4k4

[
26S4ωc + 3S2νo

(
4ω2 − 57ω2

c

) + 3ν2
oωc

(
7ω2 + 96ω2

c

)]
− 4k6νo

[
24S4 − 231S2νoωc + 8ν2

o

(
3ω2 + 58ω2

c

)] + 32k8ν3
o (43νoωc − 15S2) − 384k10ν5

o , (32)

where the wave vector k is implicitly given by Eq. (28).
Such NLSE is known to foster the development of mod-

ulational instability [53,65]. For the system to be unstable
to modulations, it must comply with the Lighthill criterion
ω′′Q > 0, i.e., to be self-focusing [66]. Since for small νo

the dispersion relation Eq. (28) ensures ω′′ > 0 the region of
instability is determined by Q alone; in fact, there is a region
of parameters that leads to instability, as can be seen in Fig. 5.
In that case, the spectral sidebands of a signal propagating
in the system will grow, and the signal will increasingly
modulate. Furthermore, in the limit of infinite wavelength of
the modulation, the system can transmit a wave packet with
an envelope governed by Eq. (30), i.e., a Peregrine soliton
[67,68], similarly to the situation in optical media where this
type of instability is well known and exploited.

V. CONCLUSION

The hydrodynamics of charged carriers on graphene has
significant differences from regular fluid description of a
two-dimensional electron gas, notably the local Drude mass,
meaning that m�(x, t ) ∝ √

n(x, t ), and the Bohm potential. As
they enhance the dispersive nature of the flow, they favor the
formation of nonlinear waves. We studied two classes of non-
linear waves: finite amplitude waves and perturbative waves.
The former arises from a Sagdeev pseudopotential approach,

FIG. 5. Region of instability for the nonlinear Schrödinger equa-
tion, Eq. (30). In the shaded regions, the positive Kerr term leads to
a self-focusing (unstable) mode.

while the latter stems from a reductive perturbative method
that yields a generalized Kadomtsev-Petviashvili equation.

In the case of waves of general amplitude (although
restricted to high Reynolds numbers), our findings reveal in-
teresting properties: (i) the formation of cnoidal-like waves
that are not given in terms of elliptic functions, (ii) the forma-
tion of solitons, propagating both above and below the group
velocity of the linear plasmons. Remarkably, the latter violate
the usual amplitude-velocity relation obtained for solitons
within the Kortweg–de Vries description [69]. In the per-
turbative scenario, the reduction of Kadomtsev-Petviashvili
equation to the Kortweg–de Vries–Burgers equation ex-
hibits regions of parameters for which oscillating shock
waves are formed. In effect, the numerical solutions denote
the transition between the viscosity dominated regime—in
which the solutions are pure (nonoscillatory) shocks—and
the low viscosity case, for which nonlinear oscillations,
akin to the ones from Kortweg–de Vries equation, super-
imposed with the shock profile are found. Furthermore, we
extended the perturbative analysis of the magnetized case,
retrieving a nonlinear Schrödinger equation and showing
the presence of modulational instability near the cyclotronic
resonance.

All the above points to the possible emergence of rather
interesting nonlinear states, in particular propagating shock
waves and solitons that can be exploited for plasmonic signal
transmission along future graphene wave guides and circuitry.
Moreover, the oscillatory unstable modes have the potential
to drive the emission of radiation or to prompt even fur-
ther unstable modes that we have not yet considered in our
analysis, such as thermal instabilities and shock instabilities.
Conversely, it is also foreseeable that the nonlinear effects
described by our depiction will respond to external stimuli like
radiation and temperature gradients, for instance. Therefore,
they may prove useful also for sensing applications.
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APPENDIX: REDUCTIVE PERTURBATION METHOD

1. Dissipative Kadomtsev-Petviashvili

The general procedure to implement the reductive pertur-
bation method [51–54] starts with recasting the model Eqs. (3)
and (4) in the general quasilinear form of Eq. (14), with
the state vector U = (n, u, v)T and the matrices defined in
Eq. (15). Then, one performs a Gardiner-Morikawa transfor-
mation introducing the set of stretched variables [53,54]

ξ = ε1/2(x − λt ),

ζ = εy, and

τ = ε3/2t, (A1)

with ε being the small perturbation parameter being also used
for the expansion of the variables, as well as for the matrices,
e.g., Ax = Ax

0 + εAx
1 + · · · and so on. Additionally, the shear

viscosity must also be scaled as ηs = ε1/2η̃s and so the matrix
K must be split as K = Ko + ε1/2Ks.

Expanding Eq. (14) as stated, and equating each coefficient
of the ε expansion to zero yields, at the lowest order ε3/2,

(
Ax

0 − λ
) ∂

∂ξ
U1 = 0, (A2)

while at the next order ε2

(
Ax

0 − λ
) ∂

∂ξ
U3/2 +

(
Ay

0

∂

∂ζ
+ Ko

∂2

∂ξ 2

)
U1 = 0, (A3)

and finally, at order ε5/2

(
Ax

0 − λ
) ∂

∂ξ
U2 +

(
Ay

0

∂

∂ζ
+ Ko

∂2

∂ξ 2

)
U3/2

+
(

∂

∂τ
+ Ax

1
∂

∂ξ
+ Ks

∂2

∂ξ 2
+ Hx

0
∂3

∂ξ 3

)
U1 = 0. (A4)

To simplify the previous equations, let the right and left eigen-
vectors of Ax

0 associated with the eigenvalue λ be defined as
L1 and R1. Then, Eq. (A2) will be automatically satisfied if
there is a scalar ϕ that captures the time and spatial evolution,
such that

U1 = ϕR1. (A5)

Moreover, by multiplying Eq. (A4) by L1 on the left, the first
term cancels, therefore yielding

L1R1
∂ϕ

∂τ
+ L1Ax

1R1
∂ϕ

∂ξ
+ L1KsR1

∂2ϕ

∂ξ 2
+ L1Hx

0R1
∂3ϕ

∂ξ 3

= −L1

(
Ay

0

∂

∂ζ
+ Ko

∂2

∂ξ 2

)
U3/2, (A6)

where we also made use of Eq. (A5), and Eq. (A3) can now
be used to simplify the RHS of the latter.

2. Nonlinear Schrödinger equation

To derive the nonlinear Schrödinger equation (NLSE) from
the fluid equations we will, once again, cast the system on its

quasilinear form given by Eq. (27). We limit the discussion
to the case of one-dimensional propagation, and discard the
quantum potential. Also, we only allow for linear source and
diffusion terms, i.e., B ≡ B0 and K ≡ K0, as defined in the
expansion prescription discussed in the previous section. For
our hydrodynamic model, we have

A =

⎛
⎜⎝ u n 0

S2√
n0n

u
2 0

0 − v
2 u

⎞
⎟⎠, K =

⎛
⎝0 0 0

0 −νs −νo

0 νo −νs

⎞
⎠

B =
⎛
⎝0 0 0

0 0 −ωc

0 ωc 0

⎞
⎠. (A7)

We now expand the wave amplitude envelope as

U = U0 +
∞∑

p=1

ε pUp = U0 +
∞∑

p=1
|�|�p

ε pU(�)
p e−i�(ωt−kx), (A8)

and notice that U is a real vector U(−�)
p ≡ U(�)

p
∗
. Also, we

expand the matrix A as

A = A0 +
∞∑

p=1

ε pAp = A0 + εA′[U1]

+ ε2(A′[U2] + A′′[U1U1]) + · · · , (A9)

where we used the following notation

A′[X ] ≡ ∂A
∂uk

Xk = ∂Ai j

∂uk
Xk, (A10)

A′′[XY ] ≡ 1

2

∂2A
∂uk∂um

XkYm = 1

2

∂2Ai j

∂uk∂um
XkYm. (A11)

Making use of the previous expansions and collecting the
terms of Eq. (27), which are of order ε, we have∑

�

W(�)
0 U(�)

1 ei�ϑ = 0, (A12)

with

W(�)
0 = −i�ωI + i�kA0 − �2k2K0 + B0. (A13)

The right eigenvector of the first mode is used to scale the
first-order perturbation, introducing the scalar ψ satisfying the
following equivalence

W(1)
0 U(1)

1 = 0 ⇐⇒ W(1)
0 R(1)

1 ψ = 0. (A14)

Likewise, the second order ∼ε2 terms lead to

∑
�

(
W(�)

0 U(�)
2 + (A0 − λI + 2i�kK0)

∂U(�)
1

∂ξ

)
ei�ϑ

+
∑
�′,m

i�′kA′[U (m)
1

]
U(�′ )

1 ei(�′+m)ϑ = 0, (A15)

which, when equating the modes � and �′ + m, yield the
following relations

U(0)
2 = R(0)

2 |ψ |2, U(1)
2 = R(1)

2

∂ψ

∂ξ
, and U(2)

2 = R(2)
2 ψ2,

(A16)
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with R(�)
2 vectors given by

R(0)
2 ≡ − ikW(0)

0
−1(

A′[R(1)
1

∗]
R(1)

1 − A′[R(1)
1

]
R(1)

1
∗)

,

R(1)
2 ≡ − W(1)

0
−1

(A0 − λ + 2i�kK0)R(1)
1 ,

R(2)
2 ≡ − ikW(2)

0
−1

A′[R(1)
1

]
R(1)

1 . (A17)

Finally, at order ε3 we get

∑
�

(
W(�)

0 U(�)
3 + ∂U(�)

1

∂τ
+ K0

∂2U(�)
1

∂ξ 2

+ (A0 − λI + 2i�kK0)
∂U(�)

2

∂ξ

)
ei�ϑ

+
∑
�′,m

(
ik�′A′[U (m)

1

]
U(�′ )

2 + A′[U (m)
1

]∂U(�′ )
1

∂ξ

)
ei(�′+m)ϑ

+
∑
l, j,n

ilkA′[U ( j)
2

]
U(l )

1 ei(l+ j)ϑ

+ ilkA′′[U ( j)
1 U (n)

1

]
U(l )

1 ei(l+ j+n)ϑ = 0, (A18)

and collecting the first-mode (� = 1) terms, one gets

W(1)
0 U(1)

3 + R(1)
1

∂ψ

∂τ
+ K0R(1)

1

∂2ψ

∂ξ 2

+ (A0 − λ + 2ikK0)R(1)
2

∂2ψ

∂ξ 2

× i2kA′[R(−1)
1

]
R(2)

2 ψ∗ψ2 + ikA′[R(0)
2

]
R(1)

1 |ψ |2ψ

− ikA′[R(2)
2

]
R(−1)

1 ψ2ψ∗ − ikA′′[R(1)
1 R(1)

1

]
R(−1)

1 ψψψ∗

+ 2ikA′′[R(1)
1 R(−1)

1

]
R(1)

1 ψψ∗ψ = 0. (A19)

By multiplying Eq. (A19) by iL(1)
1 , such that L(1)

1 W(1)
0 = 0, we

arrive to

iL(1)
1 R(1)

1

∂ψ

∂τ
+ iL(1)

1

[
K0R(1)

1 + (A0 − λI + 2ikK0)R(1)
2

]∂2ψ

∂ξ 2

− kL(1)
1

(
2A′[R(1)

1
∗]

R(2)
2 − A′[R(2)

2

]
R(1)

1
∗ + A′[R(2)

0

]
R(1)

1

+ 2A′′[R(1)
1 R(1)

1
∗]

R(1)
1 − A′′[R(1)

1 R(1)
1

]
R(1)

1
∗)|ψ |2ψ = 0,

(A20)

which can be read as a nonlinear Schrödinger equation,

i
∂ψ

∂τ
+ 1

2
ω′′ ∂

2ψ

∂ξ 2
+ Q|ψ |2ψ = 0. (A21)

To retrieve the instability criterion and associated growth
rate, one can resort to the ansatz ψ = (

√
P0 + a(ξ, τ ))eiQP0τ ,

where a(ξ, τ ) = c1ei(κξ−�τ ) + c2e−i(κξ−�τ ). This leads to the
dispersion relation

�2 =
(

ω′′

2

)2

κ4 − 2

(
ω′′

2

)
QP0κ

2, (A22)

for the modulation frequency � and wave number κ . The in-
stability condition requires ω′′Q > 0, and the unstable modes
satisfy the condition κ2 < 2Q/ω′′. It can also be shown that
the maximum growth rate γmax ≡ maxκ ��(κ ) = QP0, pro-
portional to the Kerr nonlinear term Q.
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