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We theoretically investigate the thermoelectric properties (electronic contribution) of a hybrid structure
comprising an inversion symmetry broken Weyl semimetal (WSM) and intrinsic Weyl superconductor (WSC)
with s-wave pairing, employing the Blonder-Tinkham-Klapwijk formulation for noninteracting electrons. Our
study unfolds interesting features for various relevant physical quantities such as thermal conductance, the
thermoelectric coefficient, and the corresponding figure of merit. We also explore the effects of an interfacial
insulating (I) barrier (WSM-I-WSC setup) on the thermoelectric response in the thin barrier limit. Further, we
compute the ratio of the thermal to the electrical conductance in different temperature regimes and find that the
Wiedemann-Franz law is violated for small temperatures (below critical temperature Tc) near the Weyl points
while it saturates to the Lorentz number, away from the Weyl points, at all temperatures irrespective of the barrier
strength. We compare and contrast this behavior with other Dirac material heterostructures and provide a detailed
analysis of the thermal transport. Our study can facilitate the fabrication of mesoscopic thermoelectric devices
based on WSMs.
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I. INTRODUCTION

In recent times, Weyl semimetals (WSMs) have been sub-
ject to intense theoretical and experimental investigations as
they are explicit material realizations of hitherto high-energy
phenomena, such as the Adler-Bell-Jackiw anomaly [1,2] and
the chiral magnetic effect [3]. In terms of their band structure,
WSMs exhibit linearly dispersing excitations from nondegen-
erate band touching points called Weyl nodes accompanying
unusual surface projections known as Fermi arcs [4]. Weyl
nodes always appear in pairs of opposite chirality and be-
have as oppositely charged monopoles of Berry flux because
the electronic states around the band touching points have
nonzero Berry curvature. This gives rise to nontrivial topology
in momentum space due to which WSMs exhibit several inter-
esting physical effects, such as the quantum anomalous Hall
effect, the chiral magnetic effect, negative magnetoresistance,
etc. [4–8]. Intense theoretical and experimental research work
has been carried out in both time-reversal and inversion sym-
metry broken WSMs [4,5,9].

In principle, the WSM phase can be realized by breaking
either the time reversal (TR) or the inversion symmetry (IS)
[4,7,10,11]. Breaking of the TR symmetry requires a large
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external magnetic field, which limits the use and application
of these materials. However, recently, a WSM state was con-
firmed in transition-metal mono-phosphide or mono-arsenide
MX materials (M=Nb and Ta; X=P and As) with naturally
broken IS due to crystal structure asymmetry [5,12–16]. In
these materials, the Weyl nodes and surface Fermi arcs are
detected by using angle-resolved photoemission spectroscopy
(ARPES).

Over the past years, superconducting hybrid structures
have attracted a great deal of attention due to the dramatic
boosts of thermoelectric effects in them [17–24]. In order
to investigate the thermoelectric properties of a material
or hybrid junction, it is customary to compute the thermal
conductance or thermal current generated by the applied tem-
perature gradient. From the application point of view, it is
more desirable to investigate the Seebeck coefficient, known
as thermopower. A better way to examine the efficiency of a
system as a thermoelectric is to study the thermopower as well
as a dimensionless parameter called the figure of merit (zT )
[25]. Improving this thermoelectric zT along with enhanced
Seebeck coefficient is one of the main challenges in materials
science [26], as well as mesoscopic hybrid junctions [27].
Along this direction, heat transport has also been investigated
in superconducting heterostructures of two-dimensional Dirac
systems [28–33].

Although electronic properties of WSMs (both in bulk and
heterojunctions) have been extensively studied in recent times
[34–39], far less is known about its thermoelectric properties
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as far as hybrid junctions are concerned. There have been
earlier studies including disorder and interactions both near
the Weyl point and with doping away from the Weyl point [12,
40–42]. However, these works only investigate thermoelectric
properties in the bulk material. Heterojunctions, which form
the foundation of applications in electronics and spintronics,
have not yet been explored in the context of their thermal
properties involving WSMs and superconductivity. Motivated
by this fact, in this article we focus on this gap and explicitly
study the thermal properties of a heterojunction consisting
of an inversion symmetry broken WSM (normal region) on
one side and a bulk Weyl superconductor (WSC) [43–45]
on the other side, thus tailoring a WSM-WSC junction. In
particular, we obtain the electronic contribution to the thermal
conductivity, the Seebeck coefficient and the figure of merit
(that is, the ratio of the Seebeck coefficient and the thermal
conductivity) for this setup. Note that a similar analysis can-
not be carried out for a TR broken WSM-WSC junction, as
Andreev reflection is fully suppressed there in the absence of
a spin active interface, due to chirality blockade [46].

The remainder of this paper is organized as follows. In
Sec. II we describe the model Hamiltonian of IS broken
WSM and the scattering matrix approach to analyze our setup.
Section III is devoted to the analytical formulas for computing
various physical quantities that are required to assess the ther-
moelectric properties of the system. We discuss the numerical
results of the WSM-WSC junction in Sec. IV. Finally, we
summarize our findings and discuss some possible outlooks
in Sec. V.

II. MODEL AND METHOD

In this section we describe the model Hamiltonian of our
setup and discuss the scattering matrix approach to analyze
the junction problem.

A. Model Hamiltonian

To begin with, we consider an inversion asymmetric WSM
described by the Hamiltonian [47], H = ∑

k ψ
†
kH (k)ψk, with

H (k) = kxσxsz + kyσys0 + (
k2

0 − |k|2)σzs0

+ β σysy − α kyσxsy , (1)

where k = (kx, ky, kz ), ψ
†
k = (c†

A,↑,k, c†
A,↓,k, c†

B,↑,k, c†
B,↓,k ),

and c†
σ,s,k are creation operators with �σ and �s Pauli matrices

for the orbital (A,B) and spin degrees of freedom (↑,↓) in the
z direction, respectively. Here, k0, α, and β denote real model
parameters. For k0 > β, the model exhibits four Weyl nodes
at Qγ as shown in Fig. 1(a), where we label Qγ=1,2,3,4 as

(β, 0,
√

k2
0 − β2), (−β, 0,−

√
k2

0 − β2), (β, 0,−
√

k2
0 − β2),

and (−β, 0,
√

k2
0 − β2), respectively. We schematically

depict the positions of the four Weyl nodes in Fig. 1(b),
choosing the kx − kz plane intersecting at ky = 0.

Using the transformation c(σ )
s,k = (cσ,↑,k ± cσ,↓,k )/

√
2

[47], where s=(↑,↓) denotes the spin in the x direc-
tion in this new basis, we can write the low-energy
Hamiltonian as the sum of four 2 × 2 Hamiltonians near
the four Weyl nodes as HW = ∑4

γ=1

∑′
k �

†
γ ,kHγ �γ ,k, where

�
†
1,k = �

†
3,k = (cB†

↑,k, cA†
↓,k ) and �

†
2,k = �

†
4,k = (cA†

↑,k, cB†
↓,k )

FIG. 1. (a) Band structure of IS broken WSM, modeled by the
low-energy effective Hamiltonian [Eq. (1)], is shown at ky = 0 for
fixed values of β = 1 and α = √

2. (b) The positions of the Weyl
nodes (Qγ=1,2,3,4) are shown schematically in the kx − kz plane
choosing ky = 0.

[47]. Here
∑′

k indicates the fact that crystal momenta
kx, ky, kz are now restricted close to the Weyl points. The
Hamiltonian Hγ can be written as [47]

H1,2 = (kx ∓ β )sx + kysy + (kz ∓
√

k2
0 − β2)sz ,

H3,4 = (kx ∓ β )sx + kysy − (kz ±
√

k2
0 − β2)sz . (2)

Here ky and kz are rescaled by 1/α and 1/2
√

k2
0 − β2. The

Weyl points Q1 and Q2 (Q3 and Q4) carry the positive (nega-
tive) chirality and form two time-reversed pairs.

We assume that the system remains metallic with an
approximately linear dispersion, even in the presence of
disorder. This remains a good approximation as long as
the Fermi energy is larger than the disorder-induced gap
in the system [42]. Beyond that, we consider intraorbital
s-wave superconducting pairing which couples Weyl nodes of
the same chirality. This is because at low energy, the interor-
bital pairing is known to be suppressed [37]. Consequently, we
can consider two decoupled superconducting Hamiltonians
with opposite chirality as [37]

H+
S = ∑′

k(� c†
1,↑,k c†

2,↓,−k + 1 ↔ 2) + H.c., (3)

H−
S = ∑′

k(� c†
3,↑,k c†

4,↓,−k + 3 ↔ 4) + H.c., (4)

where c†
1,↑,k and c†

2,↓,k in Eq. (3) [or c†
3,↑,k and c†

4,↓,k in Eq. (4)]
are creation operators at Weyl points 1 and 2 (or 3 and 4),
respectively. The pairing potential � couples electrons and
holes only between the time-reversed pair of Weyl nodes, i.e.,
Q1 to Q2 and Q3 to Q4. Here ↑ and ↓ represent the spin in
x direction.

We analyze the heterostructure comprising a WSM and
a bulk WSC with s-wave pairing, considering the above-
mentioned model Hamiltonians. Our WSM-WSC setup is
illustrated in Fig. 2. The thin violet region at the interface (see
Fig. 2) indicates an insulating barrier with width d and height
V0. We incorporate this to investigate thin barrier effects on
thermal transport through the junction.

Considering quasi-one-dimensional transport along the
z direction, we can write the Bogoliubov–de Gennes (BdG)
Hamiltonian for the positive chirality sector as an 8 × 8
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FIG. 2. Schematic diagram of our setup in which the WSM
part is treated as the normal (N) region while the other side is a
WSC with s-wave pairing (superconducting region S), thus forming
a WSM-WSC heterostructure (orange). The green regions indicate
the left and right reservoirs maintained at thermal equilibrium with
temperatures T1 and T2, respectively, and at a finite voltage bias eV.
A thin violet region symbolizes the insulating (I) barrier of width
d and height V0 sandwiched between the normal and superconducting
regions.

Hamiltonian,

H+ =
(

h1
BdG ∅
∅ h2

BdG

)
, (5)

where ∅ is a 4 × 4 null matrix, and each of the diagonal
Hamiltonian can be written as

h1
BdG =

⎛
⎜⎜⎜⎝

Weyl node 1 � 0

(electron space) 0 �

�∗ 0 Weyl node 2

0 �∗ (hole space)

⎞
⎟⎟⎟⎠

and

h2
BdG =

⎛
⎜⎜⎜⎝

Weyl node 2 � 0

(electron space) 0 �

�∗ 0 Weyl node 1

0 �∗ (hole space)

⎞
⎟⎟⎟⎠. (6)

Here, h1
BdG and h2

BdG effectively represent the same BdG
Hamiltonian. We focus only on h1

BdG for the purpose
of this paper. Using the Nambu basis in real space
(�1,↑, �1,↓, �

†
2,↓,−�

†
2,↑ ), we can write h1

BdG as

h1
BdG = νz[−i∂r · s − μ(z) s0] + �(z) νx s0 . (7)

Here, Pauli matrices ν and s act on Weyl points and spin,
respectively. Considering the electronic transport along the
z direction, we define chemical potential μ and superconduct-
ing pairing potential �(z) for the geometry shown in Fig. 2 as

μ(z) = μN �(−z) + μS �(z) ,

�(z) = �(T ) eiα �(z) . (8)

The temperature-dependent superconducting gap is �(T ) =
�0 tanh (1.74

√
Tc/T − 1). �(z) is the Heaviside step

function, α is the phase of the superconducting order
parameter, which is fixed at zero for simplicity, and Tc is

the critical temperature of the superconductor. Here, μN

and μS are the chemical potentials on WSM and WSC
sides, respectively. Furthermore, we introduce a unitary
transformation in order to transfer the k0 and β dependence
of the Hamiltonian to the wave function [37].

Similarly, one can write the BdG Hamiltonian for the neg-
ative chirality sector (H−) by replacing ∂z by −∂z. We focus
only on the positive chirality sector in this work, and it is
straightforward to extend the thermal transport analysis for
the negative chirality Weyl fermions.

The mean-field theory of superconductivity demands that
μS � �0, or equivalently, that the superconducting coherence
length ξ is much larger than the Fermi wavelength in the
superconducting region [48]. Note that we fix μS = 100�0

to satisfy this requirement throughout our analysis.
To understand the nature of normal and Andreev reflection

(AR) at the interface between WSM and WSC, it is neces-
sary to analyze the spin texture around the Weyl nodes for
both electrons and holes. For this we employ the low-energy
Hamiltonians [Eq. (2)] to find the expectation values of spin
vector for the lower conduction band around each Weyl point
and show them in Fig. 3. It is evident from Fig. 3(a) that the
conduction electron incident from Weyl point Q1 is reflected
as a normal electron from the opposite Fermi surface at Q3

to preserve the spin quantum number. The hole due to retro-
AR comes from the time-reversed partner, which is at Q′

1 =
−Q1 and carries opposite texture compared to the incoming
electron. This is schematically shown in Fig. 3(b). Specular
AR takes place from the valence band of the hole, and this is
depicted in Fig. 3(c).

B. Scattering matrix approach

Due to the superconducting pairing between the time-
reversed pairs of Weyl nodes with the same chirality [37], we
can separately compute contributions arising from the positive
and negative chirality Weyl nodes. Considering the positive
chirality Weyl nodes in our study, we investigate the thermal
transport employing the scattering matrix approach [23,49,50]
for the noninteracting electrons in the WSM-WSC setup (see
Fig. 2). Let us consider the electronic transport along the
perpendicular direction to the interface between the normal
and superconducting part of the WSM, which means that the
momentum parallel to the interface k|| (= kx, ky) is conserved.
We consider the excitation energy E > 0, such that the incom-
ing electron is above the Fermi level at energy μN + E , while
the Andreev-reflected hole is at energy μN − E .

Using BdG Hamiltonian for the WSM-WSC junction, the
wave functions in the normal side (WSM) for a given excita-
tion energy E can be written as

ψ−→e (z) = (cos ϕe, eiθk sin ϕe, 0, 0)T eikez ,

ψ←−e (z) = (e−iθk sin ϕe, cos ϕe, 0, 0)T e−ikez ,

ψ−→
h

(z) = (0, 0,−e−iθk sin ϕh, cos ϕh)T eikhz ,

ψ←−
h

(z) = (0, 0, cos ϕh,−eiθk sin ϕh)T e−ikhz , (9)

where k(e,h) =
√

(E ± μN )2 − k2
|| are the momenta of the elec-

tron and hole, respectively, ϕ(e,h) = tan−1(k||/k(e,h) )/2 are the
incident angles of the incoming electron and hole, respec-
tively, and θk = tan−1(ky/kx ).
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FIG. 3. (a) The spin texture is shown for the lower conduction band near the Weyl cones for an electron. The same is shown for the
lower conduction band and lower valence band near the Weyl cones for a hole in panels (b) and (c), respectively. We choose the other model
parameters as β = 1, k0 = √

2, and ky = 0.

The wave functions in the WSC region can be written as

�−→eq (z) = (eiβ cos φe, eiβ eiθk sin φe, e−iα cos φe, e−iαeiθk sin φe)T eiqez ,

�←−eq (z) = (eiβe−iθk sin φe, eiβ cos φe, e−iαe−iθk sin φe, e−iα cos φe)T e−iqez ,

�−→
hq

(z) = (eiαe−iθk cos φh, eiα sin φh, eiβe−iθk cos φh, eiβ sin φh)T eiqhz ,

�←−
hq

(z) = (eiα sin φh, eiα eiθk cos φh, eiβ sin φh, eiβeiθk cos φh)T e−iqhz , (10)

where q(e,h) =
√

(μS ± �)2 − k2
|| and φ(e,h) =

tan−1(k||/q(e,h) )/2 are the momenta (close to Weyl points) and
incident angles of the electron- and holelike quasiparticles,
respectively, inside the superconducting region. For E � �

(subgapped regime), β = cos−1(E/�) and � = i
√

�2 − E2,
while for E > � (above the gap), β = −i cosh−1(E/�)
and � =

√
E2 − �2. Considering the scattering between the

same chirality Weyl nodes, we can write the scattering states
on both sides of the junction as

�<(z) = ψ−→e (z) + re ψ←−e (z) + rh ψ←−
h

(z) ,

�>(z) = te �−→eq (z) + th �←−
hq

, (11)

where re,h corresponds to the normal and AR scattering co-
efficients, respectively, while te,h denotes the transmission
coefficients for the electron- and holelike quasiparticles, re-
spectively. We obtain the 4 × 4 scattering matrix by matching
the wave functions [Eq. (11)] on both sides of the junction at
z = 0 (�<(z) = �>(z)|z=0).

III. THERMAL TRANSPORT

For the noninteracting electrons, the total transmission
function for the transport of the electronic charge through
the junction can be computed using the scattering matrix

approach. Integrating over the transverse modes one can write
[28,29]

T (E ) =
∫

d2k||
4π2

(
1 − Re(E ) + Re

[
cos 2ϕh

cos 2ϕe

]
Rh(E )

)
, (12)

where k|| is the momentum parallel to the junction interface,
Re and Rh are the normal and AR probability, respectively,
and ϕe and ϕh are the angle of incidence for electron and hole,
respectively. Changing the integration variable k|| to ϕe using
k|| = (E + μN ) sin 2ϕe, we can write

T (E ) = 1

2π

∫
dϕe

(
1 − Re(E ) + Re

[
cos 2ϕh

cos 2ϕe

]
Rh(E )

)

× (E + μN )2 sin 4ϕe . (13)

While the electrical charge transport can distinguish between
the electron and hole contribution by the sign of Re and Rh,
the thermal transport treats both the electron and the hole as a
particle carrying the number density along the same direction
(see Appendix A for details). Consequently, for the thermal
transport, the transmission function for the energy transport
through the junction can be computed using [28,29] as

Ttherm(E ) = 1

2π

∫
dϕe

(
1 − Re(E ) − Re

[
cos 2ϕh

cos 2ϕe

]
Rh(E )

)

× (E + μN )2 sin 4ϕe . (14)
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A. Electrical conductance and thermoelectric coefficient

We begin with the general expression for total electrical
current through the normal-superconductor (NS) junction in
the presence of voltage and temperature biases [49] as

I = 2e

h

∫ ∞

−∞
[ fN (E − e�V, T + �T ) − fS (E , T )]T (E ) dE .

(15)

where fN and fS are the Fermi distribution functions of the
two reservoirs to which the NS setup is attached.

In the linear response regime, one can expand the
Fermi functions for very small voltage and temperature
differences as

fN (E − e�V, T + �T ) = f0(E , T ) − e�V
∂ f0

∂E
+ �T

∂ f0

∂T
,

fS (E , T ) = f0(E , T ) , (16)

where f0 is the average Fermi distribution at energy E and
temperature T . Using Eq. (16), we can write the total current
as (see Appendix A for the complete derivation following
Ref. [49])

I = 2e

h

∫ ∞

−∞

[
−e�V

∂ f0

∂E
+ �T

∂ f0

∂T

]
T (E ) dE . (17)

Hence, comparing the total current with the Onsager relation,

I = G�V + L12�T , (18)

we arrive at the expressions for electrical conductance and the
thermoelectric coefficient [50,51] as

G = 2e2

h

∫ ∞

−∞

(
−∂ f0

∂E

)
T (E ) dE ,

L12 = −2e

h

∫ ∞

−∞

(
−∂ f0

∂T

)
T (E ) dE . (19)

B. Thermal conductance, thermopower, and figure of merit

The normalized thermal conductance through the NS inter-
face can be defined as [50]

κ/κ0 =
∫ ∞

−∞
(E − μN )

(
−∂ f0

∂T

)
Ttherm(E ) dE , (20)

where κ0 is the thermal conductance due to ballistic channels
in the bulk at energy (E + μN ) and T = Tc. This is given by

κ0 =
∫ ∞

−∞
dE

(E + μN )2

4π
(E − μN )

(
∂ f0

∂T

)
T =Tc

. (21)

When a temperature gradient is maintained in a metal and
no electric current is allowed to flow, a steady-state electro-
static potential difference builds up between the high- and
low-temperature regions. This is called the thermoelectric
effect and is measured by the thermopower (the Seebeck co-
efficient), which by definition is given by [52]

S = −
(

�V

�T

)
I=0

. (22)

Using Eq. (18), the analytical expression for the thermopower
can be written as

S = L12

G
, (23)

where S is measured in units of kB/e.
The performance of a thermoelectric device is character-

ized by a dimensionless quantity called the figure of merit,

zT = S2GT

κ
. (24)

The major objective is to attain higher values of figure of
merit in different materials/hybrid junctions, which would
be desirable for their potential applicability in thermoelectric
devices. It is clear from Eq. (24) that this can be achieved by
improving electrical transport properties and reducing thermal
conductivity.

C. Wiedemann-Franz law

The Wiedemann-Franz (WF) law states that the ratio of
thermal conductance κ to electrical conductance G is propor-
tional to the absolute temperature,

κ

G
= LT , (25)

where the proportionality constant L is a universal number
called the Lorentz number. For an ideal Fermi gas, we have
L = L0 = π2

3 ( kB
e )2. Violation of the WF law has been reported

for semiconductors [53], zero-gap systems, e.g., graphene
[31,54], quasi-one-dimensional Luttinger liquids [55], and
heavy-fermion materials [56]. We explore the validity of the
WF law in our WSM-WSC setup and unveil several interest-
ing features near the Weyl point, which we discuss in the next
section.

IV. NUMERICAL RESULTS

In this section we proceed to discuss our numerical re-
sults for thermal transport through the WSM-WSC setup.
We compute the scattering probabilities employing Eq. (11)
and find the relevant physical quantities using the analytical
expressions discussed in Sec. III.

A. Thermal conductance

We compute the normalized thermal conductance using
Eq. (20) and show its behavior as a function of temperature
in Fig. 4(a). For μN < �0, the thermal conductance remains
vanishingly small for lower temperatures and starts increasing
exponentially with the enhancement of temperature. The zero
value of thermal conductance at T = 0 is due to the perfect
AR in the subgapped regime, which blocks the thermal trans-
port. When the temperature is very small (T � Tc), electrons
with energy at least μN contribute to the thermal conductance.
We show this in Fig. 4(a) for μN/�0 = 1 and μN/�0 = 2.
Clearly, the thermal conductance increases as we enhance
μN , due to the availability of more states. The blockage of
thermal transport (at T = 0) continues as long as the transport
is dominated by the superconducting Cooper pairs. Further,
thermal conductance exhibits an exponential rise for μN �
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FIG. 4. (a) The behavior of normalized thermal conductance is
shown as a function of temperature for μN/�0 = 0.001, 1, 2, 100
represented by dashed, dot-dashed, double dot-dashed, and solid
lines, respectively. (b) The normalized thermal conductance with
respect to the logarithm of μN/�0 is depicted for T/Tc =
0.3, 0.5, 0.7 and 0.99, represented by longer dashed, dashed, dot-
dashed, and solid lines, respectively.

�0 as one moves towards Tc. We attribute this behavior to
the spin-singlet s-wave superconductor in the Weyl NS junc-
tion, as has been reported earlier in superconducting hybrid
junctions based on Dirac-like materials [23,28,29]. When the
chemical potential on the normal WSM side becomes much
larger than the superconducting gap, the NS junction becomes
transparent and behaves like a metal. The metallic behavior
of the thermal conductance is known to be linear with the
increase of temperature [57,58], and we find this characteristic
for μN/�0 = 100 as shown in Fig. 4(a). This is because at
μN � �0, the incoming electrons easily overcome the super-
conducting gap on the right side, which results in a linear
increase in thermal conductance.

Further, we discuss the behavior of thermal conductance as
a function of chemical potential μN in the normal side, at a
fixed temperature. To show the clear dependence on μN at a
larger scale (0.01�0 to 100�0), we demonstrate this using log
scale for μN in Fig. 4(b). It is evident that as we increase the
temperature towards Tc, there is a larger enhancement in the
thermal conductance as we move away from �0.

B. Wiedemann-Franz law

We discuss the features of the Wiedemann-Franz law in
this section. We numerically compute the thermal and elec-
trical conductance to find the Lorentz number (in terms of
Lorentz number L0 for a metal), as given in Eq. (25). We
depict the Lorentz number with the variation of the chemical
potential in the WSM side of the junction for three values of
temperature T/Tc = 0.99, 0.3, 0.1 in Fig. 5. The symmetric
behavior of the Lorentz number with respect to the chemical
potential μN is due to the particle-hole symmetry of the sys-
tem. We generally arrive at the larger Lorentz number when
there is a small contribution to the thermal conductance. For
moderate temperature (e.g., T/Tc = 0.3 in Fig. 5), the Lorentz
number is finite, even at μN = 0. This is due to the reduction
of the superconducting gap with the increase of temperature,
and we expect that this is responsible for finite thermal con-
ductance even at μN < �0. Note that there is always a dip
in the Lorentz number at the Weyl point (μN = 0) below Tc.
When T/Tc = 0.1, this dip becomes maximum and touches
the Weyl point due to the unavailability of density of states.

FIG. 5. The variation of Lorentz number, in the WSM-WSC
junction, is shown as a function of μN for three different values of
temperatures. Red, blue, and green color denote the corresponding
behavior for T/Tc = 0.99, 0.3, 0.1, respectively.

However, at T/Tc = 0.99 the superconducting gap becomes
vanishingly small, and we find the Lorentz number for the
system to be 4.1958 at the Weyl point. This large value can
be attributed to the quasiparticle states close to the super-
conducting gap. We analytically compute the Lorentz number
for a bulk WSM (see Appendix B for details) following the
semiclassical approach and we find it to be 5.13. This is of
the same order of magnitude as the numerical estimate here,
where we consider the quantum behavior of the system.

The physical reason behind this peculiar behavior
(violation of the WF law) of the Lorentz number within the
range −�0 < μN < �0 can be attributed to the temperature
dependence of the superconducting gap in our NS Weyl junc-
tion. Such deviations of the WF law from L0 (close to the
Dirac point) have been reported earlier in the case of graphene
[31,54]. Beyond this region, the Lorentz number converges
to L0 (Lorentz number for metals) for all temperatures. For
μN > �0, the transport occurs via the states above the subgap
energy. This means that the WSM-WSC junction becomes
transparent to electronic transport, and once again, we witness
metal-like behavior as μN � �0.

C. Thermopower and figure of merit

Here we analyze the thermopower or Seebeck coefficient
that also describes the thermoelectric properties of the system.
We have defined this quantity in Sec. III [see Eq. (23)]. We
present the observed characteristics of thermopower in Fig. 6
as a function of (a) the doping level μN in the WSM side and
(b) the temperature T . Note that the thermopower at T � Tc

can be clearly distinguished from the behavior at T < Tc for
all values of μN .

The efficiency of converting heat into electricity is related
to the thermoelectric figure of merit, zT defined in Sec. III. We
compute the dimensionless figure of merit employing S2GT/κ

[Eq. (24)] and show the corresponding behavior in Fig. 7(a)
as a function of μN/�0 at fixed temperatures. Interestingly,
we find larger values of zT for lower temperature (T � Tc)
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FIG. 6. The behavior of thermopower or Seebeck coefficient
(in unit of kB/e) is depicted as a function of (a) μN/�0 for
T/Tc = 0.1, 0.5, 0.99 represented by red (solid), blue (dash), and
green (dot-dash) lines, respectively, and (b) T/Tc for μN/�0 =
0.001, 1, 2, 100 represented by green (dash), red (solid), blue (dot-
dash), and purple (double dot-dash) lines, respectively.

and doping (μN � �0), as shown in Fig. 7(a). Quantitatively,
such high values of zT arise due to small values of κ and large
S in this regime. However, we do not fully understand the
physical reason behind having such a large value of zT . Nev-
ertheless, we note that the two-dimensional Dirac materials,
whose low energy dispersion is effectively described by the
massless Dirac Hamiltonian, have been shown to maximize
zT up to 15 [59]. The behavior of zT is also shown in Fig. 7(b)
as a function of temperature for fixed μN . Note that high
values of zT ∼ 9–10 also appear for low temperatures when
μN/�0 � 1.

D. Effect of insulating barrier

In this section we investigate the changes in thermoelectric
properties caused by an insulating barrier introduced at the
WSM-WSC interface (see Fig. 2). We assume the barrier to
be of length d and height V0. This can be modeled as U (z) =
V0 �(z)�(d − z). We carry out our analysis by matching the
wave function at the two interfaces, assuming one to be at
z = 0 and the other at z = d . The wave function in the insu-
lating region can be written as Eq. (9), with μN replaced by
μN − V0. Here we consider the thin barrier limit. In this limit

FIG. 7. The figure of merit zT is depicted in the log scale as
a function of (a) μN/�0 for T/Tc = 0.1, 0.5, 0.99 represented by
red (solid), blue (dash), and green (dot-dash) lines, respectively, and
(b) T/Tc for μN/�0 = 0.11, 0.5, 0.99, 5 denoted by red (solid),
blue (large dash), green (small dash), and purple (dot-dash) lines,
respectively.

FIG. 8. (a) The normalized thermal conductance is depicted as
a function of the barrier strength χ at μN/�0 = 0.001, 0.1, 1, 100,
T/Tc = 0.5. (b) The maximum amplitude of the thermal conductance
oscillations as a function of μN is shown in the log scale at T/Tc =
0.99, 0.5, 0.1.

one can define a finite quantity χ = V0d [29] with V0 → ∞
and d → 0, called the strength of the barrier. We present here
the distinctive behavior of the thermoelectric properties with
respect to this barrier strength χ .

To begin with we show the behavior of thermal conduc-
tance with the variation of χ in Fig. 8(a). Clearly, π -periodic
oscillations in κ are found for larger doping (μN/�0 = 100).
On the other hand, the amplitude of oscillations becomes
negligibly small as one decreases μN . We also find that the
maximum amplitude (difference between |κ (χ = 0) − κ (χ =
π/2)|) of oscillations increases as we increase the value of
μN at any fixed temperature. We present this behavior in
Fig. 8(b). The maximum amplitude of oscillations increases
more rapidly as one approaches T → Tc for μN � �0.

Afterwards, we study thermopower S with the variation of
T/Tc for different values of χ and show its corresponding
behavior in Fig. 9(a). Note that the thermopower changes sign
for χ = π/3, π/2. This characteristic feature of changing
sign in thermopower is also clearly visible in Fig. 9(b), where
we illustrate its behavior with respect to χ for different values
of μN � �0. We expect that this sign change in S takes place
due to the electrons close to the Weyl point.

V. SUMMARY AND DISCUSSION

To summarize, in this work we have investigated ther-
mal transport through normal-superconductor junctions of
inversion symmetry broken Weyl semimetals (WSM-WSC

FIG. 9. (a) Thermopower S is shown as a function of tempera-
ture at χ = 0, π/4, π/3, π/2, π . Here we choose μN/�0 = 0.001.
(b) S is depicted with the variation of insulating barrier strength χ at
μN/�0 = 10−5, 10−3, 10−2 and T/Tc = 0.8.
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heterostructures). We have discussed the characteristic fea-
tures of thermal conductance, thermopower, and figure of
merit under different sets of parameter values. We have shown
that the normalized thermal conductance has the conventional
exponential dependence on the temperature for lower dopings
(chemical potential μN on the WSM side), while it exhibits
the typical linear behavior like in metals for higher doping. We
find that the Lorentz number shows interesting features below
the superconducting gap. This includes the violation of the
Wiedemann-Franz law for −�0 < μN < �0 and agreement
(metal like) for higher doping concentrations (|μN | � �0).
Further, we have studied the thermopower/Seebeck coeffi-
cient and the figure of merit. Surprisingly, the figure of merit
shows a sharp increase for transport near the Weyl point,
while it stays close to unity away from it. In addition, we
have also investigated the effect of a thin insulating barrier
on the thermal conductance and thermopower. Importantly,
we find larger oscillations (with period π ) in the thermal
conductance with the variation of barrier strength for larger
doping and negligible oscillation amplitudes for smaller dop-
ing concentrations. Moreover, very close to the Weyl point,
the thermopower is shown to change sign from positive to
negative as we increase the barrier strength χ .

As far as a practical realization of our setup is concerned,
WSM-WSC heterostructures may be possible to fabricate with
appropriate materials, although the material realization of
WSC is still not known, to the best of our knowledge. Within
our setup, the chemical potentials μN and μS can be tuned via
two additional external gate voltages. These gate voltages can
modulate the Fermi energy (doping level) of the normal and
superconducting sides of the junction. In particular, one gate
voltage can tune μN over the entire sample. The other chemi-
cal potential, μS = μN + U0, can be independently modulated
by tuning U0 by another gate voltage. For a typical value of
�0 ∼ 1.3 meV, it may be possible to achieve a high value of
zT ∼ 9 − 10 at low temperatures (T ∼ 1 − 2 K) and chemi-
cal potentials of μN ∼ 0.15 meV.
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APPENDIX A: DERIVATION OF EQ. (17),
I.E., THE TOTAL CURRENT

We follow Ref. [49] to arrive at Eq. (17) (see in
main text) for one-dimensional transport. This derivation is
potentially important for understanding thermoelectric coef-
ficients L12. This physical quantity plays a significant role
in determining the thermoelectric properties of any device,
namely, thermopower or Seebeck coefficient. Thermoelec-
tric current (determined by the thermoelectric coefficient) is
conceptually a net charge transfer due to temperature bias. We
schematically show the normal-superconductor (NS) junction
in Fig. 10, where we assume that the left and right reservoirs
are kept at bias voltages E − e�V and E , respectively, as

FIG. 10. Cartoon of a NS junction that is attached to left (L) and
right (R) reservoirs which are kept at temperatures T + �T and T,

respectively. The red and green dots represent the flow of electrons
and holes, respectively, due to the applied thermal bias.

well as at temperatures T + �T and T, respectively. The flow
of electrons from the higher to the lower temperature region
would cause a flow of electric current from left to right, as
depicted by the electron flow indicated by a red dot in Fig. 10.
The flow direction of the Andreev-reflected hole is denoted by
a green dot.

The total current through the NS junction can be read from
Ref. [49] as

I = 2e

h

∫ ∞

−∞
[ f→(E ) − f←(E )]dE , (A1)

where, f→(E ) and f←(E ) are the distribution functions of par-
ticles coming from N and S side of the junction, respectively.

The distribution functions for finite voltage and tempera-
ture bias are given by

f→(E ) = f0(E − e�V, T + �T ),

f←(E ) = A(E )[1 − f→(−E , T − �T )]

+ B(E ) f→(E , T + �T )

+ [C(E ) + D(E )] f0(E , T )

= A(E ) f0(E + e�V, T − �T )

+ B(E ) f0(E − e�V, T + �T )

+ [1 − A(E ) − B(E )] f0(E , T ) , (A2)

where we use 1 − f→(−E , T − �T ) = f0(E + e�V,

T − �T ) and A(E ) + B(E ) + C(E ) + D(E ) = 1 to arrive at
the last expression. We then Taylor expand the distribution
functions for small voltage and temperature biases (linear
response regime) as

f0(E − e�V, T + �T ) = f0(E , T ) − e�V
∂ f0

∂E
+ �T

∂ f0

∂T
,

f0(E + e�V, T − �T ) = f0(E , T ) + e�V
∂ f0

∂E
− �T

∂ f0

∂T
.

(A3)

Using Eq. (A3), we arrive at the current expression for one-
dimensional transport as

I = 2e

h

∫ ∞

−∞

[
− e�V

∂ f0

∂E
+ �T

∂ f0

∂T

]
(1 + A − B) dE .

Therefore, from the Onsager relation [see Eq. (18)] one can
arrive at the expression for L12 as [50]

L12 = −2e

h

∫ ∞

−∞

(
−∂ f0

∂T

)
[1 + A(E ) − B(E )] dE . (A4)
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APPENDIX B: WIEDEMANN-FRANZ LAW FOR BULK
WEYL SEMIMETAL CLOSE TO THE WEYL POINT

In this Appendix we provide an analytical derivation of
the WF law for the three-dimensional (3D) bulk WSM near
the Weyl point. The idea is to compare this with the Lorentz
number for a WSM-WSC junction close to critical tem-
perature (T ∼ Tc) and μN ∼ 0, which is discussed in the
main text and shown in Fig. 5. We note that following the
Blonder-Tinkham-Klapwijk approach [49], we numerically
find the Lorentz number to be 4.1958 for μN = 0. Here we
follow a semiclassical approach, which is adopted in a recent
study of WF law in the case of bulk graphene [60].

The general expression of thermal conductivity κ relating
to the specific heat C of the system is given by

κ = 1

d
C vF 〈l〉 , (B1)

where d , vF , and 〈l〉 are the dimension, Fermi velocity, and
average mean free path, respectively, for the corresponding
system.

We compute the specific heat and the mean free path of
a bulk 3D WSM considering the low-energy effective linear
spectrum εp = h̄vF |p|. Using the density of states close to the
Weyl point as D(E ) = E2/2π2(h̄vF )3, the specific heat of the
system in terms of the internal energy is

C = dU

dT
= d

dT

[∫ ∞

0
dE D(E ) f (E ) E

]
, (B2)

where f (E ) is the Fermi distribution function. After a few
steps of algebra we arrive at the expression for C in a WSM
given by

C = 4

π2

k4
BT 3

(h̄vF )3
(5.6822) . (B3)

To calculate the mean free path, we use the Drude formula
which relates the electrical conductivity to the mean free path
of electrons in the system as

G = n e2 l

m∗ vF
, (B4)

where m∗ and n denote the effective mass and number density
of electrons, respectively.

Using the number density n = k3
F /6π2 and considering

only the transport along the z direction, we find the mean free
path as

l = G
6 π2 h̄3 v2

F

E2 e2
. (B5)

Here the effective mass of the system in general is defined as

m∗
i j = h̄2(

∂2E
∂ pi∂ p j

) . (B6)

For a spherical Fermi surface, off-diagonal components of the
effective mass tensor become zero. Therefore the remaining
terms are m∗

xx = m∗
yy = m∗

zz = h̄pF

vF
. For transport along z di-

rection, we have m∗
zz = m∗ = h̄pF

vF
.

Hence the average mean free path can be found as

〈l〉 = G
6 π2 h̄3 v2

F

e2

〈
1

E2

〉
. (B7)

Computing the average value of 1/E2 statistically, we find the
analytical expression of average mean free path as

〈l〉 = G
6 π2 h̄3 v2

F

e2

〈
0.384423

(kB T 2)

〉
. (B8)

Using the specific heat in Eq. (B3) and the average mean
free path in Eq. (B8), one can compute the thermal conduc-
tance employing Eq. (B1). Finally, substituting this quantity
in Eq. (25), we arrive at the Lorentz number,

L = κ

G T
= 5.3171 × L0 , (B9)

where L0 = π2

3 ( kB
e )2.
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