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The hierarchical equations of motion (HEOM) approach is an accurate method to simulate open system
quantum dynamics, which allows for systematic convergence to numerically exact results. To represent effects
of the bath, the reservoir correlation functions are usually decomposed into summation of multiple exponential
terms in the HEOM method. Since the reservoir correlation functions become highly non-Markovian at low
temperatures or when the bath has complex band structures, a present challenge is to obtain accurate exponential
decompositions that allow efficient simulation with the HEOM. In this work, we employ the barycentric
representation to approximate the Fermi function and hybridization functions in the frequency domain. This
method, by approximating these functions with optimized rational decomposition, greatly reduces the number
of basis functions in decomposing the reservoir correlation functions, which further allows the HEOM method
to be applied to ultralow temperature and general band structures. We demonstrate the efficiency, accuracy,
and long-time stability of this decomposition scheme by applying it to the Anderson impurity model in the
low-temperature regime with the Lorentzian and tight-binding hybridization functions.
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I. INTRODUCTION

A paradigmatic setting in solid-state physics is related
to a quantum system coupled to a continuum of electronic
states, where a typical example is the charge transport in
single-molecule junctions or through quantum dots [1–5].
Such systems usually consist of a molecule or quantum
dot attached to two metal leads, forming an open quantum
system where the molecule can exchange electrons and en-
ergy with the leads. Owing to the advances in experimental
techniques [6–10], it is now possible to measure a variety
of transport properties. The experimental observations, in-
cluding Coulomb blockade [8], spin blockade [11], Kondo
effect [12,13], negative differential resistance [6,14–16],
switching [17,18], and hysteresis [19], have shown the poten-
tial of molecular junctions in the field of molecular electronics
and stimulated the development of transport theory and simu-
lation techniques.

Different methods are now available to solve the transport
problem in molecular junctions and likewise for arrays of
quantum dots. Approximate methods such as the quantum
master equations (QMEs) [20–26], although being able to
provide many useful physical insights, introduce significant
approximations and are often limited to certain parameter
regimes. For example, in a previous study, we have shown
that QMEs based on perturbation theory fail in the strong cou-
pling regime [27]. Many numerically exact methods have also
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been developed, which include the numerical renormalization
group (NRG) [28–32], density-matrix renormalization group
(DMRG) [33–36], and multilayer multiconfiguration time-
dependent Hartree (ML-MCTDH) in the second quantization
representation (SQR) [37–39]. These methods usually require
discretization of the lead hybridization functions, such that
special treatments are needed to avoid discretization artifacts
at long simulation times [39–41].

Other approaches utilize the noninteracting nature of
the leads and do not require discretization. These include
the path integral (PI) [42–44], continuous-time quantum
Monte Carlo (CT-QMC) [45–50], Inchworm Monte Carlo
[51,52], and the hierarchical equations of motion (HEOM)
approach [27,53–59].

In this work, we focus on the HEOM method originally
developed by Tanimura and Kubo [60,61]. Jin et al [53,62]
developed the HEOM method for the fermionic bath problem,
which has later been applied to the charge transport problem in
molecular junctions [55,56,58,63–66]. Despite this popularity,
it is known that the applicability of HEOM is often limited to
moderate- or high-temperature regimes [56,59]. The reason
is that, in the HEOM, the reservoir correlation function C(t )
that describes the fluctuation and dissipation effects of the en-
vironment is represented using a finite set of basis functions to
construct the hierarchical structures. In the literature, the most
widely used scheme in the moderate- to high-temperature
regime is based on exponential decomposition of the reservoir
correlation function with the aid of Matsubara expansion of
the Bose or Fermi function [53,61,67]. At low temperatures,
though, the long memory time of C(t ) leads to rapid growth in
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the number of basis functions, rendering HEOM simulations
very expensive and in many cases not feasible.

To resolve this problem, several methods have been de-
veloped based on more efficient decomposition schemes of
C(t ), which include the Padé spectrum decomposition (PSD)
[68–70], logarithmic discretization scheme [71], orthogonal
functions decomposition based on Chebyshev polynomials
[72–75], Hermite polynomials [76], Bessel functions [74,77],
or product of oscillatory and exponential functions [77],
resummation over poles (RSHQME) [78], and, more re-
cently, the Fano spectrum decomposition (FSD) [59,79],
and the Prony fitting decomposition (PFD) [80] schemes.
These important developments have now allowed the HEOM
to reach the experimentally very low temperature regimes
[59,71,80–82], and to deal with more complex band structures
of the lead [78,80,83–85]. However, many of these new meth-
ods still have severe limitations. For example, the RSHQME
approach becomes increasingly expensive with the simula-
tion time [78], the FSD method may suffer from asymptotic
instability problem in certain parameter regimes [59]. The
time domain decomposition approaches also require a large
number of basis functions when increasing the simulation
time [72,76,86].

Recently, the free-pole HEOM (FP-HEOM) method was
proposed by our groups [87] based on the barycentric rep-
resentation [88] of the spectrum of the reservoir correlation
function C(t ) as a very efficient tool to cure the above defi-
ciencies. It shows high accuracy and computational efficiency
for a broad class of bosonic reservoirs including those with
sub-Ohmic and band-gap spectral densities. Further, it applies
to the complete temperature range down to zero temperature.
In this work, we extend this framework to the charge transport
problem in molecular junctions or quantum dots, where the
metal leads are described by noninteracting fermionic baths.
We name this scheme the barycentric spectrum decompo-
sition (BSD) method henceforth. The BSD method is easy
to implement with available packages and the accuracy of
the decomposition can be controlled by a single predefined
parameter [88]. To demonstrate the performance of the BSD
scheme for fermionic baths, we apply it here to simulate
charge transport in the Anderson impurity model (AIM), one
of the benchmark models in solid-state physics.

We first use the BSD scheme to decompose the Fermi
distribution function. Compared with traditional methods such
as PSD, the BSD scheme is more accurate in the full fit-
ting range, with errors not exceeding a predefined precision
criteria. Moreover, the BSD scheme is superior in the low-
temperature regime. It is found that, to achieve a given
precision, the number of BSD basis functions increases only
linearly when the temperature drops exponentially, compared
to the exponential increase of the number of PSD basis func-
tions.

To demonstrate the capability to perform simulations at
low temperatures and the numerical stability of this method,
the voltage-driven dynamics and the Kondo resonance in the
AIM with the Lorentzian hybridization function are simu-
lated. The observed long time hysteresis behavior at low
temperature shows the numerical stability of the BSD scheme.
The Kondo resonance at low temperatures is investigated by
calculating the retarded Green’s function directly using the

HEOM, and the results show that the efficiency and accuracy
are at least comparable with the most recent PFD method [80].

Previous frequency domain decomposition schemes usu-
ally depends on writing the hybridization functions into forms
where the poles can be obtained analytically [59,65,70,89].
The BSD scheme also has the advantage that it does not
rely on these analytical forms, and is capable to treat general
forms of spectral density or hybridization functions. In the last
example showing its applicability to arbitrary band structures,
the charge transport dynamics of the AIM with a tight-
binding hybridization function are studied. It is shown that
the BSD-based HEOM can produce reliable zero-temperature
dynamics, in agreement with previously results from the ML-
MCTDH-SQR method [90]. Moreover, quantum dynamics at
different temperatures can also be explored using the BSD
scheme.

The outline of this paper is as follows. In Sec. II A, we in-
troduce the model system and the HEOM method. In Sec. II B,
we present how to use the HEOM to calculate the transport
current and the impurity spectral function. In Sec. II C, we
present details of the BSD scheme applied to the reservoir cor-
relation function for the fermionic bath. Numerical results are
presented in Sec. III, where we analyze the efficiency of the
BSD scheme in decomposing the Fermi distribution function,
and show that the HEOM method combined with the BSD
scheme can be efficiently applied to simulate charge transport
in the AIM at very low temperature, and with general band
structures. Conclusions and discussions are made in Sec. IV.

II. THEORY

A. Model Hamiltonian and the HEOM method

Within the open quantum system framework, which con-
sists of a molecule (referred to as the “system”) attached to
two metal leads (representing the “bath”), the total Hamilto-
nian of the AIM can be written as

ĤT = ĤS + ĤB + ĤI , (1)

where ĤS , ĤB, and ĤI correspond to the Hamiltonian of the
system, the leads, and the coupling between them, respec-
tively. Their explicit forms are given by

ĤS =
∑

α

εα â†
α âα + Uâ†

↑â↑â†
↓â↓, (2a)

ĤB =
∑
αn,l

εαn,l ĉ
†
αn,l ĉαn,l , (2b)

ĤI =
∑
αn,l

Vαn,l ĉ
†
αn,l âα + H.c. (2c)

Here, α = {↑,↓} denotes the two spin states, which are de-
generate when there is no external magnetic field. l = L, R
represents the left or right lead. ĉ(†)

αn,l and â(†)
α are the annihi-

lation (creation) operators of the lead and molecule electrons,
with the energy εαn,l and εα , respectively. U > 0 represents
the repulsive Coulomb interaction when both spin states on
the molecule are occupied. Vαn,l is the coupling between the
molecule and the lth lead. The molecule-lead coupling can be
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characterized by the hybridization function defined as

�α,l (ε) = 2π
∑

n

|Vαn,l |2δ(ε − εαn,l ). (3)

The reservoir correlation functions are related to the corre-
sponding hybridization function through [53,56,62]

Cσ
α,l (t ) =

∫ +∞

−∞

dε

2π h̄
eσ iεt/h̄�α,l (ε) f σ

l (ε), (4)

where σ = ±, and f σ
l (ε) = [1 + eσβl (ε−μl )]−1 is the Fermi

function for the electrons and holes. Qualitatively, at suffi-
ciently elevated temperatures the correlation function decays
exponentially while at very low temperatures algebraic decay
gives rise to long-time tails. The latter depends on the details
of the hybridization and Fermi function in close proximity
to the Fermi level, i.e., low-frequency properties. It is this
behavior that renders any numerical simulation to be highly
nontrivial for low-temperature fermionic reservoirs.

We may also encounter situations where a time-dependent
bias voltage is applied to the leads. In such cases, for the
time-dependent voltage Vl (t ) applied on lead l , the nonsta-
tionary reservoir correlation functions C̃σ

α,l (t, τ ) are described
by [53,59,63]

C̃σ
α,l (t, τ ) = exp

[
− i

e

h̄
σ

∫ t

τ

dt ′Vl (t
′)

]
Cσ

α,l (t − τ ). (5)

In the HEOM, the reservoir correlation function Cσ
α,l (t ) is

represented by using a finite set of basis functions [78–80].
Usually, when applying a sum-over-poles expansion of
�α,l (ε) f σ

l (ε), the basis is a set of exponential functions

Cσ
α,l (t ) �

K∑
k=1

dσ
αlke−νσ

αlk t . (6)

The HEOM for the fermionic bath is then given
by [53,55,66]

∂

∂t
ρ̂J(t ) = −

[
i

h̄
LS + γJ(t )

]
ρ̂J − i

h̄

�∑
m=1

(−1)�−mC jm ρ̂J−
m

− i
∑
j�+1

A j̄�+1
ρ̂

J+ , (7)

where the subscript J denotes { j1 j2, . . . , j�},
J+ denotes { j1 j2, . . . , j�, j�+1}, and J−

m denotes
{ j1, . . . , jm−1, jm+1, . . . , j�}, where the combined-label
index j = (α, l, k, σ ), j̄ = (α, l, k, σ̄ ), σ̄ = −σ . The reduced
density operator (RDO) is ρ̂0, with 0 means that J does
not contain any terms. When J �= 0, ρ̂Js are the auxiliary
density operators (ADOs) that contain the system-bath
correlations. � is the tier of ρ̂J, which is the total number
of terms in J. LSρ̂J = [ĤS, ρ̂J]. γJ(t ), the only term that
contains the effect of time-dependent bias voltage, is
γJ(t ) = ∑

(α,l,k,σ )∈J[νσ
αlk + ieσVl (t )/h̄]. The operators C j and

A j couple the �th tier to the (� − 1)th and the (� + 1)th
tiers, respectively. Their actions on the RDO and ADOs are

given by

C j ρ̂J = d jâ j ρ̂J − (−1)�d ∗̄
j ρ̂Jâ j, (8a)

A j ρ̂J = â j ρ̂J + (−1)�ρ̂Jâ j . (8b)

For j = (α, l, k, σ ), dj = dσ
αlk , â j = âσ

α with â−(+)
α ≡ â(†)

α ,
representing the system annihilation (creation) operators.
More details of the above HEOM for fermionic bath can be
referred to Refs. [53,55,91].

In practical calculations, except for the number of basis
functions K in Eq. (6), the number of tiers � also needs to be
truncated in conventional HEOM. We denote the terminal tier
level as Ntrun, i.e., we set ρ̂J = 0 for all ADOs with � > Ntrun.
The computational cost of the HEOM in Eq. (7) increases
rapidly as Ntrun increases, especially when K is large. To solve
this problem, we employ two different approaches: the first
one is based on the on-the-fly filtering method [56,92], and
the second one is the matrix product state (MPS) method to
propagate the HEOM [57,93]. By using the MPS method, the
computational and memory costs increase linearly as the num-
ber of basis functions K increases. Moreover, the precision
control parameter in the MPS method is the bond dimen-
sion, rather than truncation tier Ntrun. For more details on the
MPS-HEOM, we refer to the earlier work in Ref. [57]. In
our later numerical simulations, the HEOM is propagated by
using the on-the-fly filtering method unless the MPS method
is explicitly mentioned.

B. Calculation of the physical quantities

To study the transport property of the AIM, we need to cal-
culate the transport current which is defined as Il (t ) = −e dN̂l

dt ,
with N̂l being the electron-number operator on lead l and
e being the elementary charge. In the HEOM, Il (t ) can be
calculated from the first-tier ADOs ρ̂σ

αk,l (t ) as [53]

Il (t ) = ie
∑
αk

TrS{ρ̂+
αk,l (t )âα − â†

αρ̂−
αk,l (t )}, l = L, R (9)

where TrS denotes the trace over system DOFs.
When the electron-electron interaction is strong in AIM,

Kondo resonance arises at low temperature, which can be
quantitatively described by the Kondo peak of the spectral
function near the Fermi energy [54,94]. Thus, to verify the
efficiency of BSD at low temperatures, we are interested in
calculating the spectral function Aα (ω) given by the Fourier
transform of the retarded Green’s function GR

α (t ) [36,95]:

Aα (ω) = − 1

π
Im

∫ ∞

−∞
dt eiωt GR

α (t ), (10)

GR
α (t ) = −i�(t )〈{âα (t ), â†

α}〉, (11)

where 〈Ô〉 = Tr[ρ̂eq Ô] with ρ̂eq = e−βĤT /Tr[e−βĤT ] describ-
ing the thermal equilibrium of the total system, {·, ·} is the
anticommutator.

When using the HEOM to calculate GR
α (t ), the equations of

motion are slightly different due to the anticommuting prop-
erty of the fermion operators. As an example, we first consider
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the correlation function 〈âα (t )â†
α〉:

〈âα (t )â†
α〉 = Tr[eiĤT t/h̄âαe−iĤT t/h̄â†

αρ̂eq]

= TrS{âαTrB[e−iĤT t/h̄â†
αρ̂eq eiĤT t/h̄]}. (12)

In this work, the equilibrium density operator ρ̂eq of the total
system is represented by all the RDOs and ADOs after prop-
agating the initial state until equilibrium. We note that there
are also other methods to obtain the equilibrium state, via the
imaginary-time propagation [96–99], or iterative solver for
linear equations [100,101]. After obtaining the equilibrium
RDOs and ADOs, â†

αρ̂eq is obtained by multiplying â†
α on

the left to all equilibrium RDOs and ADOs. The resulted new
RDOs and ADOs are then propagated to time t .

Due to the anticommutation relation between â†
α and the

RDOs and ADOs, the resulting HEOM for the evolution of
â†

αρ̂eq have the same form as Eq. (7), but with the operators C j

and A j replaced by CL
j and AL

j :

CL
j ρ̂

L
J = (−1)d jâ j ρ̂

L
J − (−1)�d ∗̄

j ρ̂
L
J â j, (13a)

AL
j ρ̂

L
J = (−1)â j ρ̂

L
J + (−1)�ρ̂L

J â j . (13b)

The superscript L in the above Eq. (13) indicates that the
original equilibrium RDO and ADO ρ̂J is multiplied by â†

α

on the left (i.e., ρ̂L
J ≡ â†

αρ̂J). Note that the additional minus
sign when â j acts on the left of ρ̂L

J , compared to Eq. (8). It
comes from constructing the equation of motion of ρ̂L

J . After
taking the derivative of ρ̂L

J , we obtain terms like â†
αC j ρ̂J and

â†
αA j ρ̂J. To obtain the final equation of motion, â j should be

switched to the left or right side of ρ̂L
J , such that the left-acting

term (i.e., â j ρ̂
L
J ) in Eq. (13) has an additional minus sign due

to the interchange of â j with â†
α in ρ̂L

J . Further details can be
referred to Refs. [53,54].

After propagating â†
αρ̂eq to time t using the above

equations, the 〈âα (t )â†
α〉 term in Eq. (12) can be ob-

tained by multiplying âα with the RDO at time t (i.e.,
TrB[e−iĤT t/h̄â†

αρ̂eq eiĤT t/h̄]), then taking the trace over the
system DOFs. For 〈â†

α âα (t )〉, one needs to calculate
e−iĤT t/h̄ρ̂eqâ†

αeiĤT t/h̄. Similarly, ρ̂eq â†
α is realized by multi-

plying â†
α to the right of the equilibrium RDOs and ADOs.

And the HEOM for the evolution of ρ̂eq â†
α , following the

same procedure as described above, is Eq. (7) with C j and
A j replaced by CR

j and AR
j :

CR
j ρ̂

R
J = d jâ j ρ̂

R
J + (−1)�d ∗̄

j ρ̂
R
J â j, (14a)

AR
j ρ̂

R
J = â j ρ̂

R
J − (−1)�ρ̂R

J â j . (14b)

Note that the minus sign appears when â j acts on the right of
ρ̂R

J (ρ̂R
J ≡ ρ̂Jâ†

α), due to the same reason as in Eq. (13).

C. Barycentric spectrum decomposition

The sum-over-poles expansion method used in this work is
based on the availability of high-precision rational approxima-
tions of general functions B(z) on the real axis. A particularly
suitable representation for this purpose is the barycentric rep-
resentation [87,88]

B̃(z) =
m∑

j=1

WjB(S j )

z − S j

/
m∑

j=1

Wj

z − S j
. (15)

Here, m � 1 is an integer that determines the order of the
rational function. The function to be approximated by B̃(z) is
B(z), which takes the value B(zi) for zi ∈ Z with Z ⊆ C as the
sample points set. {S1, S2, . . . , Sm} is a set of support points,
chosen from the sample points set. B(Sj ) is the value of B(z)
at the support point S j . The barycentric approximation B̃(z),
which uses a rational function to interpolate B̃(S j ) = B(S j )
at the support point S j , selects a support points set from the
sample points set, and calculates the corresponding weight
Wj [88].

In this work, we employ the adaptive Antoulas-Anderson
(AAA) algorithm to obtain the parameters S j and Wj in
Eq. (15), which is described in detail in Ref. [88]. The
AAA algorithm uses a greedy strategy to select the support
points, which can be obtained with a MATLAB code [88],
and also from the BARYRAT Python package [102]. After the
barycentric representation is obtained, the pole structure of
the function B̃(z) can be obtained from the calculated sup-
port points and weights. Namely, B̃(z) = ∑K

j=1
RA( j)

z−PA( j) , with
the poles {PA( j)} and associated residues {RA( j)}. The poles
{PA( j)} and residues {RA( j)} can also be obtained directly
from the output of the MATLAB or Python packages. It can
be shown that B̃(z) is a rational function of type (m−1, m−1)
[88], so the total number of poles is K = m − 1.

BSD for the bosonic reservoir case was reported previ-
ously in Ref. [87], where it is employed to approximate the
spectrum of the harmonic bath correlation function. Signif-
icant improvements of the efficiency of the HEOM at low
temperatures have been observed, and simulations can even
be performed at zero temperature [87]. For the fermionic bath
considered in this work using the HEOM in Eq. (7) [53], the
paths associated with Cσ

α,l (t ) and Cσ̄∗
α,l (t ) are combined to de-

fine the ADOs by utilizing the relation νσ
αlk = νσ̄∗

αlk where νσ
αlk

is defined in Eq. (6). To maintain this conventional structure
of the fermionic HEOM in Eq. (7), expansion of Cσ

α,l (t ) and
Cσ̄

α,l (t ) should be handled together to ensure that νσ
αlk = νσ̄∗

αlk .
To this end, by utilizing the property f +

l (ε) = 1 − f −
l (ε),

we define the symmetric Fermi distribution function as

f s
l (ε) = 1

1 + eβl (ε−μl )
− 1

2
. (16)

Now, f +
l (ε) = 1

2 + f s
l (ε) and f −

l (ε) = 1
2 − f s

l (ε), and the
reservoir correlation functions can be expressed as

C+
α,l (t ) =

∫
dε

2π h̄
eiεt/h̄ �α,l (ε)

2
+

∫
dε

2π h̄
eiεt/h̄�α,l (ε) f s

l (ε),

(17a)

C−
α,l (t ) =

∫
dε

2π h̄
e−iεt/h̄ �α,l (ε)

2
−

∫
dε

2π h̄
e−iεt/h̄�α,l (ε) f s

l (ε).

(17b)

From the above equations, we need the pole structures of
�α,l (ε) and �α,l (ε) f s

l (ε) to do the sum-over-poles expansion.
For the pole structure of �α,l (ε) f s

l (ε), it is possible to use
the BSD expansion in Eq. (15) to approximate �α,l (ε) f s

l (ε)
directly as in Ref. [87], or to approximate the two functions
�α,l (ε) and f s

l (ε) separately. In practice, the two different
choices may result in slightly different pole structures for the
same accuracy control parameter. It should be noted that, as
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long as the correlation functions are faithfully reproduced, the
HEOM will give the same result, although the numerical cost
could be different depending on the pole structure. In this
work, we choose to approximate the hybridization functions
and the symmetric Fermi functions separately. An advantage
of this separate decomposition scheme is that it allows us to
discuss the contribution to basis functions from the Fermi
function, which is critical for the low-temperature perfor-
mance of the HEOM (see the discussions later in Sec. III A).

To this end the pole structures of the hybridization and
Fermi functions are

�̃α,l (ε) =
K0�∑
j=1

R�
α,l ( j)

ε − P�
α,l ( j)

, (18a)

f̃ s
l (ε) =

K0 f∑
j=1

R f
α,l ( j)

ε − P f
α,l ( j)

, (18b)

where �̃α,l (ε) and f̃ s
l (ε) denote the barycentric representation

of �α,l (ε) and f s
l (ε), respectively. P�/ f

α,l ( j) and R�/ f
α,l ( j) are

the poles and residues, where K0� and K0 f (we omit here the
subscripts α and l for simplicity, same for K� and Kf later) are
the number of poles for each function.

It is noted that �α,l (ε) and f s
l (ε) are real, so except for

those on the real axis, the poles and residues should consist of
conjugate pairs. The sum-over-poles expansion of the reser-
voir correlation functions is then expressed as the combination
of the pole structure of the two approximate functions

Cσ
α,l (t ) �

K�∑
j=1

d�σ
αl j e

−ν�σ
αl j t +

Kf∑
j=1

d f σ
αl je

−ν
f σ
αl j t , (19)

where σ denotes + or −, K� and Kf denote the num-
ber of basis functions that come from the poles of �̃α,l (ε)
and f̃ s

l (ε), respectively. The frequency ν
�/ f σ
αl j and coupling

strength d�/ f σ
αl j are

ν�σ
αl j = −iσP�σ

α,l ( j), d�σ
αl j = iR�σ

α,l ( j)
[
σ 1

2 + f̃ s
l

(
P�σ

α,l ( j)
)]

,

(20a)

ν
f σ
αl j = −iσP f σ

α,l ( j), d f σ
αl j = iR f σ

α,l ( j)�̃α,l
(
P f σ

α,l ( j)
)
. (20b)

Here, the superscript σ in P�/ f
α,l ( j) and R�/ f

α,l ( j) distinguishes
the poles or residues in the upper or lower half-plane, with
σ = + for the upper half-plane, and σ = − for the lower half-
plane. Thus, all the constants in Eq. (19) can be obtained using
the barycentric decomposition in Eq. (15), which is used later
in the HEOM.

Depending on the choice of the sample points, sometimes
there are poles on the real axis. They correspond to oscillating
terms without decay (eiγ t ) in the correlation function C(t ), and
are unphysical for the two types of hybridization functions
considered later in Eqs. (21) and (22). Two types of spurious
real poles are observed: poles away from the sample point
domain D and those at the sharp edge of the original function.
The first type of real poles is due to incompletely chosen
sample points and can be eliminated by choosing a larger
sample point set. The second type is related to the property
of the original function. When the function (e.g., the T = 0
Fermi function) or its first derivative is discontinuous (e.g.,

near the band edge) at a certain point, real poles may occur at
the discontinuity point.

There are also some tricks to eliminate the second type
of real poles, such as by defining f (x = a) = [ f (x → a−) +
f (x → a+)]/2 for a discontinuous function at point a. It is
also noted that the residue of the second type of pole tends
to zero when the resolution of the sample points near the
discontinuity point becomes finer. So, throwing away the un-
physical poles is another way to treat the above problem.
In this case, we have checked carefully that neglecting the
spurious poles would not affect the accuracy of the fitted
function, and the final bath correlation functions C(t ). As a
consequence, K� � K0�/2 and Kf � K0 f /2. Since P�/ f +

α,l ( j)

and P�/ f −
α,l ( j) are complex conjugates, the relation ν

�/ f σ
αl j =

ν
�/ f σ̄∗
αl j still holds in the BSD scheme. Hence, the structure of

traditional HEOM will not change when applying the BSD
scheme for the reservoir correlation functions.

The sample points do not need to be equally spaced. This
allows us to choose a point set that can focus on the regime
where the function changes rapidly. In this work, logarith-
mic discretization [30] is used for Fermi distributions to
ensure that there are enough points near the Fermi level. A
simple example is Z = {zn | zn = μ ± D�−n, n = 0, ..., N} ∪
{μ}, which is discretized in the domain D = [−D + μ, D +
μ] and concentrated at μ, with the minimum interval δ =
D�−N controlling the fineness of the discretization. For the
hybridization functions, we choose uniform discretization.
In both cases, the minimum interval δ should be chosen to
achieve a good resolution at the Fermi level or the hard band
edges (if any). As long as the domain D is suitable and discrete
points are dense enough, slight changes in the sample point set
almost do not affect the BSD result.

In summary, application of the BSD scheme to obtain the
sum-over-poles expansion of the reservoir correlation func-
tion Cσ

α,l (t ) can be achieved through the following steps:
(1) Choose the sample points sets ZF and Z� to discretize
the Fermi distribution and the hybridization functions, re-
spectively. The point set is in the domain D = [Dmin, Dmax]
covering the main scope of the hybridization function. For
simplicity, we use the same domain for point sets ZF and Z� .
The sample points do not need to be equally spaced and should
focus on the regime where the function changes rapidly. The
minimum interval between adjacent sample points is denoted
as δF and δ� , which shows the fineness of the discretization.
(2) By using the sample point set Z� , the value set {�α,l (z), z ∈
Z�} as input, and with a predefined precision control pa-
rameter tolA that measures the accuracy of the barycentric
approximation and has been integrated into the AAA algo-
rithm [88], obtain the barycentric representation of �̃α,l (ε).
The same procedure is applied to obtain f̃ s

l (ε). (3) Calculate
the poles and residues of �̃α,l (ε) and f̃ s

l (ε). Then use them to
construct ν

�/ f σ
αl j and d�/ f σ

αl j in Eqs. (19) through (20), which
are the ν jm and d jm coefficients in the HEOM in Eq. (7).

III. RESULTS

In this section, we apply the BSD method to simulate
the charge transport of AIM at different temperatures with
different band structures. To do this, we first use the AAA
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FIG. 1. Performance of the BSD scheme to approximate the
Fermi function f (ε) = 1/(1 + eβε ) (here kB ≡ 1, h̄ ≡ 1), compared
with the conventional PSD scheme. (a) Shows the approximate Fermi
functions using different schemes at T = 1. The number in the
parentheses is the number of basis functions Kf . (b), (c) Present the
error defined as err(ε) = | f BSD/PSD(ε) − f (ε)| for different schemes,
at T = 1 and 0.01, respectively. Here, in the BSD using the AAA
algorithm, the sample points are obtained in the domain D =
[−200, 200] with sufficiently dense discretization, the accuracy con-
trol parameter is given by tolA.

algorithm to approximate the Fermi function to show the low-
temperature performance of BSD. The real-time dynamics
and the Kondo resonance of AIM with the Lorentzian hy-
bridization functions in the low-temperature regime are then
explored. In the end, we demonstrate the performance of the
BSD scheme for arbitrary band structures by considering AIM
with the tight-binding hybridization function.

A. Efficient decomposition of the Fermi function
at low temperature

Figure 1 shows the performance of the BSD scheme to
decompose the Fermi function f (ε)=1/(1+eβε ) (here kB≡1,

h̄ ≡ 1) at different temperatures, compared with the conven-
tional PSD scheme. In Fig. 1(a) at T = 1, the approximate
function obtained from the PSD scheme shows high accuracy
at small ε, but it deviates significantly from the exact curve
at large ε. As the number of PSD basis functions increases,
the accuracy improves and the deviation from the exact curve
occurs at much larger ε. Since there is usually a finite range for
the hybridization function �α,l (ε), it is usually not a problem
in decomposing the reservoir correlation functions, as the
deviation of PSD approximation from �α,l (ε) f σ

l (ε) becomes
smaller and smaller with larger numbers of basis function. The
corresponding reservoir correlation function Cσ

αl (t ) obtained
from the PSD scheme then approaches the exact result, allow-
ing systematic convergence of the HEOM.

The approximate distribution from the BSD scheme is
more accurate than the PSD with the same number of basis
functions. For tolA = 10−3, the deviation of the BSD curve
from the exact curve is barely noticeable on the curves shown
in Fig. 1(a). Figure 1(b) shows the error at T = 1, the BSD
errors oscillate at small ε, and the maximum error does not
exceed tolA. Figure 1(c) shows the error at low temperature

100.00100.0-
 ε

0

0.5

1

f 
(ε

)

T=0

T=10
-4

BSD δ=10
-3

 (17)

BSD δ=10
-4

 (23)

BSD δ=10
-5

 (27)

FIG. 2. Performance of the BSD scheme to approximate the
Fermi function f (ε) = 1/(1 + eβε ) (here, kB ≡ 1, h̄ ≡ 1) at T = 0.
The BSD results are shown for different minimum discretization
intervals δF . The exact T = 0 and 10−4 Fermi functions are also
shown for comparison. The sample points are obtained by discreting
the domain D = [−200, 200], and the accuracy control parameter
is tolA = 10−3. The number of basis functions Kf is given in the
parentheses.

T = 0.01. For the PSD scheme, the convergence slows down
as the temperature decreases, and the PSD requires nearly 10
times as many basis functions as the T = 1 case to reach
similar accuracy. This severely limits the application of the
PSD-based HEOM at low temperatures. However, for the
BSD scheme, the number of required basis functions increases
only slightly as the temperature decreases, with Kf = 5 for
T = 1 and Kf = 11 for T = 0.01, when tolA = 10−3. This be-
havior greatly reduces the number of basis functions required
for low-temperature simulations, indicating the superiority of
the BSD scheme at low temperatures. In addition, both the
T = 1 and 0.01 cases show that the number of required basis
functions only increases slightly as the accuracy increases (by
decreasing tolA), thus allowing for systematic convergence to
numerically exact results.

Figure 2 shows the performance of the BSD scheme
when setting T = 0. In this case, the Fermi distribution
becomes a step function. We present the BSD results for
different minimum discretization intervals δF , where the dis-
cretization domain is D = [−200, 200] with tolA = 10−3. It
can be seen that the BSD results are affected by the in-
terval between the points where the Fermi function jumps.
And Kf increases when decreasing δF : Kf = 17, 23, 27 for
δF = 10−3, 10−4, 10−5, respectively. We find that the BSD
approximate results can only reach the step function asymp-
totically, and correspond to a temperature approximately 1

10
of the discretization interval (see the comparison between the
δF = 10−3 curve and the Fermi function at T = 10−4).

Figure 3 shows distribution of the real and imaginary parts
of the complex frequencies ν

f +
αl j with different δF . It can be

seen that the largest frequency originates from the boundary of
discretization, and the smallest frequency is on the same order
of the minimum interval, which corresponds to an effective
very small temperature. The frequencies are nearly uniformly
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FIG. 3. Distribution of real and imaginary parts of the poles
in the upper half-plane, i.e., ν

f +
j in Eq. (19) (we omit the α or l

subscripts here), for the BSD results in Fig. 2.

distributed on the logarithmic scale, confirming the moderate
increase of Kf when decreasing δF .

We further characterize this logarithmic distributed BSD
pole structure by plotting Cj (ε) in Fig. 4, where Cj (ε) =
2 Re

d f +
j

iε+ν
f +
j

is the spectrum of different BSD basis functions

[note that
∑

j Cj (ε) = �(ε) f +(ε) with scripts α and l omit-

ted]. By assuming that ν
f +
j are arranged in ascending order,

we show the results for the first, third, fifth, seventh, ninth, and
eleventh poles, for δF = 10−3 and T = 0. The results show
almost linearly distributed frequencies on the logarithmic
scale. Compared with the nearly 1/T growth for Matsubara
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FIG. 4. The spectrum of BSD basis functions Cj (ε) (2 Re
d f +

j

iε+ν
f +
j

)

for δF = 10−3 and T = 0 as in Fig. 2. To calculate the coupling
strength d f +

j using Eq. (20b), an auxiliary Lorentzian-type hybridiza-
tion function is chosen, with parameters η = 1, γ = 10, and ε0 = 0
(the α and l scripts are omitted). The basis functions are sorted in
ascending order of Reν f +

j , from j = 1 to 17, the number in the legend
indicates the jth basis functions. For simplicity, only the spectra for
six low-frequency basis functions are shown. The inset shows the
spectra in linear scale for the ε axis.
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FIG. 5. The reservoir correlation function C(t ) for the approxi-
mate BSD Fermi functions in Fig. 2. An auxiliary Lorentzian-type
hybridization function is chosen, with parameters η = 1, γ = 10,
and ε0 = 0 (the α and l scripts are omitted). The other parameters
are the same as in Fig. 2. For simplicity only −ImC+(t ) is shown.

[i.e. (2n + 1)π/β] or Padé basis functions, the number of
basis functions from the BSD increases almost linearly as
the temperature decreases exponentially. This makes the BSD
scheme advantageous when performing very low-temperature
simulations. This behavior is also similar to the logarithmic
discretization in the NRG framework [30], where Cj (ε)s re-
places the discrete states in the NRG. However, since each
Cj (ε) includes a distribution of frequencies, the long-time
dynamics of HEOM does not suffer from the discretization
effect in the NRG approach [28,41].

Although the analytic form of the Fermi function at T = 0
cannot be obtained directly from the BSD, the approximate
distribution function can approach the T = 0 results as we
decrease the discretization interval and introduce more low-
frequency terms. It is found that the weights [d f σ

αl j in Eq. (19)]
associated with low frequencies are also very small, so the
low-frequency term will contribute to the dynamics only when
ν

f +
αl j t � 1 for all the high-frequency terms ν

f +
αl j . This is illus-

trated in Fig. 5, where we show the corresponding C(t ) for
the approximate BSD Fermi functions in Fig. 2. To draw the
reservoir correlation function C(t ), a hybridization function
with Lorentzian type [defined later in Eq. (21)] is chosen
with η = 1, γ = 10, ε0 = 0 (here we omit α and l). For this
hybridization function and with the Fermi energy μ = 0, the
real part of C(t ) shows single exponential decay and only
the imaginary part is affected by the temperature [80]. For
simplicity, we only show −Im C+(t ) in Fig. 5. It can be
seen from Fig. 5 that, in the short-time region, all the C(t )
curves are the same for different BSD discretization intervals
δF . The deviation from the exact T = 0 curve only occurs at
longer times, which is shown in the inset. For minimum dis-
cretization intervals δF = 10−3, 10−4, and 10−5, the deviation
appears at approximately t = 103, 104, and 105, respectively.

From the above results, one can assume that the T = 0
results can be obtained using the BSD scheme for a given
accuracy. With the increase of the number of basis functions,
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we find that the weight d f σ
αl j of the introduced low-frequency

mode gets very small, such that its effect on the dynamics is
very small before reaching a very long simulation time. This
observation can also be understood from a different perspec-
tive: From Fig. 5, C(t ) obtained from the BSD scheme is the
same as the zero-temperature result until a long time t ∼ δ−1

F ,
so one can assume that the dynamics represents the “true”
zero-temperature result until this time. For short-time simula-
tions, or if the dissipation is relatively fast such that the system
reaches its steady state before δ−1

F , the simulated dynamics is
essentially at T = 0. In practice, we will show later that, for
the transport dynamics of the AIM, the result obtained from
BSD with a small δF can converge and reproduce the correct
zero-temperature dynamics.

B. Low-temperature dynamics with the Lorentzian
hybridization function

We first consider the Lorentzian-type hybridization
function that has been employed in many recent stud-
ies [27,53,54,56,59,91], where

�α,l (ε) = ηlγ
2
l(

ε − ε0
l

)2 + γ 2
l

. (21)

Here, ε0
l and γl denote the band center and width of the lead

l , and ηl is the coupling strength between the molecule and
the lead l . This form of hybridization function only has two
simple poles that are symmetric with respect to the real axis,
leading to K� = 1 in Eq. (19). The majority of the exponential
terms in Eq. (6) thus originates from the BSD decomposition
of the Fermi function.

To illustrate the numerical stability of the HEOM com-
bined with the BSD scheme, we first calculate the voltage-
driven dynamics of the AIM. In the low-temperature regime,
due to the interplay between the quantum coherence and the
Kondo resonance, the real-time dynamics exhibits nontrivial
memory effects [63]. As shown by Zheng et al. [63], driven
by an external periodic voltage, the corresponding I-V curve
shows hysteresis and self-crossing feature. In a later work, by
using the FSD-based HEOM, it was shown that much stronger
memory effects can be observed at even lower tempera-
tures [59]. However, the FSD has an asymptotic instability
problem [59], and the time-dependent current start to diverge
after a certain time. It was also shown that the instability
becomes more severe when increasing the truncation tier Ntrun

of HEOM [59].
Figure 6 shows the dynamic I-V characteristics for the

same parameter of Fig. 3 in Ref. [59], where, in units of
η, kBT = 0.05, μL = μR = 0, ηL = ηR = 1, γL = γR = 20,
ε0

L = ε0
R = 0, ε↑ = ε↓ = −6, U = 12, and the ac voltage

is VL(t ) = −VR(t ) = V0 sin(ω0t ) with eV0 = 1.5, h̄ω0 = 0.3.
Here, the truncation tier is set to Ntrun = 5 that ensures con-
vergence. At this temperature, the BSD scheme using the
AAA algorithm gives Kf = 9, when discretizing the Fermi
functions dense enough in the domain D = [−200, 200], and
setting tolA = 10−3.

To obtain the transport current, we first propagate the total
system without voltage (μL = μR = 0) until equilibrium, then
apply the ac voltage to the left and right leads and propagate
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FIG. 6. Dynamic I-V characteristics for the AIM with the
Lorentzian hybridization function, with an ac driving voltage VL (t ) =
−VR(t ) = V0 sin(ω0t ). The parameters are (in units of η), kBT =
0.05, μL = μR = 0, ηL = ηR = 1, γL = γR = 20, ε0

L = ε0
R = 0, ε↑ =

ε↓ = −6, U = 12, eV0 = 1.5, and h̄ω0 = 0.3. Here, the BSD scheme
is used to obtain the optimized pole structure of the Fermi func-
tion, with discretization domain D = [−200, 200] and the accuracy
control parameter tolA = 10−3. Kf = 9 basis functions are used to
decompose the Fermi function at this temperature. The inset shows
the corresponding transient current flow out of left lead IL (t ). All
simulations are performed using the on-the-fly filtering algorithm
with the HEOM truncation level Ntrun = 5.

the system using Eq. (7). Finally, the transient current is
calculated by Eq. (9). It can be seen in Fig. 6 that the I-V
characteristics are in excellent agreement with the results in
Ref. [59]. The inset shows the real-time current dynamics. For
longer simulations, the hysteresis loop is almost unchanged,
as the I-V curve repeats the earlier cycles. It can be seen that
the current has a phase shift relative to the driving voltage,
and due to the Kondo resonance, there are also overtone
responses. These two features manifest themselves in the
hysteresis behavior with multiple self-crossing points of I-V
characteristics [63]. Moreover, the current dynamics obtained
from BSD-based HEOM runs smoothly over 100 h̄/η, com-
pared with the FSD-based HEOM that diverges at about 3 h̄/η

for Ntrun = 5 [59], showing the long-time stability of the BSD
scheme.

We further use this example to demonstrate the accuracy of
the BSD scheme. In Fig. 7, we show the convergence of the
transient current with respect to the BSD tolerance parameter
tolA. The other parameters are the same as Fig. 6. For tolA =
10−2, 10−3, 10−4, the number of basis functions to decompose
the Fermi function is Kf = 6, 9, and 11, respectively (note
that K� = 1 for the Lorentzian hybridization function, and
the number in the figure legend denotes K� + Kf ). It can
be seen that, even with a relatively rough precision control
parameter tolA = 10−2, the dynamics is very close to conver-
gence. This shows that the BSD scheme has high precision
and tolA in the AAA algorithm is an effective precision control
parameter. For tolA = 10−3, the transient current is essentially
indistinguishable from those with tolA = 10−4. Based on these
observations, we choose tolA = 10−3 in later simulations.
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FIG. 7. Transient current flow out of the left lead IL (t ), with dif-
ferent BSD accuracy control parameter tolA. All other parameters are
the same as those in Fig. 6. The number in the parentheses denotes
the total number of basis functions K� + Kf used in the simulation.
The inset shows the curves near the peak current.

Figure 8 shows the Green’s function GR
α (t ) in Eq. (11),

due to the similar behavior of ImGR
α (t ) and ReGR

α (t ), only
−ImGR

α (t ) [i.e., Re〈{âα (t ), â†
α}〉] is shown for simplicity. We

choose the same system parameters studied previously with
the PSD- [54] and FSD-based HEOM [59]. That is, in units of
η, ηL = ηR = 1, γL = γR = 10, ε0

L = ε0
R = 0, μL = μR = 0,

and ε↑ = ε↓ = −5, U = 15. The two spin states are now
degenerate and we drop the subscript α for the spin DOF.
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FIG. 8. Imaginary part of the retarded Green’s function
−ImGR(t ) for the AIM with Lorentzian hybridization function at
different temperatures. The inset shows the long-time decay, where
the imaginary parts of the reservoir correlation function −ImC+

L (t )
(in units of η2/h̄) at different temperatures are also shown for com-
parison. The parameters are, in units of η, ηL = ηR = 1, γL = γR =
10, ε0

L = ε0
R = 0, μL = μR = 0, ε↑ = ε↓ = −5, and U = 15. The

truncation tier of HEOM is set to Ntrun = 6, and the number of basis
functions K� + Kf used in the simulations is 5, 9, 10, 11 for kBT = 1,
0.075, 0.01, and 0.001, respectively. These numbers are also shown
in the parentheses of the legends. In performing the BSD, the dis-
cretization domain for the Fermi distribution is D = [−200, 200],
and the accuracy control parameter is tolA = 10−3.
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FIG. 9. The impurity spectral function A(ω) calculated from
GR(t ) in Fig. 8 through Eq. (10) at different temperatures. All the
parameters are the same as those in Fig. 8.

Since parameters for the left and right leads are the same, we
can combine them into a single lead with ηtot = ηL + ηR, and
the number of basis functions in the HEOM can be greatly
reduced. Our data are calculated using HEOM truncated at
Ntrun = 6 to ensure convergence. In the BSD scheme using
the AAA algorithm, the Fermi distribution is discretized in
the range D = [−200, 200], and tolA = 10−3, which leads to
the number of basis functions K� + Kf = 5, 9, 10, 11 for
kBT = 1, 0.075, 0.01, 0.001, respectively.

The retarded Green’s function is calculated after propa-
gating the system to equilibrium, which oscillates over short
period of time and shows exponential decay at longer times.
This exponential decay is typical for Green’s function at
longer times [103–105]. For comparison, we also plot the
imaginary part of the reservoir correlation function −ImC+

L (t )
(in units of η2/h̄) in the inset. It can be seen that the long-time
decay of the Green’s function is essentially determined by
the low-frequency effective mode of the reservoir correlation
function at this temperature, which is responsible for the sharp
peak of A(ω) near the Fermi energy as the indication of
Kondo resonance (see Fig. 9). As the temperature decreases,
the slope of −ImC+

L (t ) and −ImGR(t ) becomes closer, and
they decay slowly such that longer simulation is required.
For kBT = 0.001, we simulate the Green’s function to the
exponential decay regime (about t = 200 h̄/η in the inset) and
then employ the “linear prediction” method [103,106,107] to
extrapolate the simulation data to longer times.

Figure 9 shows the spectral functions at various tem-
peratures. The spectral function A(ω) is obtained from the
imaginary part of the Fourier transform of GR(t ), that is,
Eq. (10). For kBT = 1.0, 0.075, and 0.01, respectively, the
results are consistent with those in Ref. [59]. The spectral
function A(ω) shows two broad peaks at impurity level en-
ergies ε and ε + U , which do not change significantly with
the temperature. This is because the broadening is caused by
coupling to the leads, such that it is on the order of η and
is only slightly affected by temperature. On the other hand,
the peak located at the Fermi energy is significantly affected
by decreasing the temperature. A sharp peak at the Fermi
energy appears at low temperature, and for T = 0.001, the
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FIG. 10. The calculated A(ω = 0) at various temperatures with
Ntrun = 6. The black circles labeled with U = 15 are obtained using
the same parameters as those in Fig. 8. The red circles labeled with
U=2 assume a symmetric AIM (in units of η, ε↑=ε↓ = −U/2 = −1,
with all other parameters the same as those in Fig. 8). The Friedel
sum rule predicts A(0) = 1 at T = 0 for the symmetric AIM.

amplitude of this peak is very close to 1, which agrees with
the theoretical result at T = 0 [108,109].

We also compare our BSD-HEOM result to the analytic
Friedel sum rule [108,109] at zero temperature, which is given
by πA(ω = 0)η/h̄ = sin2(πnα ), with nα = 〈â†

α âα〉. Figure 10
shows the calculated A(ω = 0) at different temperatures, with
Ntrun = 6. The red circle in Fig. 10 corresponds to a symmetric
AIM case with a small Coulomb repulsive energy U = 2 (in
units of η), where the other parameters are the same as those
in Fig. 8. For this symmetric AIM, at equilibrium, nα = 1

2 ,
the transition temperature (here we define it as the tempera-
ture at which the Kondo peak changed significantly) is about
kBT = 1. As the temperature decreases, the amplitude of the
Kondo peak πA(ω = 0)η/h̄ approaches 1, which verifies the
Friedel sum rule and indicates the accuracy of our BSD-based
HEOM.

The black circles in Fig. 10 show the result for the parame-
ters in Fig. 8 with a larger Coulomb repulsive energy U = 15.
In this case, nα at equilibrium for T = 0.001 is 0.4811, and the
Friedel sum rule predicts a Kondo peak amplitude at T = 0
very close to 1. The transition temperature now is very low at
about kBT = 0.01. We can also see that A(ω = 0) approaches
the analytic result as T goes down. This indicates that the
calculated data contain the correct long-time behavior and the
extrapolation scheme works well in these cases.

It is also noted that the results below kBT = 0.01 are ob-
tained by combining the long-time simulation data with the
“linear prediction” method [103,106]. To make the extrapola-
tion procedure work, the HEOM needs to capture the correct
dynamics until the asymptotic region where the extrapolation
ansatz works, which depends on the long-time convergence of
HEOM. It has been found previously that, when the truncation
tier Ntrun is not sufficient, HEOM does not converge and may
cause overshoots of the Kondo peak [110,111]. In more com-
plex cases or as temperature decreased even further, a larger
Ntrun might be needed for the convergence of HEOM.
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FIG. 11. Performance of the BSD scheme for decomposing the
tight-binding hybridization function �(ε) defined in Eq. (22), with
�e = 0.2 eV and We = 1 eV. �(E ) is discretized in the domain
D� = [−7 eV, 7 eV], with the minimum discretization interval δ� =
0.003 eV near the band edge. The accuracy control parameter tolA =
10−3 results in K� = 18. The inset shows the error of the BSD
scheme, for the range close to the band edge and beyond the dis-
cretization domain D.

C. Low-temperature dynamics with the tight-binding
hybridization function

To illustrate that the BSD scheme can handle general forms
of hybridization function, in this section we choose a tight-
binding hybridization function with �α,l (ε) given by

�(ε) =
{

�2
e

W 2
e

√
4W 2

e − ε2, |ε| � 2|We|
0, |ε| > 2|We|

(22a)

�α,L(ε) = �(ε − μL ), �α,R(ε) = �(ε − μR) . (22b)

This semielliptical form of hybridization function has
been studied previously by Wang et al. [37,90], Wolf
et al. [104,112], and other groups [36,113–115]. Wang et al.
have used the ML-MCTDH-SQR method to explore charge
transport dynamics through single-molecule junctions at zero
temperature. Here, we fix �e = 0.2 eV and We = 1 eV which
are the same as those in Ref. [90]. As in the previous section,
we set the two spin states to be degenerate.

Figure 11 shows the performance of the BSD scheme for
decomposing the tight-binding hybridization function �(E )
defined in Eq. (22). In the BSD scheme using the AAA al-
gorithm, we set tolA = 10−3 and discretize the hybridization
function on the domain D = [−7 eV, 7 eV], with the min-
imum discretization interval δ� = 0.003 eV. This results in
K� = 18 for the semielliptical hybridization function. It can
be seen that the approximate hybridization function agrees
very well with the exact one, even beyond the fitting range (see
the inset). From the inset, we can also see that the approximate
hybridization function deviates from the exact one mainly on
the hard edges, and places beyond the fitting domain. But
the overall errors are smaller than the given accuracy control
parameter tolA.

Figure 12 shows the corresponding reservoir correla-
tion function, calculated from �(E ) in Fig. 11, at different
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FIG. 12. The reservoir correlation function C+
L (t ) at different

temperatures, for �(ε) in Fig. 11. For simplicity, only the real part is
presented. Here, μL = 0.05 eV, �L (ε) = �(ε − μL ), and the Fermi
functions are discretized in the domain D f = [−3 eV, 3 eV], with
tolA = 10−3. For T = 0, the minimum discretization interval δF is
10−4 eV. The number of basis functions used to decompose the
Fermi function is Kf = 5, 6, 14 for kBT = 0.05, 0.01, and 0 eV,
respectively. The inset shows the long-time behavior.

temperatures kBT = 0.05, 0.01, and 0 eV with the source-
drain voltage applied symmetrically to the left and right lead
μL = −μR = 0.05 eV. For simplicity, only the real part of
C+

L (t ) is shown. The BSD scheme results in Kf = 5, 6, and
14 for kBT = 0.05, 0.01, and 0 eV, respectively. Compared
with the Lorentzian hybridization function, the tight-binding
hybridization function results in oscillating reservoir correla-
tion functions with the frequency associated with bandwidth.
The hard edge of the tight-binding hybridization function, like
the Fermi function at T = 0 shown in Fig. 2, leads to many
poles with small decay constants Reν�+

L j and weights d�+
L j . The

minimum Reν�+
L j is found to be slightly smaller than δ� .

When the minimum Reν f +
L j from the Fermi distribution

is larger than the minimum Reν�+
L j , the decay of C+

L (t ) is
controlled by temperature at short time, and is controlled by
the basis functions obtained from the tight-binding hybridiza-
tion function at longer time. This is shown in kBT = 0.05
and 0.01 eV curves. At short time, the decay of the high-
temperature kBT = 0.05 eV correlation function is faster than
the low-temperature one at kBT = 0.01 eV. But at longer
times, the two curves almost coincide as shown in the inset
of Fig. 12. When the temperature is low enough, the decay
of C+

L (t ) is mainly controlled by the temperature. Indeed, the
approximate C+

L (t ) with T = 0 obtained with δF = 10−4 eV
shows rather different long-time behavior.

Although as discussed previously in Sec. III A, the approx-
imate C+

L (t ) corresponds to a very small effective temperature
as shown in Fig. 2, it can be seen from the inset of Fig. 12 that
the approximate and exact correlation functions agree with
each other over a very long-time range. In this sense, we can
conclude that within this time range, the dynamics obtained
from the approximate C+

L (t ) should essentially be the same
as the “true” zero-temperature dynamics at T = 0. Moreover,
though not shown in the figure, in the temperature-controlled
decay regime, the decay rate of the reservoir correlation
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FIG. 13. (a) The average current I (t ) = [IL (t ) − IR(t )]/2 of the
noninteracting AIM (U = 0) with the tight-binding hybridization
function at different temperatures. Here, �e = 0.2 eV, We = 1 eV,
εα = −0.5 eV, U = 0, and the bias voltage V = 0.1 V is symmet-
rically applied to two leads: μL = −μR = V/2. The BSD result is
the same as in Fig. 12, with K� = 18, Kf = 5, 6, 14 for kBT = 0.05,
0.01, 0 eV, respectively. The kBT = 0.2 eV case (Kf = 3), though
at an unrealistic high temperature, is also shown for comparison.
(b) The average steady-state current at different bias voltage, the
other parameters are same as those in (a).

function is the same for different forms of hybridization func-
tions, which will result in the same decay rate of the Green’s
function as in Fig. 8, such that the Kondo resonance of differ-
ent types of hybridization functions at low temperature should
not change significantly [80].

We then study the current dynamics of the AIM with the
tight-binding hybridization function at different temperatures.
Figure 13 shows the current dynamics for the noninteracting
case U = 0. In this case, the HEOM with Ntrun = 2 leads to
exact results [53]. The energy of the system state is εα =
−0.5 eV, μL = −μR = 0.05 eV such that the bias voltage
is 0.1 V. This parameter corresponds to the so-called off-
resonant transport regime [90]. The other parameters for the
hybridization or Fermi functions are the same as those in
Fig. 12. In the simulation, the initial system state is doubly
occupied. In this case, the current shows transient oscillations
at short time that decay due to the coupling to the leads.
When the temperature is relatively high, we can see another
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high-frequency oscillation with frequency ω ≈ 3 fs−1 (2 eV)
which corresponds to the band edge of the semielliptical hy-
bridization function.

At low temperatures, the lead states at the band edge do
not contribute to the transport process. So as the tempera-
ture decreases, the high-frequency oscillation is suppressed.
The steady-state current is suppressed as the temperature de-
creases since the conductive window is reduced. As can be
seen from Fig. 13(a), the kBT = 0.01 eV result is already very
close to that at T = 0, indicating that the system is already in
the low-temperature regime. Further lowering the temperature
will only lead to very minor changes of the dynamics. More-
over, our T = 0 results obtained from the BSD scheme agree
well with the results in Ref. [90].

Figure 13(b) gives the steady-state current as a function
of the bias voltage, with all other parameters fixed. At high
temperature kBT = 0.2 eV, the I-V characteristics at this
bias range is almost linear. When lowering the temperature,
the conductance increases after entering the resonant trans-
port regime. The I-V curve is almost unchanged for the
kBT = 0.01 eV and T = 0 cases obtained from the BSD-
based HEOM, which further shows that kBT = 0.01 eV is
already in the low-temperature regime. It is noted that for
the noninteracting case U = 0, the stationary current can be
obtained exactly from the Landauer-Büttiker formula [27,95].
As shown in Fig. 13(b), the BSD-based HEOM results at
T = 0 agrees well with those from the Landauer-Büttiker
formula, indicating that the T = 0 results are converged.

We then study the current dynamics of AIM in the presence
of electron-electron repulsive energy U . This is much more
challenging than the noninteracting case since the HEOM
must be truncated at a higher tier. At low temperatures, the
needed truncation tier for high accuracy is relatively high.
Our traditional HEOM code based on the filtering approach
can not handle the computational and memory costs to get
converged results at T = 0 (K� + Kf = 32), for truncation
tier higher than Ntrun = 4. In this case, we resort to the MPS-
HEOM method [57] to reduce the computational costs.

Figure 14 shows the current dynamics of the AIM with
U = 0.5 eV, with all the other parameters being the same
as those in Fig. 13. Here the T = 0 result is obtained using
MPS-HEOM [57] with maximum bond dimension up to 500.
Comparing to Fig. 13(a), the U = 0.5 eV case has a larger
current. This is because that the energy change from the single
occupied state to the doubly occupied state ε + U moves
close to the Fermi energy and provides a channel for resonant
transport. In the U = 0.5 eV case, the transport becomes in-
coherent for a short period of time. Moreover, the temperature
dependence of the current is reversed, that is, decreasing the
temperature results in an increase in the current. The reason
is that, decreasing the temperature reduces the fluctuations,
and increases the probability of resonant transport. It can be
seen that the high-frequency oscillation of the current which is
the band-edge effect appears even at low temperature. While
in the U = 0 case, this effect only appears at high temper-
atures. The kBT = 0.01 eV case is found to be already in
the low-temperature regime, where the dynamics are only
slightly different from the T = 0 result in the transient regime,
and the steady-state currents are almost the same. Our T = 0
results agree well with those in Ref. [90], which verifies the
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FIG. 14. Time evolution of the average transport current of the
AIM with the tight-binding hybridization function at different tem-
peratures. The electron-electron repulsive energy is U = 0.5 eV, all
the other parameters are the same as those in Fig. 13(a). The T = 0
result is obtained using MPS-HEOM with the maximum bond di-
mension up to 500.

validity of the BSD scheme for zero-temperature dynamics.
The relaxation process of the current to stationary value is
also slower at low temperatures, due to the long-time memory
effect.

IV. CONCLUSION AND DISCUSSION

In this paper, we have proposed to use the BSD scheme for
the sum-over-poles decomposition of the fermionic reservoir
correlation functions. The BSD scheme based on rational
function approximation of barycentric form can be used to
calculate optimized pole structure than the analytical Mat-
subara and PSD poles, thus is superior in low-temperature
simulations. This decomposition scheme is easy to implement
with existing software packages. By approximating the reser-
voir correlation functions Cσ

α,l (t ) and Cσ̄
α,l (t ) with the same

set of poles, the traditional structure of the HEOM is also
maintained. With the BSD scheme, we can apply the HEOM
to the AIM in the low-temperature regime even at T = 0
for dynamic simulation with high efficiency, accuracy, and
long-time stability. The improvements of BSD over previous
HEOM-based methods such as PSD [68–70] and FSD [59,79]
in efficiency and long-time stability, as well as the ability to
deal with arbitrary band structures, offer new opportunities for
applications in lower temperatures or more realistic systems.

To demonstrate the performance of the BSD scheme, we
first apply it to approximate the Fermi function, the results
show that the number of required basis functions grows almost
linearly as the temperature decreases exponentially, compared
to the exponential growth of the widely used PSD scheme.
The low-temperature performance is further demonstrated by
calculating the Kondo peak of the impurity spectral func-
tion of the AIM with the Lorentzian hybridization function.
The I-V characteristics under an ac voltage have also been
simulated, showing the accuracy and long-time stability of
the HEOM combined with the BSD scheme. Furthermore, to
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illustrate the application to arbitrary band structures, we apply
the BSD scheme to the AIM with a tight-binding band struc-
ture, where the hybridization function has no analytic poles.
Combined with the MPS-HEOM [57], the current dynamics at
different temperatures and even at T = 0 have been explored.

We have also pointed out that the BSD scheme cannot
really reach the Fermi function at T = 0 which is discontinu-
ous at the Fermi energy. The approximate function for T = 0
based on BSD can be regarded as the Fermi function at a very
small temperature related to the smallest discretizing interval
δF . In the time domain, the simulated results based on BSD re-
flect the true T = 0 dynamics within a time range determined
by 1/δF which in many cases can be chosen sufficiently large
to approach the steady-state regime.

Compared to other widely used methods such as the
QMC [45–52] and time-dependent NRG (TD-NRG) [28–31],
the long-time dynamics of HEOM does not suffer from
discretization problems, and its computation cost grows lin-
early as time increases. The BSD scheme in this work also
significantly increases the capability of HEOM in the low-
temperature regime and for more complex band structures.
Thus, we believe that BSD-based HEOM could become the
method of choice for certain types of applications, especially
in long-time simulations that may be difficult for the QMC
and TD-NRG methods.

Recently, some of us have developed the generalized mas-
ter equation (GME) method to calculate the exact memory

kernel from physical quantities such as population and cur-
rent [27]. The memory kernels, which usually decay within a
short period of time, can be used to produce reliable long-
time dynamics [116,117]. Combining this method with the
BSD scheme may allow us to calculate efficiently asymptotic
long-time dynamics and stationary state properties at T = 0
for even broader classes of hybridization functions.

With the development of the HEOM method and new
algorithms including the MPS-HEOM [57] with efficient
time-evolution methods [118,119], tree-tensor HEOM [120],
and the hierarchical Schrödinger equations of motion
(HSEOM) [74], the BSD scheme provides a different method
for the simulation of realistic systems at low temperatures.
Moreover, the methodology can be applied to other ap-
proaches based on an expansion of reservoir correlation
functions or Green’s functions, such as the hierarchy of pure
states (HOPS) [121], the nonequilibrium Green’s function
(NEGF) [122–124] methods, and the nonequilibrium dynam-
ical mean-field theory (DMFT) [125].
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Schön, and J. von Delft, Phys. Rev. Lett. 91, 247202 (2003).
[110] D. Zhang, X. Ding, H.-D. Zhang, X. Zheng, and Y. Yan,

Chin. J. Chem. Phys. 34, 905 (2021).
[111] X. Ding, D. Zhang, L. Ye, X. Zheng, and Y. Yan, J. Chem.

Phys. 157, 224107 (2022).

[112] F. A. Wolf, I. P. McCulloch, and U. Schollwöck, Phys. Rev. B
90, 235131 (2014).

[113] M. Karski, C. Raas, and G. S. Uhrig, Phys. Rev. B 77, 075116
(2008).

[114] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni,
Phys. Rev. B 89, 165105 (2014).

[115] G. Wójtowicz, J. E. Elenewski, M. M. Rams, and M. Zwolak,
Phys. Rev. B 104, 165131 (2021).

[116] G. Cohen and E. Rabani, Phys. Rev. B 84, 075150 (2011).
[117] G. Cohen, E. Y. Wilner, and E. Rabani, New J. Phys. 15,

073018 (2013).
[118] M. Yang and S. R. White, Phys. Rev. B 102, 094315

(2020).
[119] R. Borrelli and S. Dolgov, J. Phys. Chem. B 125, 5397

(2021).
[120] Y. Yan, Y. Liu, T. Xing, and Q. Shi, WIREs Comput. Mol. Sci.

11, e1498 (2021).
[121] D. Suess, A. Eisfeld, and W. T. Strunz, Phys. Rev. Lett. 113,

150403 (2014).
[122] K. S. D. Beach, R. J. Gooding, and F. Marsiglio, Phys. Rev. B

61, 5147 (2000).
[123] A. Croy and U. Saalmann, Phys. Rev. B 80, 245311 (2009).
[124] J. Gu, J. Chen, Y. Wang, and X.-G. Zhang, Comput. Phys.

Commun. 253, 107178 (2020).
[125] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett.

110, 086403 (2013).

195429-15

https://doi.org/10.1063/1.4890441
https://doi.org/10.1063/1.4935799
https://doi.org/10.1063/5.0095790
https://doi.org/10.1063/5.0098545
https://doi.org/10.1002/wcms.1269
https://doi.org/10.1021/acs.jpca.1c02863
https://doi.org/10.1007/s11075-020-01042-0
https://doi.org/10.1103/PhysRevB.79.245101
https://doi.org/10.1103/PhysRevX.5.041032
https://doi.org/10.1103/PhysRevB.91.115144
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevB.92.155132
https://doi.org/10.1103/PhysRev.150.516
https://doi.org/10.1103/PhysRevLett.91.247202
https://doi.org/10.1063/1674-0068/cjcp2110212
https://doi.org/10.1063/5.0130355
https://doi.org/10.1103/PhysRevB.90.235131
https://doi.org/10.1103/PhysRevB.77.075116
https://doi.org/10.1103/PhysRevB.89.165105
https://doi.org/10.1103/PhysRevB.104.165131
https://doi.org/10.1103/PhysRevB.84.075150
https://doi.org/10.1088/1367-2630/15/7/073018
https://doi.org/10.1103/PhysRevB.102.094315
https://doi.org/10.1021/acs.jpcb.1c02724
https://doi.org/10.1002/wcms.1498
https://doi.org/10.1103/PhysRevLett.113.150403
https://doi.org/10.1103/PhysRevB.61.5147
https://doi.org/10.1103/PhysRevB.80.245311
https://doi.org/10.1016/j.cpc.2020.107178
https://doi.org/10.1103/PhysRevLett.110.086403

