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Pure spin squeezing of h-BN spins coupled to superconducting resonator
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The negatively charged boron vacancy (VB−) spin defect in two-dimensional (2D) hexagonal boron nitride
(h-BN) has attracted much attention for potential applications in quantum photonics recently. Its inherent van der
Waals force mechanism guarantees convenient heterostructures for quantum sensing. By virtue of such materials,
researchers not only can fabricate enough thin spin film naturally close to the sensing target but also can prepare
an almost perfect spin ensemble with a uniform orientation. We here propose a setup with an ensemble of
VB− spins strongly coupled to the superconducting coplanar waveguide resonator through the magnetic-dipolar
interaction. The collective coupling strength is predicted to be G/2π ∼ 15 MHz, which corresponds to the
strong coupling region. This collective spin-photon interaction can mimic the one-axis twisting Lipkin-Meshkov-
Glick model effectively and therefore guarantee the dynamic generation of the spin-squeezed state. In addition,
we show the influence of inhomogeneous coupling caused by sample thickness on squeezing, which proves
the validity of the homogeneity assumption in our scheme. This attempt not only explores the possibility and
superiority of 2D VB− spins but also opens another avenue for quantum hybridization.
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I. INTRODUCTION

Spin squeezing means that the fluctuation of the quan-
tum state is lower than the standard quantum limit [1–6]; it
plays an important role in the field of quantum information
and quantum metrology [7–17]. Currently, spin squeezing
has been generated in many systems using the dynamic
method [18–25] and reservoir engineering [26–35]. Although
great progress has been achieved, there is still a consid-
erable challenge to overcome. Spin defects in traditional
three-dimensional (3D) crystal always have multiple spin ori-
entations [36–39], which results in inhomogeneous frequency
and interaction and leads to great obstacles to the alignment
of magnetic field in experiments. In addition, these schemes
always require an auxiliary cavity [40–42], but the distribu-
tion of the cavity field is usually inhomogeneous, resulting in
inhomogeneous coupling strength. These intrinsic limitations
of the defect center in 3D materials will directly restrict its
further application to quantum metrology.

Recently, the two-dimensional (2D) insulator mate-
rial hexagonal boron nitride (h-BN) has attracted much
attention for studying light-matter interactions at the
nanoscale [43–49]. In contrast to conventional bulk materi-
als, the 2D layered structure of h-BN has many outstanding
features; that is, it is more suitable for implanting, fabricating,
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and integrating with photonic chips. Specifically, an important
spin defect, namely, the negatively charged boron vacancy
(VB−) in h-BN, has become a hot topic of investigation. We
note this type of solid-state spin is quite similar to nitrogen
vacancy center in diamond. First, VB− spin possesses D3h

point-group symmetry [50–53], which gives rise to a triplet
ground state with a zero-field splitting of ∼2π × 3.5 GHz.
Second, it can be initialized, manipulated, and read out via
the optical method [54–58]. Third, the VB− spin defect is
more convenient to scale up according to realistic require-
ments, and recent experiments also demonstrated that it can be
deterministically created using various means, such as neutron
irradiation, ion implantation, and electron irradiation [58–61].
Finally, VB− spins in h-BN have an almost uniform orien-
tation which is perpendicular to the layer plane, and this
important feature is superior to the other color centers in
bulk materials. Therefore, VB− spin in h-BN has triggered
a plethora of studies in high-resolution sensing and imag-
ing [62–67].

In this paper, we propose a hybrid device in which
an ensemble of VB− spins is magnetically coupled to a
half-wavelength superconducting coplanar waveguide (CPW)
resonator. The h-BN crystal (200 × 20 × 10 μm3), contain-
ing N ∼ 2.16 × 1010 VB− spins, is attached to the middle
of the central conductor. The magnetic field in this region
can approximately be treated as a homogeneous field with
a magnitude value of 3.7 nT. An external magnetic field
perpendicular to the conductor surface is applied to modify
the frequency of the Zeeman splitting, with the purpose of
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FIG. 1. (a) Schematic of an ensemble of VB− spins glued on
top and in the middle of a CPW resonator. A static magnetic field
Be is applied parallel to the c axis of the h-BN crystal. (b) Sketch
of the negatively charged boron vacancy defect. Boron atoms and
nitrogen atoms are represented by yellow and blue spheres, respec-
tively. (c) The level structure of the electronic ground state of the
VB− spin defect. (d) Frequency splitting of the VB− spin states as
a function of the external magnetic field. (e) Cross-sectional sketch
and geometrical parameters of the CPW resonator.

ensuring the resonance condition matches the CPW resonator.
In this case, the coupling strength of a single VB− spin
coupled to the CPW resonator is estimated as g ∼ 2π ×
100 Hz, and the collective coupling strength of the VB−

ensemble can reach G = g
√

N ≈ 2π × 15 MHz, which also
potentially provides a different 2D strong coupling platform
or interface. As an intriguing application, we show how to use
our setup to generate the spin-squeezed state (SSS). Under the
condition of large detuning, we can obtain the nonlinear spin-
spin interactions using the Schrieffer-Wolff transformation,
which can be further reduced to the one-axis twisting Lipkin-
Meshkov-Glick (LMG) Hamiltonian. The degree of generated
spin squeezing scales as N−0.7 in the absence of decoher-
ence. In addition, we discuss the influence of magnetic-field
inhomogeneity on squeezing and prove the validity of the
homogeneity assumption in our scheme. Our work constitutes
a step forward in exploring the possibility and superiority
of VB− spins in a 2D h-BN crystal interacting with other
quantum systems.

II. MODEL

In the setup depicted in Fig. 1(a), a h-BN crystal containing
the VB− spins is glued on the top of a half-wavelength CPW
resonator. The negatively charged boron vacancy is formed by
a missing boron atom replaced by an extra electron and three
surrounding equivalent nitrogen atoms in the h-BN lattice, as
schematically shown in Fig. 1(b). It has a triplet electronic
ground state (S = 1) with a separation of D ≈ 2π × 3.5 GHz
between states mS = 0 and mS = ±1. In the presence of an
external magnetic field, the two upper spin states can be split
and shifted due to the Zeeman effect, and the corresponding
simplified energy level diagram is shown in Fig. 1(c). We
assume the magnetic field Be = Beez, where the z-coordinate

axis coincides with the c axis of the h-BN crystal. In this case,
the spin Hamiltonian for a single VB− spin can be represented
by (h̄ = 1)

ĤVB = ω−|ψ−〉〈ψ−| + ω+|ψ+〉〈ψ+|, (1)

where ω± = D ±
√

E2 + (gVBμBBe)2 are frequency split-
tings of eigenstates |ψ±〉 relative to |0〉 [shown in Fig. 1(d)].
D and E are zero-field splitting parameters. gVB = 2 and
μB/h = 14 MHz/mT are the Landé factor and Bohr magne-
ton, respectively.

The CPW resonator consists of a central conductor plus
two ground planes, which are fabricated on a dielectric sub-
strate [68–71]. Its electromagnetic fields are strongly confined
near the gaps between the central conductor and ground
planes [68,72]. It can be modeled as a single-model harmonic
oscillator, and the free Hamiltonian is given by ĤR = ωRâ†â,
where â (â†) is the annihilation (creation) operator and ωR

is the resonant frequency of the resonator mode. The quan-
tized resonator magnetic field can be described by B̂(r) =
B0(r)(â + â†), where B0(r) is the magnetic field of a single
microwave photon generated by the vacuum fluctuations at
position r [71,72]. A single VB− spin at rn is coupled to the
quantized resonator field through the magnetic-dipolar inter-
action, and the interaction Hamiltonian has the form Ĥint =
gVBμBB̂(rn) · Ŝn, where Ŝn = (Ŝn

x , Ŝn
y , Ŝn

z ) are spin operators.
Assuming B0(r) ‖ ex, the Hamiltonian for the whole system
reads

Ĥ = ωRâ†â +
∑

n

Ĥ (n)
VB +

∑
n,α=±

gn(â + â†)|0〉n〈ψα| + H.c.,

(2)

where n labels the VB− spin located at positions rn =
(xn, yn, zn) and the coupling gn = gVBμBBx(rn).

III. THE MAGNETIC COUPLING

As shown in Fig. 1(e), we consider a resonator with the
size (W, G, S) = (50μm, 50μm, 25μm), which corresponds
to a characteristic impedance of Z0 ≈ 50 �. The resonator
length l = λ/2 = 2.1 cm is designed so that the fundamental
resonance frequency ωR = πc/l

√
εeff ≈ 2π × 3.05 GHz is in

resonance with the VB− defects [73,74]. Here, λ is the mode
wavelength, c is the vacuum speed of light, and εeff = 5.5
is the effective dielectric constant. We display the transverse
magnetic field of a single photon in the cross section of the
coplanar waveguide in Figs. 2(a) and 2(b). Compared to the
transverse magnetic-field components Bx,z(r), the longitudi-
nal component By(r) is so weak that it can be neglected. On
the top of the central conductor, the magnetic strength varies
slowly, and the direction is almost parallel to ex. More specif-
ically, we consider the distribution of magnetic-field strength
for fixed x or z in Figs. 2(c) and 2(d). The magnetic field can
be regarded as a constant in the range of |x| � 10μm and
z � 10μm. In this case, we choose a VB− sample with the
size V = 200 × 20 × 10μm3 to make the coupling homoge-
neous. When the VB− ensemble is placed near the antinode of
the field, the wavelength λ is much larger than the spatial di-
mension of the VB− ensemble. We thus neglect the change in
the magnetic microwave field over the size of the h-BN crystal
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FIG. 2. The transverse magnetic field of a single photon above
the CPW resonator. (a) The contour maps of magnetic-field strength
versus positions x and z. (b) Vector plot of the magnetic field in
the resonator. (c) Magnetic-field strength along the x direction for
different distances above the resonator surface. (d) Magnetic-field
strength as a function of distance to the resonator surface at the
central conductor (y = 0, 10, 20μm) and at the gap (y = 30μm).

and get B(rn) ≈ B̄0ex, with B̄0 ≈ 3.7 nT, for all defects. So
far, we can rewrite the total Hamiltonian as

Ĥ = ωRâ†â +
∑

n

(ω−|ψ−〉n〈ψ−| + ω+|ψ+〉n〈ψ+|)

+ g(â + â†)
∑

n

(|0〉n〈ψ−| + |0〉n〈ψ+| + H.c.), (3)

where g = gVBμBB̄0 ≈ 2π × 100 Hz is the coupling strength
for a single VB− spin. For the VB− ensemble, an effective
method to generate the VB− spin experimentally is through
neutron irradiation [58], which results in a defect density of
ρ ≈ 5.4 × 1017 cm−3. From this we find the coherent col-
lective coupling strength is G = g

√
N ≈ 2π × 15 MHz, with

N = ρV ≈ 2.16 × 1010 being the number of VB− defects,
which is larger than the resonator decay κ and the spin re-
laxation �φ and thus reaches the strong coupling regime.

IV. ONE-AXIS TWISTING MODEL

We next consider generating entangled states with this
setup. Assuming that the resonator frequency ωR is near
resonance with ω−, the Hamiltonian can be simplified to a
Tavis-Cummings form in the rotating-wave approximation,

Ĥ = ωRâ†â + ω−Ĵz + G√
N

(âĴ† + â†Ĵ ), (4)

where Ĵz = 1
2

∑
n |ψ−〉n〈ψ−| − |0〉n〈0| and Ĵ = ∑

n |0〉n〈ψ−|
are the collective spin operators satisfying the usual angu-
lar momentum commutation relations. In the limit of the
large-detuning condition G �  = ω− − ωR, we obtain an
effective Hamiltonian which describes the nonlinear spin-spin
interaction through a Schrieffer-Wolff transformation [1,75],
ĤS = e−ŜĤeŜ , with Ŝ = g


(Ĵ â† − Ĵ†â). Keeping terms to the

FIG. 3. (a) Spin Husimi Q function in the plane perpendicular
to the mean spin direction n0 with �t/N = 0, �t/N = 0.05, and
�t/N = 0.1. (b) The evolution of the spin squeezing parameter with
N = 10, 20, 100. (c) The optimal squeezing versus the number of
spins with different collective decay rates. The solid line is the nu-
merical fitting, and it gives ξ 2 ∼ N−0.7 in the absence of decoherence.

second order, the effective Hamiltonian is given by

ĤS = ωRâ†â +
(

ω− + 2�

N
â†â

)
Ĵz + �

N
Ĵ†Ĵ, (5)

where � = G2/ is the spin-spin coupling strength. The op-
erator Ĵ†Ĵ can be rewritten as Ĵ2 − Ĵ2

z + Ĵz [1,19]. Because the
total spin Ĵ2 commutes with the Hamiltonian ĤS , the system
evolves within the manifold of J = N/2 if the initial state
is prepared in the maximally polarized state |J = N/2, Jx =
N/2〉. Assuming the thermal phonon number nth ∼ 0, Hamil-
tonian (5) in the interaction picture is written as

ĤS = −�

N
Ĵ2

z , (6)

which corresponds to the one-axis twisting Hamiltonian [18]
and can be used to generate SSS. We define the density opera-
tor ρ̂ to describe the VB− degrees of freedom, and the motion
of ρ̂ is controlled by the following master equation:

˙̂ρ = −i[ĤS, ρ̂] + �

N
D[Ĵ]ρ̂, (7)

where D[ô]ρ̂ = ôρ̂ô† − 1
2 (ô†ôρ̂ + ρ̂ô†ô) and � = κG2/2 is

the collective decay rate induced by the resonator and the spin
relaxation is assumed to be zero.

Spin squeezing means the fluctuation in a certain spin
component is suppressed below the standard quantum
limit [18–20]. In order to visually characterize the spin
squeezing, we introduce Husimi Q function, Q(θ, φ) = (2 j +
1)/(4π )〈θ, φ|ρ̂|θ, φ〉, where |θ, φ〉 = (1 + |η|2)− je−η∗ Ĵ | j, j〉,
with | j, m〉 ( j = N/2 and m = − j, . . . , j) being the eigen-
states of {Ĵ2, Ĵz} and η = −tan(θ/2)e−iφ (θ and φ are
the polar and azimuthal angles) [28,76]. In Fig. 3(a),
we display the projections of the Q function on the
(n1, n2) plane at three different moment for N = 20. Husimi
Q function at the initial time �t/N = 0 is a circle, which
corresponds to the coherent spin state |�0〉 = |J = N/2, Jx =
N/2〉. It gradually becomes squeezed and elliptical as the time
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increases, while the squeezing angle rotates. Eventually, the
optimal squeezing is reached at �t/N = 0.1. In addition, we
also introduce the spin squeezing parameter [5] to quantify the
degree of spin squeezing

ξ 2 = N min
(
Ĵ2

n⊥

)
|〈Ĵ〉|2 , (8)

where n⊥ is an axis perpendicular to the mean spin direc-
tion n0 = Tr(ρ̂Ĵ)/|Tr(ρ̂Ĵ)| [28]. When ξ 2 < 1, the state is
squeezed. The evolution of the squeezing parameter is shown
in Fig. 3(b) for N = 10, 20, 100. As we expect, the time to
reach the optimal squeezing is reduced to topt ∝ 1/N due to
the collective effect. In Fig. 3(c), we plot the optimal squeez-
ing versus the spin number N for different collective decay
rates. The spin squeezing scales as N−0.7 in the absence of
decoherence. With a modest quality factor Q = 103, it still
produces considerable squeezing, which is shown in the or-
ange circle in Fig. 3(c).

V. VALIDITY OF THE HOMOGENEITY ASSUMPTION

In our scheme, we assume that the magnetic field is
uniform in the whole spin ensemble, so we get a homoge-
neous coupling strength. But in fact, the magnetic field is
nonuniform, as shown in Fig. 2. Here, we investigate the influ-
ence of the inhomogeneous coupling caused by the magnetic
field on the squeezing with different thicknesses h. As the
computational complexity increases exponentially with the
spin number, we here investigate a system consisting of six
spins without decoherence, in which the coupling strength
of each spin is given by gn(r) = gVBμBBx(zn). We assume
that these six spins are uniformly distributed between (0, 0, 0)
and (0, 0, h). The dependence of the magnetic-field strength
on coordinate z is shown by the purple inverted triangles in
Fig. 2(d), and the corresponding coupling strength of each
spin can be calculated. Then the Hamiltonian is given by

H =
∑

n

(


2
+ g2

n(zn)


â†â

)
σ̂ z

n +
∑
n,m

gn(zn)gm(zm)


σ̂ †

n σ̂m, (9)

where σ̂ z
n = |ψ−〉n〈ψ−| − |0〉n〈0| is the Pauli operator and

σ̂n = |0〉n〈ψ−| is the single-spin lowering operator. If the as-
sumption of homogeneity is valid in our scheme, we should
see that the squeezing is almost constant at h < 10 µm.

In Fig. 4(a), we display the evolution of the squeez-
ing parameter ξ 2 with three different thicknesses, h =
10, 50, 100 µm. For the small thickness, h = 10 µm, the sys-
tem exhibits significant squeezing. As the thickness increases,
the optimal squeezing is reduced, and the time to reach the
optimal squeezing is extended. To further discuss the im-
pact of thickness on optimal squeezing, we plot the optimal
squeezing versus sample thickness h ranging from 0 to 100 µm
in Fig. 4(b). When the thickness h = 0, these six spins have
the same coupling strength (homogeneous case) and exhibit
the strongest squeezing. When the thickness h is less than
10μm (the blue shading), the influence of thickness on op-
timal squeezing is so slight that the change in the numerical
value is almost invisible, which verifies that the previous
assumption of homogeneous coupling in our setup is valid.
When the thickness h is greater than 10 µm (the yellow shad-

h (µm)

FIG. 4. (a) Evolution of the spin squeezing parameter with three
different thicknesses, h = 10, 50, 100 µm, for spin number N = 6
without decoherence. g0 = g(0) is the spin-photon coupling strength
of the spin at position (0, 0, 0). (b) The optimal squeezing parameter
versus the thickness. The black dashed line, corresponding to h =
10 µm, separates the blue shading (corresponding to VB− spins in
our setup) from the yellow shading.

ing), the optimal squeezing shows a strong dependence on the
thickness h, and the squeezing degree decreases rapidly.

VI. FEASIBILITY

In order to examine the feasibility of this scheme in ex-
periment, we now discuss the relevant parameters. A static
external magnetic field Be = 10 mT is applied to the VB−

spin, resulting in the spin frequency ω− ≈ 2π × 3.2 GHz of
state |ψ−〉. The frequency of the CPW resonator is given by
ωR = πc/l

√
εeff ≈ 2π × 3.05 GHz. The detuning between

the spin and the CPW resonator is  = ω− − ωR ≈ 2π ×
150 MHz, which is larger than the collective coupling strength
G = 2π × 15 MHz and satisfies the large-detuning limit. The
spin dephasing rate is �φ = 1/T2 ∼ 2π × 80 kHz, and the res-
onator decay rate is κ = ωR/Q. Even under a modest quality
factor Q = 103, the cooperativity C = g2/κ�φ is still greater
than 1, indicating a strong coupling regime. After a series of
transformations and approximations, we get the effective spin-
spin coupling strength � = G2/ = 2π × 1.5 MHz and the
collective decay � = κG2/2 ∼ 0.02� of the spin ensemble
induced by the CPW resonator. Even stronger dissipation
� causes only a slight reduction in squeezing, as shown in
Fig. 3(c). The only problem may be spin decoherence. A
large number of nuclear spins around the defect introduce
an equivalent random local magnetic field, also known as
the Overhauser field, resulting in an extremely short spin
dephasing time T ∗

2 ≈ 100 ns [53,54]. However, dynamical de-
coupling can eliminate this effect [77], and the spin coherence
time T2 ≈ 2 µs [54,66] has been measured experimentally. The
optimal time topt ∼ 2/� ≈ 0.21 µs of spin squeezing is less
than the spin coherence time T2, so we predict that we can get
reduced squeezing. Research on extending the VB− coherence
time, such as applying an enhanced magnetic field [78], is in
progress.

VII. CONCLUSION

Through a theoretical study of the magnetic coupling be-
tween the VB− spins and CPW resonator, we first estimated
that its coherent coupling strength at a single quantum level
is g/2π ∼ 100 Hz and therefore achieved pin-photon interac-
tions with the collective and strong coupling strength G/2π ∼
15 MHz. In one potential application of this hybrid design,
these collective spins can be engineered into the SSS. h-BN
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can be very thin down to atomic layer thickness, ensuring it is
close to the superconducting resonator and therefore guaran-
teeing homogeneous coupling. As a result, we get strong spin
squeezing, which shows the potential of VB− in the applica-
tion of quantum metrology and quantum sensing. The high
density of VB− spins was produced in a recent experiment by
means of neutron irradiation, which allowed us to achieve a
stronger collective coupling to the microwave photons. There-
fore, it is necessary and meaningful for us to study such a
hybrid system, and we also note that this attempt could also
open an avenue for others feasible schemes for VB− spins
coupled to other quantum systems.
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APPENDIX A: MODELING OF N VB− SPINS
COUPLED TO A RESONATOR

As described in the main text, a h-BN flake containing an
ensemble of VB− defects is stuck on a superconducting CPW
resonator. The total Hamiltonian for this system contains three
parts, which can be represented by

Ĥ = ĤVB + ĤR + Ĥint. (A1)

The first part is the Hamiltonian of the VB− ensemble; the
second part is the Hamiltonian of the CPW resonator, and
the last part is the coupling between the VB− ensemble and
the resonator. We provide a detailed discussion of these three
parts in the following.

1. Electronic structure of the VB− defect

The negatively charged VB− defect is formed by a missing
boron atom replaced by an extra electron and three surround-
ing equivalent nitrogen atoms in the h-BN lattice. It can be
experimentally generated by means of neutron irradiation,
ion implantation, and electron irradiation. The electrons of
VB− spin occupy the defect states, so that the dangling bond
state becomes half occupied and gives rise to a spin-1 ground
state [52,54]. The Hamiltonian describing the spin-spin inter-
action of the VB− defect can be represented as

ĤVB = D
[
Ŝ2

z − S(S + 1)/3
] + E

(
Ŝ2

x − Ŝ2
y

) + gVBμBBeŜz,

(A2)

where D and E are the zero-field splitting parameters due
to spin-spin interaction and residual strain in the crystal, re-
spectively. Ŝ = (Ŝx, Ŝy, Ŝz ) are the total spin S = 1 operators
of the VB− defect. The last term is the Zeeman splitting,
and we have assumed the external magnetic field Be = Beez,

which is parallel to the c axis of the h-BN lattice. gVB = 2
and μB/h = 14 MHz/mT are the Landé factor and Bohr
magneton, respectively. In the basis of eigenstates of Ŝz, the
Hamiltonian ĤVB in Eq. (A2) can be written in the following
matrix form:

ĤVB =

⎡
⎢⎣

D + gVBμBBe 0 E

0 0 0

E 0 D − gVBμBBe

⎤
⎥⎦. (A3)

Diagonalizing Eq. (A3), we can obtain the eigenstates

|ψ0〉 = |0〉,
|ψ−〉 = sin

θ

2
|+1〉 − cos

θ

2
|−1〉,

|ψ+〉 = cos
θ

2
|+1〉 + sin

θ

2
|−1〉, (A4)

where tan θ = E
gVBμBBe

and the corresponding eigenfrequen-
cies are

ω0 = 0, ω± = D ±
√

E2 + (gVBμBBe)2. (A5)

Then we have the Hamiltonian (1) in the main text.

2. Magnetic-dipolar interaction

The resonator used in our setup is a half-wavelength
(λ/2) transmission line resonator based on a superconducting
coplanar waveguide. A CPW resonator consists of a center
conductor with width W and two neighboring ground planes
with width G; the gap width between the center conductor
and the ground plane is represented by S. The characteristic
impedance Z0 of the CPW resonator depends on the ratio
of W/S, which is designed so that the resonator has a min-
imal radiation loss with ∼50 � impedance. The resonator
frequency ωm is related to the resonator length l , which is
calculated by the equation ωm = mπc/l

√
εeff, where c is the

vacuum speed of light and εeff = 5.5 is the effective dielectric
constant. The coplanar waveguide problem is reduced to a
rectangular waveguide problem by inserting electric walls at
y = −l/2 and y = l/2 and a magnetic wall at x = b. The
classical magnetic-field components B0(r) = μ0H(r) can be
calculated by

Hx = ε0

η

λ0

λ

∑
n>0

1

Fn

[
sin nπδ/2

nπδ/2
sin

nπδ̄

2

]

× cos
nπx

b
e−γn|z| cos

mπy

l
,

Hy = −i
ε0

η

(
λ0

λ

)2 2b

λ0

∑
n>0

1 − (λ/λ0)2

nFn

[
sin nπδ/2

nπδ/2
sin

nπδ̄

2

]

× sin
nπx

b
e−γn|z| cos

mπy

l
,

Hz = ε0

η

λ0

λ

∑
n>0

[
sin nπδ/2

nπδ/2
sin

nπδ̄

2

]

× cos
nπx

b
e−γn|z| cos

mπy

l
, (A6)
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where ε0 = √
h̄ωR/ε0Vc, δ = S/b, δ̄ = (S + w)/b, η =

377 �, and Fn = (bγn/nπ ) =
√

1 + (2b/nλ)2[(λ0/λ)2 − 1]
[79–81]. Here, we choose the resonator length l = 2.1 cm,
which corresponds to a fundamental frequency of
∼2π × 3.05 GHz to ensure the resonance condition. λ = 2l
is the cavity wavelength, and λ0 is the free space wavelength,
expressed as λ0 = λ

√
εeff.

Following the standard procedure for quantizing the elec-
tromagnetic fields, we obtain the quantized form of the
single-mode magnetic-field operator for the CPW cavity:

B̂(r, t ) = B(r)(âe−iωRt + â†eiωRt ), (A7)

where B(r) = μ0(Hx, Hy, Hz ). The CPW Hamiltonian and
magnetic-dipolar interaction are written as

ĤR = ωRâ†â, (A8)

Ĥint = gVBμBB̂(rn) · Ŝn, (A9)

where n labels the VB− spin located at positions rn =
(xn, yn, zn) and Ŝn = (Ŝn

x , Ŝn
y , Ŝn

z ) are spin operators. The
magnetic-field operator in the position of the VB− can be
written as B̂(r) = B0(r)(â + â†). The longitudinal component
By can be ignored since it is always small. In Fig. 2 in the
main text, we showed the transverse magnetic field of a single
photon in the cross section of the coplanar waveguide. From
the vector plot, the magnetic field can be considered to be
parallel to the x axis in the range of the spin ensemble. We
find that the magnetic field in this region can be regarded as a
uniform magnetic field with B0(r) ∼ B̄0ex, so the interaction
Hamiltonian is reduced to

Ĥint = g(â + â†)Ŝx, (A10)

where g = gVBμBB̄0 is single-spin coupling strength. In the
basis of new eigenvectors {|0〉, |ψ±〉}, the total Hamiltonian
of the whole spin ensemble has the form

Ĥ = ωRâ†â +
∑

n

Ĥ (n)
VB

+
∑

n,α=±
gn(â + â†)(|0〉n〈ψα| + |ψα〉n〈0|). (A11)

APPENDIX B: ONE-AXIS TWISTING HAMILTONIAN

Assuming that the resonator frequency ωR is near res-
onance with ω− and the state |ψ+〉 is off resonance, the
coupling is homogeneous, i.e., gn = g. In this case, we can
introduce the collective spin operator, and the total Hamilto-
nian in Eq. (A11) can be reduced to the following form in the
rotating-wave approximation:

Ĥ = ωRâ†â + ω−Ĵz + G√
N

(âĴ† + â†Ĵ ), (B1)

where Ĵz = 1
2

∑
n |ψ−〉n〈ψ−| − |0〉n〈0| and Ĵ = ∑

n |0〉n〈ψ−|
are the collective spin operators satisfying the usual angular
momentum commutation relations. Considering the resonator
dissipation, the dynamics of total system is described by

˙̂ρtot = −i[Ĥ, ρ̂tot] + (nth + 1)γD[â]ρ̂tot

+ nthγD[â†]ρ̂tot, (B2)

where D[ô]ρ̂ = ôρ̂ô† − 1
2 ô†ôρ̂ − 1

2 ρ̂ô†ô is the Lindblad super-
operator, nth = (ekT/h̄ωR − 1)−1 is the thermal photon number,
and γ is the CPW resonator decay rate. The Hamiltonian in
Eq. (B1) can be used to model the interaction between a two-
level atom ensemble and a single-mode field. Next, we will
derive the effective one-axis twisting Lipkin-Meshkov-Glick
(LMG) model under the large-detuning condition G �  =
ω− − ωR. Although discussions similar to what we present
here were given in several articles [1,19], we give a de-
tailed derivation to acquire a better understanding. In order
to simplify the derivation processes, we rewrite Eq. (B1) in
the form of Ĥ = Ĥ0 + ĤI , where Ĥ0 = ωRâ†â + ω−Ĵz is the
free Hamiltonian and ĤI = G√

N
(âĴ† + â†Ĵ ) is the interaction

Hamiltonian. Applying the Schrieffer-Wolff transformation,
Ĥ → ĤS = eŜĤe−Ŝ , where Ŝ has the same order as the in-
teraction term. Expanding the transformation to second order
of Ŝ,

ĤS = Ĥ + [Ĥ, Ŝ] + 1
2 [[Ĥ , Ŝ], Ŝ]

= Ĥ0 + ĤI + [Ĥ0 + ĤI , Ŝ] + 1
2 [[Ĥ0 + ĤI , Ŝ], Ŝ]

= Ĥ0 + (ĤI + [Ĥ0, Ŝ]) + [ĤI , Ŝ] + 1
2 [[Ĥ0 + ĤI , Ŝ], Ŝ]

= Ĥ0 + (ĤI + [Ĥ0, Ŝ])

+ 1
2 [ĤI , Ŝ] + 1

2 [(ĤI + [Ĥ0, Ŝ]), Ŝ]. (B3)

Here, we have neglected the higher-order interactions. Letting
ĤI + [Ĥ0, Ŝ] = 0, we can obtain the expression

Ŝ = g


(Ĵ â† − Ĵ†â) (B4)

and the final form of the effective total Hamiltonian of Eq. (5)
in the main text

ĤS = ωRâ†â +
(

ω− + 2
�

N
â†â

)
Ĵz + �

N
Ĵ†Ĵ, (B5)

where we have used the commutation relations [Ĵ+, Ĵ−] =
2Ĵz, [Ĵz, Ĵ+] = Ĵ+. and [Ĵz, Ĵ−] = −Ĵ− and � = G2/ is the
spin-spin coupling strength. Because the total spin Ĵ2 com-
mutes with the Hamiltonian ĤS , the system evolves within
the manifold of J = N/2 if the initial state is prepared in
the maximally polarized state |J = N/2, Jx = N/2〉. Assum-
ing the thermal phonon number nth ∼ 0, Hamiltonian (B5) in
the interaction picture is written as

ĤS = −�

N
Ĵ2

z , (B6)

which corresponds to the one-axis twisting LMG model and
can be used to generate spin-squeezed states. In order to dis-
cuss the dissipation dynamics of the spin degrees of freedom,
we introduce the reduced density operator ρ̂. The evolution of
ρ̂ is governed by the Born-Markov master equation. Applying
the transformation to the master equation and tracing the res-
onator mode, the dynamics of the reduced density operator ρ̂

for spin is described by

˙̂ρ = −i[ĤS, ρ̂] + (nth + 1)
�

N
D[Ĵ]ρ̂ + nth

�

N
D[Ĵ†]ρ̂, (B7)

where � = γ G2/2.
In the case of inhomogeneous coupling, the Schrieffer-

Wolff transform is still valid, with Ŝ = ∑
n

gn


(σ̂nâ† − σ̂ †

n â).
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Then we can get the effective Hamiltonian

ĤS =
∑

n

(


2
+ g2

n


â†â

)
σ̂ z

n +
∑
n,m

gngm


σ̂ †

n σ̂m, (B8)

where σ̂ z
n = |ψ−〉n〈ψ−| − |0〉n〈0| is the Pauli operator and

σ̂n = |0〉n〈ψ−| is the single-spin lowering operator. The cor-
responding master equation is

˙̂ρ = − i[ĤS, ρ̂] + (nth + 1)
�

N
D

[∑
n

gn


σ̂n

]
ρ̂

+ nth
�

N
D

[∑
n

gn


σ̂ †

n

]
ρ̂. (B9)

APPENDIX C: THE VALIDITY OF THE
EFFECTIVE HAMILTONIAN

To verify that the effective Hamiltonian and master equa-
tion are valid, we compare the results of the original
Hamiltonian (B1) (black solid line) and the effective Hamil-
tonian (B6) (red dashed line) in Fig. 5(a). These two curves

FIG. 5. (a) Evolution of the spin squeezing parameter and photon
number. Other parameters are /g = 20, γ /g = 2, and N = 10.
(b) Evolution of the spin squeezing parameter with different thermal
photon numbers nth = 0, 2, 10. Other parameters are �/� = 0.05
and N = 50.

fit very well, which means the approximation is valid in our
scheme. In addition, the blue dotted line indicates that the pho-
ton number is always very small with the chosen parameters.
On the other hand, we discuss only the case in which the mean
thermal photon number is zero in the main text. Here, we also
show the dynamics where the thermal photon number is not
zero. The existence of the thermal photon number leads to a
reduced degree of squeezing and time for optimal squeezing.
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tation of Cavity Squeezing of a Collective Atomic Spin, Phys.
Rev. Lett. 104, 073602 (2010).

[41] A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, Spin
Squeezing and Light Entanglement in Coherent Population
Trapping, Phys. Rev. Lett. 97, 023605 (2006).

[42] L. K. Thomsen, S. Mancini, and H. M. Wiseman, Spin squeez-
ing via quantum feedback, Phys. Rev. A 65, 061801(R) (2002).

[43] F. Libbi, Pedro Miguel M. C. de Melo, Z. Zanolli, M. J.
Verstraete, and N. Marzari, Phonon-Assisted Luminescence in
Defect Centers from Many-Body Perturbation Theory, Phys.
Rev. Lett. 128, 167401 (2022).

[44] A. Zobelli, C. P. Ewels, A. Gloter, and G. Seifert, Vacancy
migration in hexagonal boron nitride, Phys. Rev. B 75, 094104
(2007).

[45] L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and
C. G. Van de Walle, Native point defects and impurities in
hexagonal boron nitride, Phys. Rev. B 97, 214104 (2018).

[46] M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, Color centers
in hexagonal boron nitride monolayers: A group theory and ab
initio analysis, ACS Photonics 5, 1967 (2018).

[47] P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. H. Chong, and
I. J. Luxmoore, Optical gating of photoluminescence from color
centers in hexagonal boron nitride, Nano Lett. 20, 4256 (2020).

[48] X. Gao, S. Pandey, M. Kianinia, J. Ahn, P. Ju, I. Aharonovich,
N. Shivaram, and T. Li, Femtosecond laser writing of spin
defects in hexagonal boron nitride, ACS Photonics 8, 994
(2021).

[49] M. E. Turiansky, A. Alkauskas, and C. G. Van de Walle, Spin-
ning up quantum defects in 2D materials, Nat. Mater. 19, 487
(2020).

[50] S. Baber, R. N. E. Malein, P. Khatri, P. S. Keatley, S. Guo,
F. Withers, A. J. Ramsay, and I. J. Luxmoore, Excited state
spectroscopy of boron vacancy defects in hexagonal boron
nitride using time-resolved optically detected magnetic reso-
nance, Nano Lett. 22, 461 (2022).

[51] N. Mendelson, R. Ritika, M. Kianinia, J. Scott, S. Kim,
J. E. Fröch, C. Gazzana, M. Westerhausen, L. Xiao, S. S.
Mohajerani, S. Strauf, M. Toth, I. Aharonovich, and Z.-Q. Xu,
Coupling spin defects in a layered material to nanoscale plas-
monic cavities, Adv. Mater. 34, 2106046 (2022).

[52] V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö.
Legeza, and A. Gali, Ab initio theory of the negatively charged
boron vacancy qubit in hexagonal boron nitride, npj Comput.
Mater. 6, 41 (2020).

[53] A. Haykal, R. Tanos, N. Minotto, A. Durand, F. Fabre, J. Li,
J. H. Edgar, V. Ivády, A. Gali, T. Michel, A. Dréau, B. Gil, G.
Cassabois, and V. Jacques, Decoherence of v−

b spin defects in
monoisotopic hexagonal boron nitride, Nat. Commun. 13, 4347
(2022).

[54] A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, A. Sperlich, M.
Kianinia, C. Bradac, I. Aharonovich, and V. Dyakonov, Room
temperature coherent control of spin defects in hexagonal boron
nitride, Sci. Adv. 7, eabf3630 (2021).

[55] W. Liu, Z.-P. Li, Y.-Z. Yang, S. Yu, Y. Meng, Z.-A. Wang, Z.-C.
Li, N.-J. Guo, F.-F. Yan, Q. Li, J.-F. Wang, J.-S. Xu, Y.-T. Wang,
J.-S. Tang, C.-F. Li, and G.-C. Guo, Temperature-dependent
energy-level shifts of spin defects in hexagonal boron nitride,
ACS Photonics 8, 1889 (2021).

[56] N. Chejanovsky, A. Mukherjee, J. Geng, Y.-C. Chen, Y. Kim,
A. Denisenko, A. Finkler, T. Taniguchi, K. Watanabe, D. B. R.
Dasari, P. Auburger, A. Gali, J. H. Smet, and J. Wrachtrup,

195425-8

https://doi.org/10.1103/PhysRevLett.121.070403
https://doi.org/10.1103/PhysRevLett.125.203601
https://doi.org/10.1103/PhysRevA.57.548
https://doi.org/10.1103/PhysRevLett.110.120402
https://doi.org/10.1103/PhysRevLett.127.083602
https://doi.org/10.1103/PhysRevX.12.011015
https://doi.org/10.1103/PhysRevLett.96.053602
https://doi.org/10.1103/PhysRevA.103.013709
https://doi.org/10.1103/PhysRevLett.110.080502
https://doi.org/10.1103/PhysRevB.94.205118
https://doi.org/10.1515/nanoph-2020-0513
https://doi.org/10.1103/PhysRevA.80.032311
https://doi.org/10.1103/PhysRevB.53.13441
https://doi.org/10.1103/PhysRevB.93.081203
https://doi.org/10.1103/PhysRevLett.112.036405
https://doi.org/10.1103/PhysRevB.89.235101
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevLett.97.023605
https://doi.org/10.1103/PhysRevA.65.061801
https://doi.org/10.1103/PhysRevLett.128.167401
https://doi.org/10.1103/PhysRevB.75.094104
https://doi.org/10.1103/PhysRevB.97.214104
https://doi.org/10.1021/acsphotonics.7b01442
https://doi.org/10.1021/acs.nanolett.0c00751
https://doi.org/10.1021/acsphotonics.0c01847
https://doi.org/10.1038/s41563-020-0668-x
https://doi.org/10.1021/acs.nanolett.1c04366
https://doi.org/10.1002/adma.202106046
https://doi.org/10.1038/s41524-020-0305-x
https://doi.org/10.1038/s41467-022-31743-0
https://doi.org/10.1126/sciadv.abf3630
https://doi.org/10.1021/acsphotonics.1c00320


PURE SPIN SQUEEZING OF h-BN SPINS COUPLED … PHYSICAL REVIEW B 107, 195425 (2023)

Single-spin resonance in a van der Waals embedded paramag-
netic defect, Nat. Mater. 20, 1079 (2021).

[57] F. F. Murzakhanov, G. V. Mamin, S. B. Orlinskii, U. Gerstmann,
W. G. Schmidt, T. Biktagirov, I. Aharonovich, A. Gottscholl,
A. Sperlich, V. Dyakonov, and V. A. Soltamov, Electron–
nuclear coherent coupling and nuclear spin readout through
optically polarized V−

B spin states in hBn, Nano Lett. 22, 2718
(2022).

[58] A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G.
Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich,
M. Toth, I. Aharonovich, and V. Dyakonov, Initialization and
read-out of intrinsic spin defects in a van der Waals crystal at
room temperature, Nat. Mater. 19, 540 (2020).

[59] F. F. Murzakhanov, B. V. Yavkin, G. V. Mamin, S. B. Orlinskii,
I. E. Mumdzhi, I. N. Gracheva, B. F. Gabbasov, A. N. Smirnov,
V. Y. Davydov, and V. A. Soltamov, Creation of negatively
charged boron vacancies in hexagonal boron nitride crys-
tal by electron irradiation and mechanism of inhomogeneous
broadening of boron vacancy-related spin resonance lines,
Nanomaterials 11, 1373 (2021).

[60] M. Kianinia, S. White, J. E. Fröch, C. Bradac, and I.
Aharonovich, Generation of spin defects in hexagonal boron
nitride, ACS Photonics 7, 2147 (2020).

[61] N.-J. Guo, W. Liu, Z.-P. Li, Y.-Z. Yang, S. Yu, Y. Meng, Z.-A.
Wang, X.-D. Zeng, F.-F. Yan, Q. Li, J.-F. Wang, J.-S. Xu, Y.-T.
Wang, J.-S. Tang, C.-F. Li, and G.-C. Guo, Generation of spin
defects by ion implantation in hexagonal boron nitride, ACS
Omega 7, 1733 (2022).

[62] T. Yang, N. Mendelson, C. Li, A. Gottscholl, J. Scott, M.
Kianinia, V. Dyakonov, M. Toth, and I. Aharonovich, Spin de-
fects in hexagonal boron nitride for strain sensing on nanopillar
arrays, Nanoscale 14, 5239 (2022).

[63] A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße,
A. Sperlich, M. Kianinia, C. Bradac, I. Aharonovich, and V.
Dyakonov, Spin defects in hBn as promising temperature, pres-
sure and magnetic field quantum sensors, Nat. Commun. 12,
4480 (2021).

[64] P. Kumar, F. Fabre, A. Durand, T. Clua-Provost, J. Li, J. H.
Edgar, N. Rougemaille, J. Coraux, X. Marie, P. Renucci, C.
Robert, I. Robert-Philip, B. Gil, G. Cassabois, A. Finco, and
V. Jacques, Magnetic Imaging with Spin Defects in Hexagonal
Boron Nitride, Phys. Rev. Appl. 18, L061002 (2022).

[65] L. Gan, D. Zhang, R. Zhang, Q. Zhang, H. Sun, Y. Li, and
C.-Z. Ning, Large-scale, high-yield laser fabrication of bright
and pure single-photon emitters at room temperature in hexag-
onal boron nitride, ACS Nano 16, 14254 (2022).

[66] X. Gao, B. Jiang, A. E. Llacsahuanga Allcca, K. Shen, M. A.
Sadi, A. B. Solanki, P. Ju, Z. Xu, P. Upadhyaya, Y. P. Chen, S. A.
Bhave, and T. Li, High-contrast plasmonic-enhanced shallow
spin defects in hexagonal boron nitride for quantum sensing,
Nano Lett. 21, 7708 (2021).

[67] D. Curie, J. T. Krogel, L. Cavar, A. Solanki, P. Upadhyaya, T.
Li, Y.-Y. Pai, M. Chilcote, V. Iyer, A. Puretzky, I. Ivanov, M.-H.
Du, F. Reboredo, and B. Lawrie, Correlative nanoscale imaging
of strained hBn spin defects, ACS Appl. Mater. Interfaces 14,
41361 (2022).

[68] J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and J.
Schmiedmayer, Strong Magnetic Coupling of an Ultracold Gas
to a Superconducting Waveguide Cavity, Phys. Rev. Lett. 103,
043603 (2009).

[69] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum
circuits: Superconducting circuits interacting with other quan-
tum systems, Rev. Mod. Phys. 85, 623 (2013).

[70] S. Cohn, Slot-line field components (correspondence), IEEE
Trans. Microwave Theory Tech. 20, 172 (1972).

[71] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup,
M. F. Barthe, P. Bergonzo, and D. Esteve, Strong Coupling of
a Spin Ensemble to a Superconducting Resonator, Phys. Rev.
Lett. 105, 140502 (2010).

[72] P. Rabl, P. Cappellaro, M. V. Gurudev Dutt, L. Jiang, J. R.
Maze, and M. D. Lukin, Strong magnetic coupling between an
electronic spin qubit and a mechanical resonator, Phys. Rev. B
79, 041302(R) (2009).

[73] P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao,
and F.-L. Li, Hybrid Quantum Device Based on NV Centers
in Diamond Nanomechanical Resonators Plus Superconducting
Waveguide Cavities, Phys. Rev. Appl. 4, 044003 (2015).

[74] D. Bothner, D. Wiedmaier, B. Ferdinand, R. Kleiner, and
D. Koelle, Improving Superconducting Resonators in Mag-
netic Fields by Reduced Field Focussing and Engineered Flux
Screening, Phys. Rev. Appl. 8, 034025 (2017).

[75] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson
and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966).

[76] W. Song, W. Yang, J. An, and M. Feng, Dissipation-assisted
spin squeezing of nitrogen-vacancy centers coupled to a rect-
angular hollow metallic waveguide, Opt. Express 25, 19226
(2017).

[77] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Pre-
serving electron spin coherence in solids by optimal dynamical
decoupling, Nature (London) 461, 1265 (2009).

[78] W. Liu et al., Coherent dynamics of multi-spin V−
B center in

hexagonal boron nitride, Nat. Commun. 13, 5713 (2022).
[79] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and

R. J. Schoelkopf, Cavity quantum electrodynamics for su-
perconducting electrical circuits: An architecture for quantum
computation, Phys. Rev. A 69, 062320 (2004).

[80] B. Yurke and J. S. Denker, Quantum network theory, Phys. Rev.
A 29, 1419 (1984).

[81] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Dy-
namical Casimir effect in superconducting microwave circuits,
Phys. Rev. A 82, 052509 (2010).

195425-9

https://doi.org/10.1038/s41563-021-00979-4
https://doi.org/10.1021/acs.nanolett.1c04610
https://doi.org/10.1038/s41563-020-0619-6
https://doi.org/10.3390/nano11061373
https://doi.org/10.1021/acsphotonics.0c00614
https://doi.org/10.1021/acsomega.1c04564
https://doi.org/10.1039/D1NR07919K
https://doi.org/10.1038/s41467-021-24725-1
https://doi.org/10.1103/PhysRevApplied.18.L061002
https://doi.org/10.1021/acsnano.2c04386
https://doi.org/10.1021/acs.nanolett.1c02495
https://doi.org/10.1021/acsami.2c11886
https://doi.org/10.1103/PhysRevLett.103.043603
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1109/TMTT.1972.1127701
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevB.79.041302
https://doi.org/10.1103/PhysRevApplied.4.044003
https://doi.org/10.1103/PhysRevApplied.8.034025
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1364/OE.25.019226
https://doi.org/10.1038/nature08470
https://doi.org/10.1038/s41467-022-33399-2
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.29.1419
https://doi.org/10.1103/PhysRevA.82.052509

