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Basal-plane heat transport in graphite thin films
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While the phonon hydrodynamic regime has recently been highlighted experimentally in graphite films, the
understanding and modeling of heat transport along their basal plane remain elusive. From first-principles-based
modeling, we predict a significant influence of the surface roughness on basal-plane thermal conductivity due
to the collective phonon drift. The occurrence condition of the phonon Knudsen minimum is also shown to
strongly depend on the surface roughness. We summarize the basal-plane heat transport along graphite thin
films into coherent and incoherent regimes and also present a speculation for the recently observed anomalous
thickness-dependent thermal conductivity. Our work provides guidance for the experimental explorations of
phonon hydrodynamics in graphitic micro- and nanostructures in the future.
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I. INTRODUCTION

Understanding heat transport in graphite structures is
important from both practical and fundamental points of
view. Owing to its high basal-plane thermal conductivity
(∼ 2000 W/m K at room temperature), graphite has been ap-
plied as a thermal management material for heat dissipation
in electronics [1–4]. The physics of phonon heat transport in
graphite is peculiar due to the long-range van der Waals inter-
action along the out-of-plane c-axis direction [5] and its strong
anisotropy [6]. The discovery of strong phonon hydrody-
namic phenomena in graphitic materials in recent years [7–12]
also highlights the significance of collective heat transport
behaviors.

The theoretical modeling of the bulk thermal conductivity
of graphite based on the phonon Boltzmann transport equation
(BTE) has a long history. Early attempts are usually based
on semiempirical phonon properties (dispersion and scatter-
ing rates) [13–16]. Recently, fully first-principles calculations
have predicted the bulk experimental data [7]. In contrast,
understanding the effect of finite thickness on the basal-plane
heat transport along thin films of graphite remains inconclu-
sive. A delicate experimental study [17] has shown that the
thermal conductivity of multilayer graphene decreases and
converges to that of bulk graphite as the number of atomic
layers increases to ∼5, which is consistent with the BTE
modeling [18,19] based on a multilayer unit cell. However,
another experiment [20] demonstrates a substantial decrease
in the thermal conductivity of thin graphite with its thickness
increasing from 8.5 to 580 µm, which contradicts the trend
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in a recent work [21] combining theoretical and experimental
investigations.

A few BTE models of the thickness effect on basal-plane
heat transport use the phonon properties of bulk graphite. In a
previous study [22], the classical isotropic Fuchs-Sondheimer
(FS) model has been generalized to an anisotropic form based
on the phonon BTE under the single mode relaxation time
(SMRT) model, which predicted high basal-plane thermal
conductivity even in graphite thin film with a thickness as
small as 10 nm. However, the SMRT model has been shown
recently to considerably underestimate the bulk basal-plane
thermal conductivity of graphite due to strong phonon hydro-
dynamic behaviors [7,10,23]. The Monte Carlo (MC) solution
of phonon BTE with an ab initio full scattering term [21] has
led to the investigation of the thickness-dependent basal-plane
thermal conductivity in the limit of fully diffuse thin film
surfaces, while the effect of surface roughness is considered
only for the case of one thickness corresponding to the exper-
imental measurement.

In this work, we aim to conduct an extensive study on
the effect of surface roughness on the thickness-dependent
basal-plane heat transport along graphite thin films. A semi-
analytical solution of the phonon BTE under Callaway’s dual
relaxation model [24] is implemented, as a significantly more
accurate approximation to the full scattering term than the
SMRT model [23,25]. The present method is more efficient
and provides a lower computational cost than that of a MC
solution of phonon BTE with an ab initio full scattering term
[21]. In addition, it provides straightforward insights owing
to the semianalytical formulation and the intuitive physical
interpretation. Our theoretical description also represents a
more generalized formalism than the recent anisotropic FS
model [22]. As a result, we reveal a significant thickness effect
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FIG. 1. Basal-plane phonon heat transport along a graphite thin film with a finite thickness d: (a) schematic of the physical model, where
phonons experience partially specular and partially diffuse boundary scattering, with s referring to the specularity parameter; (b) approximate
first Brillouin zone of graphite.

on the basal-plane thermal conductivity even in the presence
of very smooth thin film surfaces. Furthermore, we investi-
gate the effect of surface roughness on the phonon Knudsen
minimum [10,26] in the thickness direction, as a hallmark of
the transition from ballistic to hydrodynamic heat transport.
This will enrich the knowledge of this peculiar phenomenon
in graphitic materials, which was so far discussed only in
the width direction and in the limit of fully diffuse surfaces
[10,23,26,27].

The physical model and the mathematical methodology
will be introduced in Sec. II. The results and discussion about
the thickness and surface roughness effects on basal-plane
heat transport are exposed in Sec. III, and Sec. IV will finally
provide concluding remarks.

II. PHYSICAL AND MATHEMATICAL MODELS

In this section, the physical model of basal-plane heat
transport along a graphite thin film with finite thickness is
presented in Sec. II A. The phonon BTE under Callaway’s
dual relaxation time model and the corresponding boundary
conditions are given in Sec. II B. In Secs. II C and II D,
the semianalytical solution of the phonon BTE and model
validation will be demonstrated.

A. Physical model

We model the steady-state heat transport along the basal
plane of a graphite thin film with a finite thickness d and infi-
nite length and width, under a uniform temperature gradient,
as shown in Fig. 1(a). Only a finite thickness is investigated
here, since the effects of finite length and/or finite width have
been extensively studied [10,23,28]. Following our previous
study [23], the hexagonal first Brillouin zone (BZ) is ap-
proximated as a cylinder with the basal-plane isotropy for
simplified integration, as illustrated in Fig. 1(b). A semi-
analytical solution of phonon BTE under Callaway’s dual
relaxation model is established following similar strategies
to Refs. [10,27]. The partially diffuse and partially specular
boundary condition is adopted at the surfaces of the graphite
thin film, which is more general than that of previous stud-
ies [10,27] which use fully diffuse boundaries. In addition,
the physical model is essentially different from those of the
earlier studies, where heat transport in graphite ribbons [10]

and three-dimensional (3D) Debye crystals [27] with finite
width were discussed, respectively. Note that the partially
diffuse boundary condition was also adopted in the recent
MC solution of phonon BTE with a full scattering term to
study the temperature-dependent thermal conductivity of an
ultrathin graphite film with a thickness of 23 layers [21].

B. Phonon Boltzmann equation and boundary condition

The phonon BTE under Callaway’s dual relaxation model
including the resistive and normal phonon scattering pro-
cesses separately is written as [24,29]

∂ f

∂t
+ vg · ∇ f = f eq

R − f

τR
+ f eq

N − f

τN
, (1)

where f ≡ f (r, t, q, p) denotes the phonon distribution func-
tion, with q, p, vg the phonon wave vector, polarization, and
group velocity, respectively. The relaxation times of resistive
and normal processes are denoted by τR and τN, with their
equilibrium distribution functions defined separately as the
Bose-Einstein distribution: f eq

R = {exp[h̄ω/(kBT )]−1}−1 and
the displaced one: f eq

N = {exp[(h̄ω−h̄q · u)/(kBT )]−1}−1,
where 2π h̄ and kB are the Planck and Boltzmann constants,
respectively. The phonon drift velocity u is a macroscopic
quantity, which is determined by the quasimomentum conser-
vation condition of normal process [24]:

∑
p

∫
h̄q

f eq
N − f

τN

dq

(2π )3 = 0. (2)

The partially diffuse and partially specular boundary con-
dition for the phonon BTE (1) is given as follows:

z = 0, f +(0, θ, qr, qz, p)|vgz>0

= (1 − s) f eq
R + s f −(0, θ, qr,−qz, p)

∣∣
vgz<0

z = d, f −(d, θ, qr, qz, p)|vgz<0

= (1 − s) f eq
R + s f +(d, θ, qr,−qz, p)

∣∣
vgz>0, (3)

where s corresponds to the specularity parameter at the upper
and lower surfaces of the graphite thin film. The present
boundary condition includes the fully specular limit (s = 1)
when the surface atomic planes are perfect [17] and the fully
diffuse limit (s = 0) [10,22,27] when surface contaminations
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are present [21]. The realistic surface specularity parameter
depends on several factors, including the frequency and the
incident angle of phonons, as well as the average height and
the correlation length of the surface roughness [30,31]. The
information on roughness can usually be extracted by AFM
(atomic force microscopy) images of the surface [21]. An av-
erage constant value of the specularity parameter is assumed
here as the first step of theoretical development and for the
general discussion.

The deviational phonon distribution function is introduced
[32]: g = f − f eq

R , and a small deviation from equilibrium is
assumed such that f eq

N ≈ f eq
R + T (∂ f eq

R /∂T )q · u/ω [24,26]
and ∂g/∂x � ∂ f eq

R /∂x, ∂ f eq
R /∂z � ∂g/∂z. In this way, Eq. (1)

is then reduced to

vgz
∂g

∂z
+ g

τC
=

[
−vgx

∂T

∂x
+ T

τN

qxux

ω

]
∂ f eq

R

∂T
. (4)

Equation (4) has the same form as the linearized phonon
BTE for steady-state heat transport along graphite ribbon with
a finite width [10]. The partially diffuse and partially specular
boundary condition in Eq. (3) is simplified as follows:

z = 0, g+(0, θ, qr, qz, p)|vgz>0 = sg−(0, θ, qr,−qz, p)|vgz<0

z = d, g−(d, θ, qr, qz, p)|vgz<0 = sg+(d, θ, qr,−qz, p)|vgz>0.

(5)

C. Semianalytical solution

With the help of the boundary condition in Eq. (5), the
solution of the deviational distribution function in Eq. (4)
along the positive z direction is obtained as

g+(z̄, θ, qr, qz, p)
∣∣
vgz>0

= −τCvgx
∂T

∂x

∂ f eq
R

∂T

[
1 + (s − 1)e(−z̄/KnCz )

1 − se(−1/KnCz )

]

+ 1

vgz

∂ f eq
R

∂T

T qxd

ωτN

∫ z̄

0
ux

(
z̄′) exp

(
z̄′ − z̄

KnCz

)
dz̄′

+ 1

vgz

∂ f eq
R

∂T

T qxd

ωτN

s

1 − s2 e(−2/KnCz )

∫ 1

0
ux(z̄′)

×
[

s exp

(
z̄′ − z̄ − 2

KnCz

)
+ exp

(
− z̄′ + z̄

KnCz

)]
dz̄′, (6)

where we have introduced: z̄ = z/d and the Knudsen num-
ber KnCz = vgzτC/d . The overall relaxation time is defined

by Matthiessen’s rule as 1/τC = 1/τR + 1/τN. The devi-
ational distribution function solution along the negative
z direction is

g−(z̄, θ, qr, qz, p)|vgz<0

= −τCvgx
∂T

∂x

∂ f eq
R

∂T

[
1 + (s − 1)e[(1−z̄)/KnCz]

1 − se(1/KnCz )

]

+ 1

vgz

∂ f eq
R

∂T

T qxd

ωτN

∫ z̄

1
ux

(
z̄′) exp

(
z̄′ − z̄

KnCz

)
dz̄′

− 1

vgz

∂ f eq
R

∂T

T qxd

ωτN

s

1 − s2 e(2/KnCz )

∫ 1

0
ux

(
z̄′)

×
[

s exp

(
z̄′ − z̄ + 2

KnCz

)
+ exp

(
− z̄′ + z̄ − 2

KnCz

)]
dz̄′.

(7)

The deviational distribution function solution with
vgz = 0 is

g0(z̄, θ, qr, qz, p)|vgz=0 = − τCvgx
∂T

∂x

∂ f eq
R

∂T

+ τC
T

τN

qxux(z̄)

ω

∂ f eq
R

∂T
. (8)

The first terms on the right-hand side of Eqs. (6)–(8) are
precisely the SMRT solution, and the other terms are relevant
to the collective phonon drift. In the limit of fully diffuse
(s = 0) surfaces, the semianalytical solution in Eqs. (6)–(8)
will be reduced to an equivalent form to that given in Ref. [10]
which accounts for the size effect from the finite width of the
graphite ribbon, yet the present solution includes more general
situations with finite specularity parameters.

The phonon drift velocity distribution in Eqs. (6)–(8) is
determined with the help of the quasimomentum conservation
condition in Eq. (2):

C3Tux(z̄) = F (z̄) + �qz

8π2

∑
p

∑
qz

vgz>0

∫ qr max

0

Cqpq3
r d

ω2τN�Nz

×
∫ 1

0
Tux(z̄′)K

(
z̄, z̄′)dz̄′dqr, (9)

where the modal heat capacity is defined as Cqp =
h̄ω∂ f eq

R /∂T , and the first right-hand term and the integration
kernel are, respectively,

F (z̄) = −∂T

∂x

⎛
⎝C1 + �qz

8π2

∑
p

∑
qz

vgz>0

∫ qr max

0

Cqpq2
r �Cr

ωτN

{
2 + s − 1

1 − e−1/KnCz

[
exp

(
− z̄

KnCz

)
+ exp

(
z̄ − 1

KnCz

)]}
dqr

⎞
⎠, (10)

K
(
z̄, z̄′) = exp

(
−|z̄′ − z̄|

KnCz

)
+ s2

1 − s2 e(−2/KnCz )

[
exp

(
z̄′ − z̄ − 2

KnCz

)
+ exp

(
z̄ − z̄′ − 2

KnCz

)]

+ s

1 − s2 e(−2/KnCz )

[
exp

(
− z̄′ + z̄

KnCz

)
+ exp

(
z̄′ + z̄ − 2

KnCz

)]
. (11)
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FIG. 2. Validation of the present model: (a) Thickness-dependent thermal conductivity at 200 K in the fully diffuse limit (s = 0).
(b) Specularity parameter dependent thermal conductivity of a 23-layer graphite thin film at 300 K. The discrete diamond symbols with
or without error bar represent the reference Monte Carlo (MC) solution of phonon BTE with ab initio full scattering term [21], whereas the
solid line with circles denotes the present semianalytical solution of phonon BTE under Callaway’s dual relaxation model.

where �Cr = vgrτC, �Nz = vgzτN, with vgr =
√

v2
gx + v2

gy . A rectangular numerical integration over qz has been adopted with a
uniform interval of �qz. Equation (9) is a Fredholm integral equation of the second kind, which is solved numerically with a
Gauss-Legendre quadrature for the integration over z̄′.

Once the solutions of the drift velocity and the deviational distribution function are derived, we obtain the heat flux distribution
as Jx(z̄) = Jx, smrt (z̄) + Jx, c(z̄), with the SMRT part and drift correction respectively:

Jx, smrt (z̄) = −∂T

∂x

⎛
⎝C4 + �qz

8π2

∑
p

∑
qz

vgz>0

∫ qr max

0
Cqpvgr�Crqr

{
2 + s − 1

1 − se−1/KnCz

[
exp

(
− z̄

KnCz

)
+ exp

(
z̄ − 1

KnCz

)]}
dqr

⎞
⎠,

(12)

Jx, c(z̄) = C1Tux(z̄) + �qz

8π2

∑
p

∑
qz

vgz>0

∫ qr max

0

Cqpvgrq2
r d

ω�Nz

∫ 1

0
Tux(z̄′)K

(
z̄, z̄′)dz̄′dqr . (13)

In Eqs. (9)–(13), four constants C1 − C4 appear:

C1 = �qz

8π2

∑
p

∑
qz

vgz=0

∫ qr max

0

Cqpq2
r �Cr

ωτN
dqr, (14)

C2 = �qz

8π2

∑
p

∑
qz

vgz=0

∫ qr max

0

Cqpq3
r τC

ω2τ 2
N

dqr, (15)

C3 = (
C1

τN

)
xx

− C2, (16)

C4 = �qz

8π2

∑
p

∑
qz

vgz=0

∫ qr max

0
Cqpvgr�Crqrdqr, (17)

with the short notation in Eq. (16) defined as follows:

C1
τN

=
∑

p

∫
Cqp

ω2

qq
τN(q, p, T )

dq

(2π )3 . (18)

Equation (12) is exactly the anisotropic FS model in the
presence of a partially diffuse surface, and becomes equiv-
alent to the model in Ref. [22] in the fully diffuse limit
(s = 0). Equation (13) represents the drift correction from the

collective phonon transport, which plays a dominant role in
graphite due to the strong hydrodynamic effect. The thermal
conductivity of the graphite thin film is finally obtained by
integrating the heat flux distribution along the thickness di-
rection.

D. Model validation

Our semianalytical model requires the input of the phonon
properties (dispersion relation and relaxation times) of bulk
graphite. They are obtained from the fully first-principles
calculation, with the details given in our previous study [23],
where the phonon properties have been shown to accurately
reproduce the bulk thermal conductivity of graphite. Note
that here we adopt a q mesh of 40 × 40 × 7 for the BZ
discretization, with an odd number of discrete qz to en-
sure the symmetry around the 	 point. In the following, the
isotopically pure graphite is considered unless stated other-
wise. We show the thickness-dependent thermal conductivity
of graphite thin film in the fully diffuse limit (s = 0) at
200 K in Fig. 2(a). The result by the present Callaway
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model is well consistent with that of the MC solution of
phonon BTE with ab initio full scattering term [21]. The small
difference is mainly due to a few reasons: (i) different scat-
tering terms in BTE, i.e., the relaxation time model here
versus the full scattering term [21]; (ii) different q-mesh dis-
cretizations, 40 × 40 × 7 here versus 25 × 25 × 5 [21]; (iii)
slightly different results of first-principles calculation by dif-
ferent groups. To be specific, the slightly different thermal
conductivities in the bulk limit should be dominated by reason
(i); the difference in the small-thickness ballistic limit where
the harmonic phonon bulk property (i.e., phonon dispersion)
plays a decisive role shall be caused by both reasons (ii)
and (iii); the better agreement in between is caused by the
complicated interplay of all the reasons. In terms of the com-
putational cost, the MC solution takes ∼17 h using ten cores
on a node (2 × AMD 7713, 128 cores, 256 GB memory) at the
CADES cluster of the Oak Ridge National Laboratory for the
simulation of a 65-µm-thick graphite film [21,33]. In contrast,
the present semianalytical modeling of the same problem
takes ∼3 s using MATLAB R2020A on a laptop with an Intel i5-
8265U processor (four cores). On the other hand, the phonon
q mesh is relatively coarse in the MC solution of phonon BTE
with the ab initio scattering term [21]. Those parameters indi-
cate a much higher efficiency of the present model attributed
to the Callaway’s dual relaxation model appearing as an ac-
curate approximation to the full scattering term of BTE. In
addition, we show the specularity-parameter-dependent ther-
mal conductivity of a 23-layer graphite thin film at 300 K in
Fig. 2(b). The result by the present model generally agrees
well with that by the MC solution of phonon BTE with the
ab initio scattering term [21]. The noticeable difference in the
fully specular limit (s = 1) comes from the fact that a finite
length of 5 µm and a finite width of 1.75 µm are considered
therein [21].

III. RESULTS AND DISCUSSION

In this section, first we will discuss the thickness and sur-
face roughness effects on the basal-plane thermal conductivity
of graphite thin film and the underlying mechanism in Sec. III
A. In Sec. III B, the surface roughness effect on the phonon
Knudsen minimum in the thickness direction will be inves-
tigated. Finally, some discussion and perspectives about the
explanation of the experimental results and of future works
are provided in Sec. III C.

A. Thickness and surface roughness effects on thermal
conductivity

We conduct a detailed investigation of the thickness and
surface effects on the thermal conductivity of graphite thin
films at various temperatures. In Fig. 3(a), we consider
graphite with natural abundance at 300 K and the fully diffuse
limit to be the same as the conditions in Ref. [22]. The trend
of the present SMRT solution is more or less consistent with
that of the SMRT model in Ref. [22]. Some differences appear
since the empirical phonon dispersion and relaxation times
are adopted therein [22]. On the other hand, the present Call-
away model shows appreciably smaller normalized thermal
conductivity over the bulk value than that based on the SMRT

FIG. 3. Thickness-dependent normalized thermal conductivity
of graphite thin film at different temperatures and various surface
specularity parameters (s): (a) T = 300 K, natural graphite; (b) T =
200 K, isotopically pure graphite; (c) T = 100 K, isotopically pure
graphite. The solid lines and dashed lines correspond to the present
results based on phonon BTE under Callaway’s dual relaxation
model and under the single mode relaxation time (SMRT) model re-
spectively. The dash-dotted line in (a) represents the reference SMRT
model result [22]. In (a)–(c), κb = 1.4724 × 103, 3.1891 × 103, and
1.6688 × 104 (W/m K), respectively, based on the present Callaway
model, whereas κb = 472.9132, 628.0705, and 737.5010 (W/m K),
respectively, based on the present SMRT model.

model. In other words, the present model predicts a stronger
size effect from the finite thickness on the basal-plane heat
transport. For instance, for a thickness of 10 nm, the Callaway
model predicts ∼70% reduction from the bulk value at 300 K
whereas the SMRT model predicts only ∼30% reduction of
the thermal conductivity. The difference between the present
model and the SMRT model turns out to be even larger at
lower temperatures, as shown in Fig. 3(b) at 200 K and in
Fig. 3(c) at 100 K for the isotopically pure graphite. Although
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FIG. 4. Thermal conductivity decomposition in graphite thin
film at 100 K: (a) thermal conductivity; (b) normalized thermal
conductivity. The solid lines represent the overall result based on the
phonon BTE under Callaway’s dual relaxation model, whereas the
dashed lines and dotted lines represent the single mode relaxation
time (SMRT) part and drift correction. The normalization in (b) is
done over the corresponding part in the bulk limit.

the SMRT model has been shown to significantly underes-
timate the bulk thermal conductivity of graphitic materials
[7,8,23,25], its performance in the prediction of size effect in
micro- and nanostructures has rarely been evaluated.

As the surface roughness is reduced and the specularity
parameter s increases from 0 to 1, the size effect from the
finite thickness of the graphite thin film generally weakens
and finally vanishes, as shown in Figs. 3(b) and 3(c). In
addition, we show an unexpected significant impact from the
surface roughness on the basal-plane thermal conductivity. A
very small deviation from the fully specular limit (s = 1) will
induce a strong thickness effect on the thermal conductivity,
as predicted by the Callaway model at s = 0.99 in Fig. 3(c) at
100 K. As the temperature increases to 200 K, the thickness
effect at s = 0.99 becomes weaker but still non-negligible, as
shown in Fig. 3(b). In both cases, the SMRT model predicts a
negligible size effect as usually expected. It indicates that even
tiny imperfections at the surface of a graphite thin film would
remarkably deteriorate its basal-plane thermal conductivity.

To understand the physical mechanism behind this re-
duction, we report the decomposition of the overall thermal
conductivity at 100 K into the SMRT part by Eq. (12) and
the drift correction by Eq. (13) in Fig. 4(a). In the bulk limit
(infinite thickness), the drift correction contributes to ∼95%
of the overall thermal conductivity due to the strong hydrody-
namic effect. In the case of a fully diffuse (s = 0) surface, the
drift correction still has a predominant contribution at large
thickness and decreases by more than two orders of magnitude
at small thickness, where the SMRT part turns out to be
dominant. In the case of a close to fully specular (s = 0.99)
surface, the SMRT part is almost independent of the thickness,

FIG. 5. Basal-plane phonon drift velocity distribution along the
thickness direction in graphite thin film at 100 K and various surface
specularity parameters (s): (a) thickness d = 100 nm; (b) thickness
d = 2 µm. A temperature gradient of −1 × 108 K/m is implemented.

while the drift correction keeps dominant and decreases with
a similar trend as that of the overall thermal conductivity with
the thickness decreasing down to 10 nm. In all, the size effect
from the finite thickness on the overall thermal conductivity
is mainly governed by the drift correction, as clearly shown
by their close normalized values over the corresponding bulk
limit in Fig. 4(b). Therefore, the significant thickness and
surface effects on the basal-plane heat transport in graphite
thin film result from the strong impact of the boundary on the
collective drift behaviors of phonons inside the structure.

For a straightforward picture of the impact of the sur-
face on the phonon drift inside the graphite thin film, we
display the drift velocity distributions in two structures at
100 K and various surface specularity parameters in Fig. 5.
Based on the results of phonon mean free paths (MFPs) of
normal and umklapp processes in recent studies [21,34,35],
heat transport in the thin film with a thickness of 100 nm
and 2 µm lies in the boundary scattering dominated regime
and hydrodynamic regime respectively. In the case of 2 µm
thickness, with decreasing specularity parameter, i.e., increas-
ing surface roughness or imperfections, the phonon drift
velocity is considerably reduced near the boundary, and is
gradually transferred into the center of the thin film through
normal phonon-phonon scattering processes. As the quasimo-
mentum is conserved during normal processes, the impact
from the surface on the phonon dynamics is much more
efficiently transferred into the interior compared to that in
the usual ballistic-diffusive regime [36,37]. In the latter case,
the momentum-destroying resistive process is dominant, and
the transfer of the surface impact is more easily interrupted
and randomized. This analysis provides a microscopic picture
for the much stronger thickness and surface effects predicted
by the present model. In the case of 100 nm thickness, the
phonon drift velocity distribution is more uniformly reduced
due to frequent phonon-boundary scattering, and is much
smaller compared to that of the 2 µm case at the same value of
the specularity parameter (s < 1). In the close to fully spec-
ular (s = 0.99) surface, the reduction of drift velocity is still
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FIG. 6. Basal-plane thermal conductivity normalized by the film thickness (d) at different temperatures and various surface specularity
parameters (s): (a) T = 100 K, (b) T = 80 K. (c) The thickness corresponding to Knudsen minimum as a function of surface specularity
parameter at 80 K.

∼30%, which provides a good explanation of the appreciable
size effect shown in Fig. 3(c). Note that in the partially spec-
ular case, there are still normal and resistive processes after
long-term boundary scattering processes. In fact, the effective
thickness increases with increasing specularity parameter and
becomes infinite in the limit of fully specular surface.

B. Surface roughness effect on phonon Knudsen minimum

In this subsection, we will explore the phonon Knudsen
minimum in the thickness direction of graphite thin film
and discuss the influence of surface roughness. The phonon
Knudsen minimum delimits the transition from ballistic to hy-
drodynamic heat transport, which can be distinguished by the
different size-scaling behaviors of the thermal conductivity
[10,26]. The thermal conductivity increases linearly with the
characteristic size and with the square of the characteristic size
in ballistic and hydrodynamic regimes respectively [38,39].
Figure 6(a) shows the thermal conductivity normalized by
the thickness of graphite film with various surface specu-
larity parameters at 100 K. It is found that the normalized
thermal conductivity always decreases monotonously with the
film thickness. In other words, we do not obtain superlin-
ear behavior of thermal conductivity, i.e., a phonon Knudsen
minimum in the thickness direction at 100 K. For all surface
specularity parameters, the normalized thermal conductivity
has almost the same size-scaling behavior at smaller thickness
(d <∼ 300 nm) where ballistic transport dominates. In the
other limit, the normalized thermal conductivity converges to
its bulk value at large thickness (d >∼ 10 µm). In between
(∼ 300 nm < d <∼ 10 µm), the decreasing slope of the
normalized thermal conductivity increases as the specularity
parameter increases.

We further lower the temperature down to 80 K where the
phonon Knudsen minimum emerges, as shown in Fig. 6(b).
The normalized thermal conductivity in the fully diffuse limit
(s = 0) increases with film thickness after a Knudsen min-
imum at ∼750 nm and reaches a Knudsen maximum at
∼3.5 µm before decreasing again. As the specularity pa-

rameter increases, the phonon Knudsen minimum becomes
weakened and disappears after s > 0.5. The underlying mech-
anism is the same as that for the aforementioned decreasing
slope of normalized thermal conductivity in this intermediate
thickness range. In this range, the thickness is larger than the
intrinsic MFP of normal scattering processes whereas it is
smaller than that of umklapp ones [21,34,35]. However, as
the specularity parameter increases, phonons experience more
specular surface scatterings which preserve the memory of
their dynamics. Thus phonons have a higher probability to be
involved in umklapp scattering after traveling an accumulated
distance comparable to its intrinsic MFP before the memory-
destroying diffuse surface scattering occurs. From another
point of view, the effective thickness of the graphite thin film
will increase to make space for the umklapp scattering when
the surface specularity parameter increases, as discussed at the
end of Sec. III A. This point can be quantitatively understood
from the empirical expression of boundary scattering rate
[40]: 1/τb = [(1−s)/(1 + s)]2|vgz|/d , which yields an effec-
tive thickness of deff = d (1 + s)/(1−s). The probability of an
umklapp scattering event is given by [1− exp(−dtravel/�U)],
where the accumulated traveling distance dtravel ≈ deff . The
boundary scattering rate can be refined based on the FS model,
i.e., Eq. (12), and its qualitative trend will not change, as de-
tailed in Ref. [40], and is not repeated here. As more umklapp
scattering processes take place, the hydrodynamic behavior
of phonons will be destroyed, and the phonon Knudsen min-
imum will gradually disappear. It indicates that sufficient
roughness at the surface of graphite thin film is an essential
ingredient for the observation of Knudsen minimum phe-
nomenon in the thickness direction. For the phonon Knudsen
minimum in the width direction of the graphite ribbon shown
in previous works [10,23], a fully diffuse boundary is usually
assumed since the edge of the graphite ribbon is roughened
due to the etching method for patterning the ribbon in realistic
experiment [34]. In contrast, special care should be paid to
the surface roughness or imperfections in future experimen-
tal detection of phonon Knudsen minimum in the thickness
direction of graphite. The surface specularity in the thickness
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FIG. 7. Thickness-dependent thermal conductivity of graphite thin film along basal-plane direction around room temperature. The filled
red circles denote the experimental data of multilayer graphene [17], the filled blacks squares denote the experimental data of graphite thin film
at 250 K [20], and the filled green triangles denote the experimental data of 5.0 µm × 3.4 µm × 13 layers and 5.0 µm × 3.7 µm × 23 layers
graphite samples [21]. The hollow black squares and circles with lines denote the present BTE model with a constant surface specularity
parameter s = 0 and s = 1, respectively. The hollow magenta diamonds with line denote the present BTE model with a specularity parameter
(s) decreasing linearly from 1.0 to 0.5 as the thickness (d) increases from 10 to 110 nm [s = s(d )].

direction can vary from fully specular [17] to fully diffuse [21]
depending on the quality of graphite flakes usually obtained
via a mechanical exfoliation process [17,21,34].

Another interesting finding in Fig. 6(b) is that the surface
roughness has appreciable impact on the film thickness cor-
responding to the phonon Knudsen minimum. The minimum
thickness shifts from ∼ 750 nm to 1.2 µm as the surface
specularity parameter increases from 0 to 0.5, as illustrated in
Fig. 6(c). The underlying reason for this trend can be under-
stood as follows. The Knudsen minimum represents a balance
between the rarefaction effect from the boundary scattering
and the collective effect from the normal scattering [26]. More
explicitly, the rarefaction effect increases as the channel size
decreases due to larger boundary slip whereas the collective
effect increases as the channel size increases due to larger
flux of heat carriers [41]. As the surface becomes smoother,
the rarefaction effect becomes stronger, and the minimum
thickness of the thin film shifts to a larger value. These results
provide helpful guidance for future experiments and also a po-
tential approach to modulate phonon hydrodynamic transport
by surface modification.

C. Discussion and perspective

We would like to discuss the experimental results of
thickness effect on the basal-plane thermal conductivity of
graphite. The transition from two-dimensional (2D) to three-
dimensional (3D) heat transport in few-layer graphene in the
experiment [17] lies in the phonon confinement regime [21],
i.e., coherent regime. As the thickness increases, the inter-
layer coherent interaction of lattice waves gradually forms
the eigenmodes of graphite, and the thermal conductivity
decreases from the value of single-layer graphene to that of
bulk graphite. The underlying physics is essentially different
from the size effect in the incoherent or particle transport

regime considered here, where the phonon properties of bulk
graphite are adopted as inputs of the BTE modeling. To have
a quantitative estimation of the critical thickness below which
the coherent wave effect becomes important, we calculate the
thermal conductivity accumulation function versus phonon
wavelength in the Appendix. As shown in Fig. 8 in the
Appendix, the wavelengths of dominant phonons contributing
to heat transport in graphite are less than ∼ 2 nm at room
temperature, which is close to the thickness of 4–8 atomic
layers where the thermal conductivity converges to bulk [17],
as summarized in the left-hand side of Fig. 7. In principle, the
range of thicknesses in the other experiment [20] corresponds
to phonon heat transport in the incoherent regime, as summa-
rized in the right-hand side of Fig. 7. However, the observed
decrease of thermal conductivity with increasing thickness
[20] contradicts the trend predicted by the BTE model in

FIG. 8. Normalized thermal conductivity accumulation function
versus phonon wavelength of bulk graphite along the basal-plane
direction at different temperatures. The magenta dashed line denotes
a 95% accumulation.
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this work and in Refs. [21,22]. One possible reason for that
anomalous trend is the worsening surface quality (decreasing
specularity parameter) as the thickness increases, such that
the surface effect prevails over the thickness effect. As an
example, we presume that as the thickness increases from
10 to 110 nm the specularity parameter decreases linearly
from 1.0 to 0.5, which produces even a decrease of thermal
conductivity as shown in Fig. 7. Although the range of thick-
nesses in the experiment [20] is much larger, we intend to
present one possible mechanism to explain the anomalous
trend therein [20]. Finally, the experimental data of graphite
thin films with 13 layers and 23 layers do not provide a
clear conclusion about the thickness dependence [21]. There
have been crucial experimental advances in investigating the
thickness effect on heat transport along the c axis of graphite
[42,43] inspired by previous theoretical modeling [44]. How-
ever, more experimental data are still needed in the future to
have an unambiguous understanding of the thickness effect on
the basal-plane heat transport of graphite.

Finally, note that the present semianalytical model only
considers the effect of finite thickness, whereas realistic
graphite structures have finite length and finite width as well
[20,21,34]. To directly analyze future experimental data, we
have to solve the phonon BTE in both the 3D reciprocal
space and the 3D real space. In our recent work [23], we
have developed a discrete-ordinates scheme to directly solve
the phonon BTE under Callaway’s dual relaxation model for
heat transport in graphite ribbons with finite length and width.
It is yet to generalize that numerical scheme to include the
effect of finite thickness in the next step. In addition, a nature
extension would be to account for the frequency-dependent
specularity parameter.

IV. CONCLUSIONS

The thickness and surface roughness effects on the basal-
plane heat transport in graphite thin film are investigated
based on a semianalytical solution of the phonon Boltzmann
equation under Callaway’s dual relaxation model. We predict
a significant effect of the surface roughness on the thickness-
dependent thermal conductivity in the phonon hydrodynamic
transport regime. The underlying mechanism comes from
the strong impact of the surface on the collective phonon
drift inside the structure due to the efficient quasimomen-
tum transfer in normal phonon scattering processes. As the
surface roughness is reduced, the phonon Knudsen minimum
in the thickness direction is shown to weaken and the mini-
mum thickness shifts to a larger value. The surface roughness
provides a potential mechanism to qualitatively explain the re-
cently observed anomalous trend of thickness-dependent ther-
mal conductivity. Our theoretical prediction also gives useful
guidance for future experimental detection of steady-state hy-
drodynamic heat flow in finite-sized graphitic materials.
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APPENDIX: THERMAL CONDUCTIVITY
ACCUMULATION FUNCTION VERSUS PHONON

WAVELENGTH

Here we derive the thermal conductivity accumulation
function versus phonon wavelength for bulk graphite based
on the phonon BTE under Callaway’s model [24]. Consider
basal-plane heat transport along the x direction as shown
in Fig. 1(a). The solution of the phonon BTE in Eq. (4) is
reduced to

g = τC

[
−vgx

∂T

∂x
+ T

τN

qxux

ω

]
∂ f eq

R

∂T
. (A1)

With the help of the quasimomentum conservation condi-
tion in Eq. (2), we obtain the phonon drift velocity as follows:

Tux = −β
∂T

∂x
, (A2)

where the factor between the drift velocity and temperature
gradient is

β =
∑

p

∫
τC
τN

h̄qxvgx
∂ f eq

R
∂T

dq
(2π )3∑

p

∫
τC

τNτR

h̄qxqx

ω

∂ f eq
R

∂T
dq

(2π )3

. (A3)

Putting the solution in Eq. (A1) into the kinetic defi-
nition of heat flux, we get the expression of the thermal
conductivity as

κxx =
∑

p

∫
τCvgxvgx h̄ω

∂ f eq
R

∂T

dq

(2π )3

+
∑

p

∫
τC

τN
h̄qxvgx

∂ f eq
R

∂T
β

dq

(2π )3 . (A4)

The first term and second term in Eq. (A4) represent the
SMRT part and drift correction, respectively. The thermal
conductivity differential function versus phonon wavelength
(λ) is defined as

κdiff (λ) =
∑

p

∫
τCvgxvgx h̄ω

∂ f eq
R

∂T
δ

(
λ − 2π

|q|
)

dq

(2π )3

+
∑

p

∫
τC

τN
h̄qxvgx

∂ f eq
R

∂T
βδ

(
λ − 2π

|q|
)

dq

(2π )3 .

(A5)

The thermal conductivity accumulation function versus
phonon wavelength is then calculated from the differential
function as follows:

κaccum(λ) =
∫ λ

0
κdiff

(
λ′)dλ′. (A6)

As a result, the normalized thermal conductivity accumula-
tion function with respect to the phonon wavelength in several
temperatures of the current study are shown in Fig. 8.
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