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In this work, we report the fully relativistic (FR) first-principles quantum transport simulation of noncollinear
spin transfer and spin Hall current in the device structure. In this method, the noncollinear FR exact muffin-tin
orbital method is combined with Keldysh’s nonequilibrium Green’s function approach and mean-field theory
to account for the multiple disorder scattering. We adopt the Bargmann-Wigner polarization operator to define
the appropriate FR spin current so that the current-induced spin transfer, in the noncollinear magnetic device
or due to the spin Hall effect, can be studied from first principles. As applications, we calculate the spin
transfer torque in noncollinear spin valves Co/Cu/FM/Cu (FM = Co, Ni0.8Fe0.2) and spin Hall angles in various
Pt1−xYx [Y = vacancy (Va), Au, Ag, Pd] alloys. We find that our FR results agree well with previous theoretical
simulations and experimental measurements. Moreover, it is found that the applied finite bias can significantly
enhance the spin Hall angle in Pt1−xVax , and PtAg alloy presents a much higher spin Hall angle than that of PtAu
and PtPd alloys. Our implementation of the FR method provides an important first-principles tool for studying
various nonequilibrium spin phenomena and the associated relativistic effects in realistic device structures with
atomic disorders, including both current-induced spin transfer and spin-orbit torques.
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I. INTRODUCTION

Spin transport plays the central role in the field of spintron-
ics, possessing important applications in magnetic memories,
oscillators, and spin logics [1–3]. Presently, current-induced
spin torque has provided a fundamental approach for realizing
the efficient electrical manipulation of magnetism, and it has
attracted enormous research attention in science and technolo-
gies for important applications in spintronic devices [4]. For
example, spin transfer torque (STT) carried by spin-polarized
current, as first introduced by Slonczewski [5] and Berger [6],
can effectively switch the magnetic orientation in spin valve
devices, providing the main stream for controlling the bit
states in STT-based magnetic random-access memory. More-
over, as a complement to STT, current-induced spin-orbit
torques (SOT) have been successfully utilized to manipulate
the magnetic order, domain walls, and skyrmions, opening
novel designs for spintronic applications [4,7]. For spin-orbit
torque, two main mechanisms have been proposed, including
the spin Hall effect [8–11] and the inverse spin galvanic effect
[12–16], as the nonequilibrium phenomena of the relativistic
effect. The materials system for studying current-induced spin
transport has extended from simple magnetic multilayers to
those containing heavy metals, topological insulators, etc.,
from ferromagnetic to antiferromagnetic systems, and from
collinear to noncollinear magnetic materials. The theoretical

*keyq@shanghaitech.edu.cn

simulation of STT and SOT calls for the full quantum
treatment for the dependence on material and interface elec-
tronic structures. At present, the simulations based on the
first-principles method have played very important roles in
understanding the current-induced spin transport phenomena
and identifying new effects, e.g., the fully first-principles
simulation of STT in magnetic multilayers [17], the demon-
stration of the important interface-enhanced spin Hall angle
[18], and the interface-generated spin current [19]. It has been
theoretically predicted that noncollinear antiferromagnetic
materials can present spin polarization current, presenting
promising applications in spintronic devices [20,21]. More-
over, it has been known that the presence of disorder scattering
is crucial for the generation of the spin Hall effect [22,23].
Therefore, it is now clear that an effective simulation method
to calculate current-induced spin transport with general appli-
cability acquires the capabilities to (i) effectively handle the
noncollinear magnetism, which is quite ubiquitous in mag-
netic materials; (ii) account for the relativistic effects [e.g.,
spin-orbit interaction (SOI) mediating the transfer of angular
momentum between the orbital and spin]; (iii) effectively treat
the influence of inevitable random imperfections including
chemical, lattice, and magnetic disorders; and (iv) sophisticat-
edly handle the nonequilibrium condition with current flow in
the operating devices, presenting important challenges for the
presently available first-principles simulations.

In previous works, we developed the first-principles
quantum transport method in the framework of the exact
muffin-tin orbital (EMTO) -based density functional theory
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(DFT) [including both scalar and full relativistic (SR/FR)],
combined with the nonequilibrium Green’s function tech-
nique (NEGF) for collinear magnetic systems [24,25], and
we realized first-principles nonequilibrium mean-field theory
[including the nonequilibrium dynamical cluster approxima-
tion (DCA) [26–29] and the coherent potential approximation
(CPA) [30,31] combined with nonequilibrium vertex correc-
tion [32–34]] for effectively treating the disorder scattering
in quantum transport [28]. The EMTO method features the
highly localized and minimal basis, and at the same time al-
lows the large overlapping muffin-tin potential spheres to treat
both the interstitial and atomic regions on the same footing
[35–40], beyond the second-generation MTO and providing a
suitable approach for first-principles quantum transport sim-
ulations [41]. With these important bases, the main goal of
this work is to report the implementation of a fully relativistic
quantum transport method for calculating the noncollinear
spin transfer and spin Hall current from first principles, as an
important extension of the EMTO-DFT-NEGF method. We
formulate the nonequilibrium density matrix for noncollinear
magnetic devices in the framework of the fully relativistic
EMTO, and we utilize the Bargmann-Wigner polarization op-
erator T̂μ = (T̂ , T̂4) [42] for the fully relativistic spin current
formula. Such a NEGF-based fully relativistic spin transport
formalism enables the simulation of spin current in real device
structure under nonequilibrium conditions, beyond the linear-
response calculations. We also provide a detailed investigation
of the spin current in the nonrelativistic limit, which contains
conventional spin-current terms and other terms in the order
of 1/c2 that may effectively contribute to the spin Hall current
due to the relativistic effects. As applications, we calculate
the spin transfer in spin valves Co/Cu/FM/Co (FM = Co,
Ni0.8Fe0.2) and the spin current due to spin Hall effects in
various disordered Pt1−xYx(Y = vacancy, Au, Pd, Ag) alloys,
and the comparison with other theoretical methods and exper-
imental measurements is discussed.

The rest of the paper is organized as follows: Section II
introduces the fully relativistic noncollinear EMTO method
and Keldysh’s NEGF representation for transport simulation
of a device structure (with disorder). Section III introduces an
appropriate fully relativistic spin current formula and its aver-
age over disorders inevitable in realistic devices. In Sec. IV,
we present some information about the implementation and
numerical results and discussions. Finally, we conclude our
work in Sec. V with a detailed derivation of spin current in the
nonrelativistic limit, and we present associated discussions in
Appendix A.

II. FULLY RELATIVISTIC EXACT MUFFIN-TIN ORBITAL
METHOD FOR A NONCOLLINEAR MAGNETIC DEVICE

We consider the general Kohn-Sham Dirac Hamiltonian for
a noncollinear magnetic device system as shown in Fig. 1, for
which we are interested in the spin transport properties,

Ĥ = c�α · �p + (β − I4)mc2 + V (�r) + β �� · �B(�r) (1)

and

�α =
(

0 �σ
�σ 0

)
, β =

(
I2 0
0 −I2

)
, �� =

(
�σ 0
0 �σ

)
, (2)

FIG. 1. Schematic illustration of a two-probe device with non-
collinear spin: Co/Cu/FM/Cu magnetic multilayers. In our calcula-
tions, the magnetization of FM is fixed and that of Co is variable. θ

is the relative angle between the magnetization of Co and FM. The
layer 1 � z � n is for the central device; z � 0 and z � n + 1 are for
the left and right electrodes, respectively.

where σ is the Pauli matrix. In the muffin-tin approximation,
the effective full potential V (�r) is approximated as

V (�r) ≈ Vmt(�r) ≡ Vmtz +
∑

R

[VR(rR) − Vmtz], (3)

where Vmtz is the muffin-tin zero, and VR(rR) is a spherical
potential centered on lattice site R (the notation �rR = �r − �R
and rR =| �rR |). It should be mentioned that EMTO allows the
large overlapping potential spheres to reduce the error. The
field �Bmt(�r), which describes the exchange splitting, can be
written (in the muffin-tin approximation) as

�B(�r) ≈ �Bmt(�r) ≡
∑

R

BR(rR)�nR, (4)

where �nR denotes the magnetic field direction, and it can be
different for each site, namely the noncollinear magnetization.

The Kohn-Sham Dirac equation, namely H� = E�, for a
general magnetic system can be solved efficiently by introduc-
ing the four-component FR-EMTO [35–40], namely

�a,G
R	 (ε, �rR) = φa,G

R	 − ϕa,G
R	 + ψa,G

R	 , (5)

where φa,G
R	 , ϕa,G

R	 , and ψa,G
R	 are the respective partial wave,

the free-electron solution, and the screened spherical wave
(SSW), and the relativistic quantum number is 	 = κμ. Here,
the superscript a denotes the screening representation, G de-
notes the quantity defined in the global coordinate framework
(as shown in Fig. 1, �eG

z is the transport direction in which the
device is not periodic), φa,G

R	 and ϕa,G
R	 are defined within the

potential sphere, and ψaG
R	 is highly localized in the intersti-

tial region. In the global framework, only the SSW can be
straightforwardly obtained as

ψa,G
R	 (κ2, �rR) = f a,G

R	 (κ2, �rR)δRR′

−
∑
R′	′

ga,G
R′	′ (κ2, �rR′ )SaG

R′	′,R	(κ2), (6)

which is obtained as the solution for [c�α · �p + (β − I4)mc2 −
κ2]ψaG

R	(κ2, �rR) = 0 by enforcing the screening conditions
[35,36,40] (κ2 = E − Vmtz), and f a and ga are the linear com-
bination of the Bessel and Neumman functions (the same as
the nonmagnetic case) [25]. Here, SaG is the screened slope
matrix and is highly sparse. However, to obtain the φaG

R	 and
ϕaG

R	 for the FR-EMTO in Eq. (5), we can first define the
φaL

R	, ϕaL
R	 inside each potential sphere in the local coordinate
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framework of site R set by �nR as the local �eL
z axis. As a result,

for a spin-polarized sphere, we have for the partial wave

φa,L
R	 (E , �rR) =

∑
λ=κ,−κ−1

φa,L
RλμNaL,μ

R,λκ , (7)

and for the free-electron solution

ϕa,L
R	 = f a,L

R	 −
∑

λ=κ,−κ−1

ga,L
RλμDaL,μ

R,λκ , (8)

where [c�α · �p + (β − I4)mc2 + VR(rR) + β��nR · BR(rR)]φL
R =

EφL
R , and the N and D functions are determined from the

matching condition at the potential sphere boundary [40] (for
more information about the solution of φa,L

R and ϕa,L, refer to
Refs. [40,41]).

Then, φa,G and ϕa,G are connected to φa,L and ϕa,L by the
relation

φa,G
R = φL

RUR(αR, βR, γR) (9)

and

ϕa,G
R = ϕL

RUR(αR, βR, γR), (10)

where the unitary rotational matrix UR is for the spin-
spherical-harmonics part and describes the rotation from the
local (at site R) to global coordinate frameworks by the Euler
angle (αR, βR, γR) [43]. As an important result, one can find
the overlap and Hamiltonian matrix elements of FR-EMTO
for the noncollinear system in the global framework [25,44],
namely

OG = 〈�a,G|�a,G〉 = aṠaG − aḊaG, (11)

〈�a,G|ε − Ĥ |�a,G〉 = aSaG − aDaG, (12)

where DaG
R = U †

R Da,L
R UR in which the on-site matrix DaL

R is
calculated in the local framework of R. Here, DaG is a site-
diagonal quantity determined by the atomic species, and SaG

describes the geometric structure of materials.
To implement the noncollinear FR-EMTO formalism for

first-principles simulation of electron and spin transport,
we introduce the contour-ordered Green’s function (GF)
in Keldysh’s 2×2 matrix representation (in bold) [45,46],

namely G = (GA 0
GK GR), where GR/A/K are the respective

retarded, advanced, and Keldysh’s GFs, with which all other
real-time GFs on the closed time contour can be obtained
as their linear combinations [34], e.g., the lesser GF G< =
1
2 (GK + GA − GR). Keldysh’s NEGF technique has provide
a powerful tool for treating a complex physical system
at nonequilibrium condition. For a representative device
structure shown in Fig. 1, for the central device region
with an open boundary, GaG

CC = {aC[SaG
CC − DaG

C ] − �aG
ld }−1

in which we use Keldysh’s representation for the quanti-

ties DaG
C =

(
DaG,A

C 0
0 Da,R

C

)
, SaG

R =
(

SaG,A
C 0

0 SaG,R
C

)
, and �aG

R =(
�aG,A

ld 0
�aG,K

ld �
aG,R
ld

)
for the self-energy due to electrodes. Here

we consider the realistic device region containing disorders,
denoted by the AxB1−x alloy model, for which, in the present
FR-EMTO, only the site-diagonal DaG

C,R is a random quan-
tity depending on the random occupants A or B. Disorders
can present an important influence on the device properties
by changing the transport to diffusive regime. For such a

disordered device, we have implemented the self-consistent
nonequilibrium mean-field theory to calculate the averaged
GFs, namely [24,25,28,34]

GaG
CC = {

aC
[
SaG

CC − DaG
C

] − �aG
ld

}−1
, (13)

where DaG
R describes the effective medium for the disorder-

averaged central device, containing the important nonequi-
librium statistics and multiple disorder scatterings. By cal-
culating the averaged GaG

CC , we can obtain the averaged
quantum transport properties, including the electron transmis-
sion and spin current (for more information, please refer to
Refs. [25,28]).

III. FULLY RELATIVISTIC SPIN CURRENT

For the spin current calculation, it has been discussed that
the central issue is to define an appropriate spin current oper-
ator in the presence of a relativistic interaction, e.g., SOI, due
to the nonconservation of spin [47,48]. For the spin operator,
it is known that the use of 1

2β �� and 1
2
�� present a negligible

difference in the DFT calculation of the spin density and the
magnetic moment, due to the tiny contribution of a small
component χ in � = (ψχ ) satisfying Ĥ� = E� in material
systems [41]. Based on the continuity equation for the spin
density, it is thus natural that one can obtain the two def-
initions of spin current tensor, namely J

Sj ,1
i = 1

2�†cαi� j�

and J
Sj ,2
i = 1

2�†cαiβ� j�, where c�α is the velocity operator.
However, we can find that both definitions are problematic
for general indexes i and j. For example, one can show
that J

Sj ,1†
i = −J

Sj ,1
i for i �= j and JSi,2†

i = −JSi,2
i for i = j,

demonstrating the fact that both �JS,1 and �JS,2 are not general
(which may even present unphysical terms in the nonrela-
tivistic limit). To avoid these problems in spin current in
this work, we adopt the Bargmann-Wigner spin polarization
operator T̂μ = (T̂ , T̂4) [42] which was first used to define
the spin current density tensor in Ref. [49] (later used in
Refs. [50–52] to calculate the anomalous and spin Hall effects
in the linear-response theory with the first-principles KKR
method), namely

J
Sj

i = �†(cαiT̂j )�

= �†

(
cαiβ� j + �i p̂ j

m

)
�, (14)

which can present physical results for all the combinations of i
and j. It should be mentioned that Tμ commutes with the field-
free Dirac Hamiltonian presenting a conserved Tμ in vacuum,
while the spin operators 1

2β �� and 1
2
�� do not. As we show in

Appendix A, for the nonrelativistic limit of the J
s j

i of Eq. (3),

the zeroth-order term (in 1
c2 ) J

Sj ,(0)
x = ih̄

2m ψ†[σ j (
←
∇ − →

∇ )x]ψ +
h̄

2m φ†{σ j[(
←
∇ + →

∇ )×�σ ]x}φ, which contains the conventional
spin current in the first term and the moving-dipole in-
duced bound current contribution in the second. It can
be shown that the divergence of the moving-dipole term
presents zero divergence, presenting no contribution to the
spin torque as expected (see Appendix A). Here, as we show in
Appendix A, it should be mentioned that adding �i p̂ j

m to
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cαiβ� j in Eq. (14) is critical for the physically correct J
Sj ,(0)
i ,

making Eq. (14) general for the spin current tensor (especially
for the case i = j). Moreover, the first order of the spin cur-
rent in 1/c2, namely J

Sj ,(1)
x = − ih̄

4m2c2 ( �∇φ† · �σ )K̃ (�r)σxσ jφ −
ih̄

4m2c2 φ
†σxσ j K̃ (�r)(�σ · �∇φ), presents the relativistic effects on

spin transport, which is important for the spin Hall and anoma-
lous Hall effects. After some algebra, as derived in Eq. (A9),
J

Sj ,(1)
x contains the term h̄

4m2c2 φ
†(�σ× �E )xσ jφ, presenting the

spin current transverse to the external field �E due to the
spin Hall effect [49]. It has been demonstrated that the FR
spin current operator in Eq. (14) can produce the spin Hall
conductivity in linear-response theory agreeing well with ex-
periments and other methods, including both the intrinsic and
extrinsic contributions [50–52]. Thus, we believe that Eq. (14)
provides the appropriate basis for investigating various impor-
tant fully relativistic spin transport phenomena, including both
current-induced STT and SOT.

To calculate the spin current J
Sj

i in Eq. (14) with the first-
principles FR-EMTO method, we apply the NEGF technique
to rewrite

J
Sj

i (E , r) = − ic

2π

∑
R	,R′	′

G<G
R′	′,R	�

aG†
R	 (�r)αiT̂j�

aG
R′	′ (�r).

For a disordered device system, containing AxB1−x, the
disorder-averaged spin current density can be given by

J
Sj

i = − ic

2π

⎡⎣∑
R		′

∑
Q

CQ
R G<,Q,G

R	′,R	�
Q,G†
R	 αiT̂j�

Q,G
R	′

+
R �=R′∑

R	R′	′

∑
QQ′

CQ
R CQ′

R′ G<,QQ′,G
R′	′,R	 �

Q,G†
R	 αiT̂j�

Q′,G
R′	′

⎤⎦, (15)

where G<,Q,G
R	′,R	 and G<,QQ′,G

R′	′,R	 (Q = A/B) are conditionally av-
eraged GFs in the global framework (for more details, please
refer to Ref. [25]). The total spin current can be obtained
by integration on the surface area, and then the spin torque
can be derived. The implementation of the (noncollinear)
FR-EMTO-DFT-based spin current formula can provide an
important first-principles tool for studying important spin
transport phenomena and the associated relativistic effects in
the realistic device materials with atomic disorders.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We have implemented the FR noncollinear formalism in
Sec. II and the associated spin current formula in Sec. III
within the EMTO-DFT-NEGF-based first-principles quantum
transport simulation package SIGMAX [24,25,28] using the
spherical cell approximation proposed by Vitos [40,53]. Such
an FR implementation enables the simulation of electron and
spin transport in noncollinear magnetic multilayers and var-
ious relativistic transport phenomena (e.g., spin Hall effect)
with the influence of disorders and external bias. As an impor-
tant test for the present FR implementation of the noncollinear
EMTO-DFT-NEGF method and spin current in Eq. (14), we
calculate the spin current to derive the spin-transfer torque in
noncollinear Co/Cu/FM/Cu (FCC 111) spin valves and the
important spin-Hall angle in the various disordered alloys

PtxY1−x (Y = vacancy, Au, Pd, Ag) and compare with previous
calculations and experiments. In all our calculations, the local
spin density approximation of VWN form [54] is employed
for the exchange-correlation functional. The spin current den-
sity is calculated on a uniform real-space mesh on a surface to
integrate to obtain the total spin current.

A. Spin transfer in noncollinear Co/Cu/FM/Cu spin valves

For the simulation of the spin angular momentum transfer,
namely STT, in ferromagnetic (FM) multilayers, the first-
principles approaches have been developed to address the
specific material dependence, including the calculation of
STT by the NEGF-DFT with LCAO basis in Ref. [55], and
the scattering-state approach with the TB-LMTO method in
the scalar relativistic framework in Refs. [17,56] (in which
the effects of disorder on spin transfer are treated with the
computationally demanding supercell method). In this sec-
tion, we present the results of the FR calculation of the STT in
noncollinear FM multilayers with nonequilibrium mean-field
theory to effectively handle atomic disorders, and we compare
them with the results from Ref. [17]. We investigate the spin-
polarized transport in different Co/(10ML)Cu/(15ML)FM/Cu
(FM=Co, Ni0.8Fe0.2) noncollinear spin valves as shown in
Fig. 1. Here, for FM = Co, we consider the likely disordered
interdiffused interfaces Cu/Co or Co/Cu associated with the
central Cu region, namely CuxCo1−x alloy, in a single atomic
layer. We consider all spin-valve structures in FCC with the
lattice constant a = 3.54 Å and electron transport along (111)
as the �ez direction with periodicity in the x-y plane. To ensure
the convergence in 2D BZ integration, we use 50×50 k‖-
mesh for electronic structure self-consistency and 200×200
k‖-mesh for spin current calculations, and all the transport
results are calculated at E f .

Figure 2 presents the conductance versus magnetization
angle θ between Co and FM for the different disordered

FIG. 2. The conductance vs the noncollinear magnetization an-
gle θ for different Co/Cu/FM/Cu spin valves. Inset: GMR vs disorder
concentration x for different spin valves.
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FIG. 3. Spin current vs surface index z for different spin valves
with FM = Co and x = 0.3 in (a) and FM = Ni0.8Fe0.2 alloy in (b).

spin valves with FM = Co and Ni0.8Fe0.2. The monotonic
decrease in conductance with increasing θ is consistent with
the previous ab initio results [17,55]. It is found that, for
Co/Cu/Co/Cu with x = 0, namely with perfect interface, the
FR-EMTO results are almost constantly shifted by about 10%
over the results of TB-LMTO in Ref. [17] (in the dashed
line), and such a difference in conductance can be attributed
to the differences between EMTO and TB-LMTO methods
(not to the SOI, which is negligible in Cu and Co). By in-
creasing disorder x from 0 to 0.5, the conductance for spin
valves with FM = Co can be notably reduced for small θ ,
while the conductance at θ = 180◦ is slightly modulated.
The spin valve with FM = Ni0.8Fe0.2 presents a similar θ

dependence of conductance with magnitude lower than the
results of FM = Co. The inset of Fig. 2 shows the GMR,
namely GMR = G(0◦ )−G(180◦ )

G(180◦ ) , versus interface disorder x. At
x = 0, namely the perfect FM = Co spin valve, our calcu-
lated GMR = 29.9%, consistent with the value 24.0% from
Ref. [17]. However, as the disorder increases to x = 0.5, the
GMR is quickly reduced to 16.0%, highlighting the important
influence of interface disorder. The GMR value for the spin
valve with NiFe alloy is 27.2%, which is close to the value for
the perfect valve with FM = Co.

Figure 3 shows the layer-resolved spin current for the spin
valves with FM = Co with x = 0.3 in (a) and Fe0.2Ni0.8 in
(b) for θ = 90◦. It is clear that, for each spin component,
both devices present quite similar layer dependence in spin
current. For the studied noncollinear spin valves with almost
neglectable SOI, the spin currents present important changes
in the central scattering region, namely changing from J

Sy
z

in the left Co electrode to JSx
z in the right Cu electrode. In

particular, JSx
z presents a sharp and large enhancement around

the left Co/Cu interface from the minimum −0.017 to 0.110

in (a) and −0.032 to 0.134 in (b) (due to the effects of spin
reflection at the right Cu/FM interface), and then maintains a
constant for z > 7. J

Sy
z stays almost constant for z < 17, and

then presents an important decrease for z > 17 and becomes
zero after z > 30. Moreover, JSz

z presents remarkable mag-
nitude around both Co/Cu and Cu/FM interfaces due to the
physical effects of the sudden magnetization change induced
effective field, and then quickly changes to zero away from
the interfaces [57]. Here, it should be mentioned that the spin
current in Eq. (14) with the Bargmann-Wigner spin polariza-
tion operator can present the physical results for JSz

z , while the
spin current operator cαzβ�z does not. It is clear that all the
spin current JSi

z (i = x, y, z) for both spin valves is conserved
inside the Cu layers. As an important observation, all the
spin current components are very sensitive to the interface
scattering, presenting the important influences of interfaces on
spin transfer. The apparent changes in spin current reflect the
important spin transfer torque exerted on the related atomic
layers.

Figure 4 shows the spin transfer torque exerted on each
atomic layer, which is calculated by the difference in spin
currents of neighboring surfaces shown in Fig. 3, namely
τi,n = JSi

z,n − JSi
z,n+1 (i = x, y, z). In our result, τx and τy corre-

spond to the in-plane torques and τz is the out-of-plane torque.
It is clear that for both spin valves, the significant in-plane
and out-of-plane torques are present in the Co layers at the
Co/Cu interface, and both τx and τz show strong oscillations
and quickly decay in a few layers of Co, while τy remains
almost zero. The large negative and positive values of τx and
τz illustrate the strong omission and absorption of spin angular
momentum on the Co atomic layers near the interface. Fur-
thermore, inside the central FM region, while τx remains zero,
both τy and τz show an important decay to zero before reach-
ing the Cu electrode. In FM = Ni0.8Fe0.2, the spin torques
decays to zero within six MLs, while in FM = Co, the spin
torques decay to zero within 11 MLs with clear oscillation,
which is consistent with the results of Ref. [17]. The different
decaying length of spin torque in Co and Ni0.8Fe0.2 reflects the
different spin decoherence length. Figure 4(b) also includes
the results of Ref. [17] in the empty for comparison. It is
clear that for the spin valve with Ni0.8Fe0.2, the fully rela-
tivistic nonequilibrium mean-field calculations of STT agree
well with the TB-LMTO scattering state supercell calculation,
presenting a good test for the implementation of noncollinear
FR-EMTO and the fully relativistic spin current formula. The
small difference in magnitude between the present results and
those of Ref. [17] can be attributed to the different methods,
namely EMTO and TB-LMTO. In Fig. 4(c), we present the
total in-plane torque τy of the FM region versus the magne-
tization angle θ for spin valves of FM = Co with different
x and FM = Ni0.8Fe0.2 (where τx and τz are negligible). It is
found that the total τy reaches the maximum around θ = 90,
and the results of Ni0.8Fe0.2 are higher than that of FM = Co.
For valves with FM = Co, at 60 < θ < 120, it is found that
interface disorder can quickly decrease the result by small
x (<10%) and the reduction in torque is rather limited upon
further increasing x over 10%. For example, τy can be reduced
by 25% from the value of 0.004 at x = 0–0.003 at x = 10%,
presenting the important influence of interfacial disorders. It
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FIG. 4. (a), (b) Spin transfer torque τx/y/z vs atomic layer index
in spin valves: (a) for FM = Co and x = 0.3; (b) for FM = Ni0.8Fe0.2

alloy. (c) Spin torque τy vs disorder, (b) in-plane torque τy vs
noncollinear magnetization angle θ for the sandwiched FM layers
(FM = Co and Ni0.8Fe0.2).

is also clear that the maximum torque of the NiFe alloy (in
pink) does not occur at 90◦ as shown in Fig. 4(c); we attribute
the physics to the anisotropy induced by the spin-orbital inter-
action in FeNi alloy.

B. Spin Hall effect in Pt1−xYx alloys: Y = Va, Au, Pd, Ag

It is known that SOI can generate a pure spin current
transverse to the electron charge current, known as the spin
Hall effect (SHE). In this section, we apply the FR-EMTO-
DFT-NEGF first-principles quantum transport method and the
FR spin current formula in Eqs. (14) and (15) to calculate the
spin current induced by SHE in nonmagnetic Pt1−xYx alloys in
two-probe device structures. The schematic of the device ge-
ometry is shown in Fig. 5, in which the central alloy region is
sandwiched by pure Pt electrodes, and the device is periodic in
the x-y plane. We simulate all devices in the FCC structure, ne-
glecting the lattice distortion, and we calculate the spin current
flowing in the x (FCC 111) direction with the charge flow-
ing in the z (FCC 112̄) direction. To ensure the convergence

FIG. 5. Schematic illustration for the two-probe simulation of
spin Hall effects in the Pt1−xYx alloys [Y = vacancy (Va), Pd, Au,
and Ag] in FCC. The device is periodic in the x-y plane. The electron
charge flows in z, and the spin current flows in x [in the FCC (111)
direction]. The inset gives the top view of the device structure.

for the 2D BZ integration, we use 40×100 k‖-mesh electronic
structure self-consistency and 120×300 k‖-mesh for all trans-
port calculations. The spin current is calculated on the surface
lying in the middle of two neighboring atomic layers in the
(111) direction. The spin Hall angle (SHA), defined as the
ratio of transverse spin current to longitudinal charge current,
characterizes the conversion efficiency of the charge current
to pure spin current.

First, we calculate the layer-resolved spin current J
Sy
x for

pure Pt and Pt1−xVax (with x = 3% and 6% for disordered
vacancies as the intrinsic defects in Pt) in the central device
region (the spin currents JSx

x and JSz
x are negligible). Figure 6

shows the layer-resolved SHA results J
Sy
x /Jz for the system

under bias voltages Vb = 0 (in solid lines) and Vb = 0.2V
(in dotted lines). For Vb = 0, the results are calculated at
E = E f . For the case Vb = 0.2V , the bias is approximately
treated by introducing a linear potential in the central yellow
region in Fig. 5, and the charge and spin current are calculated
by integration with 10 energy points sampled between the
chemical potential μL and μR (μL − μR = 0.2 eV). As shown

FIG. 6. Spin Hall angle (αSH = J
Sy
x /Jz) vs atomic layer index

of the central device region in yellow with Pt1−xVax (x = 0.0,

0.03, 0.06).
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in Fig. 6, for Vb = 0, pure Pt exhibits zero SHA values for
all atomic layers, namely no spin current is generated at the
energy E f [namely J

Sy
x (E f )] despite the finite conductance,

due to the lack of scattering to the propagating wave. To
introduce the scattering, a bias voltage is applied to induce
a potential gradient in the central device region. When ap-
plying Vb = 0.2, a finite transverse spin current J

Sy
x arises

due to the potential gradient scattering. The SHA in pure
Pt starts from 2.1% at the first layer, reaches the maximum
value of 3.7% at the 10th layer, and then decreases to 2.5%
at the right end, indicating the important effect of applied
bias on SHE. The finite spin current in pure Pt under finite
bias can be attributed to the intrinsic SHE [58,59]. In ad-
dition to intrinsic SHE, asymmetry in scattering for up and
down spins in the presence of disorders/imperfections gives
rise to the extrinsic SHE [51]. By introducing the disordered
vacancies in Pt, at Vb = 0, both Pt0.97Va0.03 and Pt0.94Va0.06

present a remarkable SHA due to the presence of disorder
scattering, in contrast to the pure Pt. For both systems, the
SHA shows a fast increase in the first few layers (index � 4)
and then maintains an almost constant plateau in the layers
ranging from 4 to 15, and it exhibits a small decrease at the
right end. It is clear that SHA is promoted by increasing the
concentration of vacancies. In particular, for the middle 10th
layer, Pt0.94Va0.06 exhibits a SHA value 8.2%, compared to the
SHA value of 4.6% in Pt0.97Va0.03, indicating the important
influence of disorder scattering on SHE in Pt. By applying
a bias voltage Vb = 0.2V , the SHA (in dotted lines) for all
layers in both Pt0.94Va0.06 and Pt0.97Va0.03 can be significantly
increased compared to the values for Vb = 0. At the 10th layer,
the SHA is promoted by 2.1% in Pt0.94Va0.06 and 2.2% in
Pt0.97Va0.03, indicating the important influence of external bias
on SHE. These calculations demonstrate that both disorder
scattering and applied external electric fields can make sig-
nificant contributions to the spin current generated by SHE,
and therefore the present fully relativistic quantum transport
method provides an important tool for simulating SHE in a re-
alistic device structure at nonequilibrium conditions, beyond
linear response.

As a further investigation of the influence of disorder on
SHE, we present in Fig. 7 the longitudinal electron conduc-
tance (a), transverse spin current (b), and SHA (c) versus the
disorder concentration x for three Pt1−xYx (Y = Au, Pd, Ag)
alloys (all results are calculated at E f with Vb = 0 for the
10th layer). As shown in Fig. 7(a), the conductance of PtPd
alloy is significantly higher than that of the other alloys.
For example, at x = 0.45, the conductance values are 3.69,
1.39, and 0.86 (e2/h) for the respective PtPd, PtAu, and PtAg
alloys. As x increases from 0.05 to 0.45, the conductance
significantly decreases in magnitude by 5 times in PtAg and
3.6 times in PtAu, while the decrease in PtPd is much more
moderate. It is thus clear that different PtY alloys present
distinct scattering strengths of disorders. However, as shown
in Fig. 7(b), the dependencies of spin current on x are different
for different alloys. In particular, as x changes from 0.05 to
0.45, the spin current presents a monotonic increase in PtPd
alloy, an increase followed by saturation in PtAu, while in
PtAg alloy, the spin current is significantly enhanced at small
x (x � 15%) and followed by a decrease. The decrease of

FIG. 7. Conductance, spin Hall current J
Sy
x (Ef ), and spin Hall

angle αSH vs alloy concentration x for Pt1−xYx (Y = Au, Ag, Pd).

spin current for increasing x � 15% in PtAg can be attributed
to the quick decrease in electron conductance, as shown in
Fig. 7(a). It is found that spin currents in PtAg and PtAu
alloys are significantly higher than that of PtPd alloy for
x � 15%, in contrast to the conductance results in which PtPd
conductance is significantly higher than the others. Due to
the distinct behavior in the conductance and spin current, for
the whole range of disorder x calculated, the Pt1−xAgx alloy
shows the largest SHA, significantly higher than the others,
as shown in Fig. 7(c). Moreover, the SHA of Pt1−xPdx is
much smaller than the result of PtAu alloy. For example,
at x = 35%, the SHA value in PtAg is as large as 21.7%,
significantly higher than the value 13.2% in PtAu and 5.0% in
PtPd. Thus, we can see that alloying with different elements
can provide an effective way to tune the SHE in Pt. Figure 7(c)
also includes the experimental SHA for PtAu alloy measured
at room temperature (in empty squares) and the results of the
first-principles FR-KKR method (in stars) from Ref. [60] for
comparison. Our SHA results for PtAu alloy agree well with
the FR-KKR calculations, providing an important test for the
present implementations. It is clear that the first-principles
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results for SHA in PtAu alloy are consistent with the exper-
imental measurements. The deviation between theoretical and
experimental results is limited and can be attributed to the
fact that the influence of room temperature, which distorts the
lattice to increase the scattering and thus SHA, is neglected in
the present calculations.

V. CONCLUSIONS

As a summary, we have presented the noncollinear FR-
EMTO-DFT-NEGF-based first-principles approach for quan-
tum transport simulation of noncollinear spin transfer and
spin Hall current in real device structures with atomic disor-
ders. The Bargmann-Wigner polarization operator is utilized
to define the appropriate spin current in FR, so that various
spin transport phenomena, such as spin angular momentum
transfer in the noncollinear magnetic device and that due to
the spin Hall effect, can be studied from first principles. In this
approach, the nonequilibrium mean-field method is combined
to handle the multiple disorder scattering in both the electronic
structure and transport calculations of disordered device mate-
rials. We presented applications of this approach to the STT in
noncollinear spin valves Co/Cu/FM/Cu (FM = Co, Ni0.8Fe0.2)
and the spin-Hall angle in various Pt1−xYx (Y = vacancy, Au,
Ag, Pd) alloys, and our results show good consistency with
other previous theoretical calculations and experimental mea-
surements, providing an important test for the implementation
of the FR noncollinear formalism and the FR spin current
formula. Moreover, we also find that the applied finite bias
can significantly enhance the spin Hall angle in Pt1−xVax

(for x = 0.0, 0.03, 0.06), and PtAg alloy presents a much
higher spin Hall angle than that of PtAu and PtPd alloys.
This work presents an important extension for quantum trans-
port simulation of spintronic materials and devices from first
principles.
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APPENDIX: SPIN CURRENT IN THE
NONRELATIVISTIC LIMIT

To investigate the spin current density in the nonrelativistic
limit, we start from the Dirac equation Ĥ� = E� with � =
(φ

χ ) and H in Eq. (1), namely

(E − V (�r) − �σ · �B(�r))φ − c�σ · �pχ = 0,

−c�σ · �pφ + (E − V (�r) + �σ · �B(�r) + 2mc2)χ = 0.

We can solve to obtain (in the first-order approximation)

χ = c�σ · �p
K̃ (�r) + 2mc2

φ

= 1

2mc

1

1 + K̃ (�r)
2mc2

�σ · �pφ

≈ 1

2mc

(
1 − K̃ (�r)

2mc2

)
�σ · �pφ

= − ih̄�σ
2mc

· �∇φ + K̃ (�r)

4m2c3
ih̄�σ · �∇φ, (A1)

where K̃ (�r) = E − V (�r) − �σ · �B(�r).
Here, we consider the spin current component J

s j
x in

Eq. (14), namely

J
Sj
x = c�†

(
αxβ� j + �x p̂ j

mc

)
�, (A2)

where

αxβ� j + �x p̂ j

mc
=

(
σx p̂ j

mc −σxσ j

σxσ j
σx p̂ j

mc

)
. (A3)

Then, one obtains

J
Sj
x = 1

m
φ†σx p jφ + cχ†σxσ jφ

− cφ†σxσ jχ + 1

m
χ†σx p jχ. (A4)

With the relation in Eq. (A1) for χ , we can obtain the spin
current in the nonrelativistic limit with the terms up to the
first order of 1/c2 as follows:

J
Sj
x = −ih̄

m
φ†σx∇ jφ

+ ih̄

2m
( �∇φ† · �σ )σxσ jφ

+ ih̄

2m
φ†σxσ j (�σ · �∇φ)

− ih̄

4m2c2
( �∇φ† · �σ )K̃ (�r)σxσ jφ

− ih̄

4m2c2
φ†σxσ j K̃ (�r)(�σ · �∇φ), (A5)

where we neglect the first-order term − ih̄3

4m3c2 ( �∇φ† ·
�σ )σx∇ j (�σ · �∇φ) obtained from 1

m χ†σx p jχ due to the very
small prefactor.

We first consider the terms with zeroth order of 1
c2 , namely

J
Sj ,(0)
x ,

J
Sj ,(0)
x = −ih̄

m
φ†σx∇ jφ + ih̄

2m
( �∇φ† · �σ )σxσ jφ

+ ih̄

2m
φ†σxσ j (�σ · �∇φ). (A6)
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In the following, we investigate J
Sj ,(0)
x for different j = x, y, z:

JSx,(0)
x = −ih̄

m
φ†σx∇xφ + ih̄

2m
( �∇φ† · �σ )σxσxφ + ih̄

2m
φ†σxσx(�σ · �∇ )φ

= −ih̄

m
φ†σx∇xφ + ih̄

2m
(∇xφ

†σx + ∇yφ
†σy + ∇zφ

†σz )σxσxφ + ih̄

2m
φ†σxσx(σx∇xφ + σy∇yφ + σz∇zφ)

= −ih̄

m
φ†σx∇xφ + ih̄

2m
(∇xφ

† − i∇yφ
†σz + i∇zφ

†σy)σxφ + ih̄

2m
φ†σx(∇xφ + iσz∇yφ − iσy∇zφ)

= −ih̄

m
φ†σx∇xφ + ih̄

2m
∇xφ

†σxφ + h̄

2m
(∇yφ

†σz − ∇zφ
†σy)σxφ + ih̄

2m
φ†σx∇xφ + h̄

2m
φ†σx(σy∇zφ − σz∇yφ)

= ih̄

2m
∇xφ

†σxφ − ih̄

2m
φ†σx∇xφ + h̄

2m
(∇yφ

†σz − ∇zφ
†σy)σxφ + h̄

2m
φ†σx(σy∇zφ − σz∇yφ)

= ih̄

2m
φ†[σx(

←
∇x − →

∇x )]φ − h̄

2m
(∇yφ

†σz − ∇zφ
†σy)σxφ − h̄

2m
φ†σx(σy∇zφ − σz∇yφ)

= ih̄

2m
φ†[σx(

←
∇x − →

∇x )]φ − h̄

2m
( �∇φ†×�σ )xσxφ − h̄

2m
φ†σx(�σ×�∇φ)x

= ih̄

2m
φ†[σx(

←
∇x − →

∇x )]φ + h̄

2m
φ†{σx[(

←
∇ + →

∇ )×�σ ]x}φ,

where the sign change is made due to the fact that JSx
x

is real and the relation that Re{(∇yφ
†σz − ∇zφ

†σy)σxφ +
φ†σx(σy∇zφ − σz∇yφ)} = 0, which can be found by us-
ing (∇yφ

†σyφ + φ†σy∇yφ)† = (∇yφ
†σyφ + φ†σy∇yφ) and

(∇zφ
†σzφ + φ†σz∇zφ)† = (∇zφ

†σzφ + φ†σz∇zφ). Similarly,
we can find J

Sy,(0)
x and JSz,(0)

x to finally obtain

J
Sj ,(0)
x = ih̄

2m
φ†[σ j (

←
∇x − →

∇x )]φ

+ h̄

2m
φ†{σ j[(

←
∇ + →

∇ )×�σ ]x}φ, (A7)

in which the first term is the conventional spin current, and
the second term is due to the moving-dipole-induced bound
current.

We now consider the terms in first order of 1
c2 , namely

J
Sj ,(1)
x = − ih̄

4m2c2
( �∇φ† · �σ )K̃ (�r)σxσ jφ

− ih̄

4m2c2
φ†σxσ j K̃ (�r)(�σ · �∇φ) (A8)

in which

− ( �∇φ† · �σ )K̃ (�r)σxσ jφ − φ†σxσ j K̃ (�r)(�σ · �∇φ)

= −�∇ · (φ† �σ K̃ (�r)σxσ jφ) + φ†(�σ · �∇K̃ (�r))σxσ jφ

+ φ†K̃ (�r)(�σ · �∇ )σxσ jφ − φ†K̃ (�r)σxσ j (�σ · �∇φ).

Here, we can find that

φ†(�σ · �∇K̃ (�r))σxσ jφ

= −φ†(�σ · �E )σxσ jφ

= −φ†(σxẼx + σyẼy + σzEz )σxσ jφ

= −φ†(Ex − iσzEy + iσyEz )σ jφ

= −φ†[Exσ j + i(�σ× �E )xσ j]φ,

in which the second term gives rise to the transverse spin cur-
rent due to applied external electric field (for j �= x), known
for the spin Hall effect. As a result, we can write down the
spin current up to first order of 1

c2 ,

J
Sj ,(1)
x = − ih̄

4m2c2
�∇ · (φ† �σ K̃ (�r)σxσ jφ)

+ ih̄

4m2c2
φ†K̃ (�r)(�σ · �∇ )σxσ jφ

− ih̄

4m2c2
φ†K̃ (�r)σxσ j (�σ · �∇φ)

− ih̄

4m2c2
φ†[Exσ j + i(�σ× �E )xσ j]φ. (A9)

Divergence of the moving-dipole spin current

For the divergence of the moving-dipole term in the zeroth-
order spin current in Eq. (A7), we can obtain

�∇ · [( �∇φ†×�σ )σ jφ] − �∇ · [φ†σ j (�σ×�∇φ)]

= �∇ · [σ j ( �∇φ†×�σ )]φ + [σ j ( �∇φ†×�σ )] · �∇φ

−�∇φ† · [σ j (�σ×�∇φ)] − φ†σ j �∇ · [(�σ×�∇φ)]

= [σ j ( �∇φ†×�σ )] · �∇φ − �∇φ† · [σ j (�σ×�∇φ)]

= 0 (A10)

by using the relations �∇·[(�σ×�∇φ)]=0 and �∇·[( �∇φ†×�σ )]=0,
and [σ j ( �∇φ†×�σ )] · �∇φ = �∇φ† · [σ j (�σ×�∇φ)]. As a result,
the moving-dipole term has no contribution to the spin torque.
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