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Stark effect in nonhydrogenic low-dimensional excitons
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Excitons in two dimensions and other low-dimensional semiconductors are known to deviate from simple
Wannier model descriptions due to nonlocal dielectric screening. As a consequence, energy levels do not
follow a simple hydrogenic Rydberg series. Recently, a Kratzer model including a repulsive core potential
has been suggested as an analytically solvable model of nonhydrogenic excitons. We adopt this model to
describe both static and dynamic Stark effects in low-dimensional semiconductors. An exact formula for the
exciton polarizability valid for arbitrary dimension and core potential is obtained. Moreover, analytical oscillator
strengths allow for analyses of the dynamic Stark effect in various dimensions and materials.
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I. INTRODUCTION

Excitons in low-dimensional semiconductors are a subject
of immense interest. They dominate the linear and nonlin-
ear optical response and play crucial roles in light emitting
devices and photovoltaics [1–3]. Models of excitons span
from highly accurate ab initio Bethe-Salpeter equations [4–6]
to simplified Wannier descriptions [1–3,7–9]. The former is
rather computationally demanding and struggles to incorpo-
rate semi-infinite substrates [6] unless screening is introduced
via macroscopic dielectric constants [10,11]. In contrast, the
latter is exceedingly simple and reduces to a hydrogen atom
model if appropriately scaled units are adopted. Thus, in strict
two- and three-dimensional cases, analytical eigenstates can
be found [1,2]. In fact, using an abstract extension to D-
dimensional space, analytical eigenstates exist for arbitrary
dimensions [12–15]. In turn, this allows for analytical models
of optical properties and polarizabilities of D-dimensional
Wannier excitons [15–17].

The disadvantage of the analytical Wannier model is
clearly its limited applicability to actual excitonic states. Thus,
while some three-dimensional systems are very accurately
described, clear deviations from the Rydberg energy series
of hydrogenic models have been found in other three- and,
in particular, two-dimensional materials [18–20]. A major
ingredient absent in hydrogenic models is position-dependent
screening. In fact, Coulomb interactions in freely suspended
two-dimensional semiconductors are unscreened at long dis-
tances because field lines predominantly permeate through
empty space rather than polarizable media. This manifests it-
self as a position-dependent (nonlocal) dielectric response and
the simple r−1 interaction is replaced by the Rytova-Keldysh
potential [21,22] that has a much weaker (i.e., logarithmic)
divergence as r → 0. Unfortunately, this model does not allow
for analytical solutions and purely numerical or variational
approaches are required [23–29].
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Recently, Molas et al. [30] proposed a highly appealing
alternative to the Rytova-Keldysh potential. They suggested
replacing the bare Coulomb potential by a Kratzer form
−r−1 + Cr−2, where C is a positive constant. The repulsive
core potential Cr−2 effectively captures the reduced binding
at small electron-hole distances and was found to provide
good agreement with measured exciton energies in vari-
ous transition-metal dichalcogenides. Importantly, analytical
eigenstates can readily be obtained in the Kratzer model. This
opens a possibility of analyzing a wide range of perturbative
properties of excitons such as the response to electric and
magnetic fields analytically.

The response of low-dimensional excitons to electrostatic
fields has been widely used to characterize and manipulate
the states [31–33]. In the weak-field limit, the perturbation
is captured by the exciton polarizability that is a sensitive
measure of binding energy. Thus, highly screened exci-
tons are easily polarized resulting in a huge enhancement
of the polarizability. In stronger fields, excitons may even
dissociate into free electrons and holes before recombining
[26]. The lack of analytical solutions in the Rytova-Keldysh
model has meant that previous studies of static and dy-
namic polarizabilities have all been purely numerical [23–28].
While highly accurate, such calculations are computationally
demanding and simple physical insight, such as parameter
dependence, can be hard to extract. In the present work, we
analyze the weak-field Stark problem for low-dimensional
nonhydrogenic excitons described by the Kratzer potential.
We profit greatly from the analytical eigenstates and demon-
strate that analytical electric dipole polarizabilities can be
computed for arbitrary values of the repulsive core. Moreover,
our results are not restricted to two dimensions but apply to
any dimension D � 2, even noninteger ones. We also com-
pute bound-bound and bound-continuum oscillator strengths
allowing for accurate dynamical polarizabilities. We restrict
our analysis to static and dynamic polarizabilities of excitons
in the 1s ground state since these are normally of greatest ex-
perimental relevance. However, the developed approach could
be applied to excited states as well.
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II. SCREENED D-DIMENSIONAL EXCITONS

We consider excitons in a D-dimensional semiconductor
with background dielectric screening through a dielectric con-
stant ε. Thus, in three dimensions, ε represents the screening
of the semiconductor itself, while in two dimensions, ε is the
average of dielectric constants above and below the sheet.
Throughout, we use “exciton” units, which generalize atomic
units to problems with dielectric constant ε and reduced
mass memh/(me + mh) ≡ μm0, where me/h are effective elec-
tron/hole masses and m0 is the free electron mass. Thus, we
measure distances and energies in units of effective Bohr radii
a∗

0 = (ε/μ)a0 and effective hartrees Ha∗ = μ/ε2Ha, where a0

and Ha are the usual atomic quantities. Also, polarizabilities
are given in units of 4πε0a3

0ε
4/μ2. In physical units, the

Kratzer potential suggested by Molas et al. [30] is

V (r) = − e2

4πεε0

(
1

r
− g2r0

εr2

)
. (1)

Here, r0 is the screening length of the two-dimensional
(2D) semiconductor and g ≈ 0.21 is an empirical parameter
adjusted to fit the Keldysh potential. In exciton units, the
potential can be written

V (r) = −1

r
+ β2

2r2
. (2)

The important factor β2 = 2μg2r0/(ε2a0) governs the
strength of the repulsive core and the potential minimum is
located at r = β2. Numerically, taking MoS2 (μ = 0.28 and
r0 = 44.3 Å) and WSe2 (μ = 0.23 and r0 = 46.2 Å) parame-
ters [34], we find βMoS2 ≈ 2.72/ε and βWSe2 ≈ 2.78/ε. Since
typical dielectric constants are in the range 1 � ε � 10, we
see that relevant values of β are of order unity. As an alterna-
tive to fitting the potential, β can be determined by requiring
a match to the 1s exciton binding energy. In the Keldysh
model, a highly accurate fit is E1s ≈ −2/(1 + ar̃ p

0 ), where
a ≈ 2.64, p ≈ 0.712, and r̃0 = μr0/ε

2 is an effective screen-
ing length [24]. As we show below, in the two-dimensional
Kratzer model E1s = −2/(1 + 2β )2 and, hence, matching
means β ≈ 1

2 [(1 + ar̃ p
0 )1/2 − 1]. In fact, we find that Kratzer

and Keldysh models are in significantly better agreement if
this last fixing of β is adopted. Hence, in the numerical re-
sults below, we take βMoS2 ≈ 1

2 [(1 + 25.0/ε2p)1/2 − 1] and
βWSe2 ≈ 1

2 [(1 + 22.4/ε2p)1/2 − 1]. In Fig. 1, the Kratzer po-
tential is sketched including the tilt inflicted by a static electric
field in the Stark problem.

In a general “central” potential, the D-dimensional Hamil-
tonian is [10–15]

H0 = −1

2

d2

dr2
− D − 1

2r

d

dr
+ l̂2

2r2
+ V (r). (3)

Here, l̂2 is the square of the angular momentum with eigen-
states �l (θ ) obeying l̂2�l (θ ) = l (l + D−2)�l (θ ) with l
integer and θ the polar angle. We first discuss the unperturbed
s and p states with l = 0 and 1, respectively, since these are
involved in the ground state Stark problem. To this end, we
introduce the exponents γ = 1 +

√
β2 + (D/2−1)2 and λ =√

β2 + (D/2)2 as well as wave numbers k(s)
n = 2/(2n−3 +

2γ ) and k(p)
n = 2/(2n−3 + 2λ), where n is an integer starting

FIG. 1. Kratzer potential taking β = 1 in the absence and pres-
ence of an electric field E .

at n = 1 and n = 2 for s and p states, respectively. These wave
numbers determine energies Ens/p = −(k(s/p)

n )2/2 as well as
radial eigenstates [35]

Rns(r) = (
2k(s)

n

)γ+1/2
e−k(s)

n rrγ−D/2

√
(n − 1)!

4	(n − 2 + 2γ )

× L2γ−2
n−1

(
2k(s)

n r
)
, (4)

and

Rnp(r) = (
2k(p)

n

)λ+3/2
e−k(p)

n rrλ+1−D/2

√
(n − 2)!

4	(n − 1 + 2λ)

× L2λ
n−2

(
2k(p)

n r
)
. (5)

These functions are normalized according to the D-
dimensional radial measure rD−1dr. An immediate appli-
cation of these analytic expressions is a simple result for
the mean square radius 〈r2〉ns/p = ∫ ∞

0 R2
ns/p(r)rD+1dr, which

reads for s and p states

〈r2〉ns = (2 − γ )(5 − 2γ ) + 5n(n − 3 + 2γ )

2
(
k(s)

n
)2 ,

〈r2〉np = (1 − λ)(13 − 2λ) + 5n(n − 3 + 2λ)

2
(
k(p)

n
)2 . (6)

These expressions are valid in arbitrary dimensions D and
describe the diamagnetic shift of 2D semiconductors in a
perpendicular magnetic field. For the ground state, we use the
special notation kD ≡ k(s)

1 = 2/(2γ−1) so that

R1s(r) = (2kD)γ√
	(2γ )

rγ−D/2e−kDr . (7)

In addition, the unperturbed ground state energy is E1s =
−k2

D/2 = −2/(2γ−1)2. Hence, in two dimensions, γ = 1 +
β and E1s = −2/(1 + 2β )2.

III. EXACT DALGARNO-LEWIS POLARIZABILITY

We now include a static electric field E directed along
an unconfined direction, i.e., parallel to the semiconductor
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sheet in the two-dimensional case. In polar coordinates, the
interaction is Er cos θ so that the full problem reads

{H0 + Er cos θ}ϕ(r, θ ) = Eϕ(r, θ ). (8)

Various ways of attacking this problem exist. Traditionally,
by expanding the perturbed wave function in a basis of un-
perturbed ones, the polarizability is expressed as a sum over
transitions between ground and excited states weighted by
oscillator strengths. We follow this approach in the time-
dependent case in the next section. However, in the case of
a static electric field, the Dalgarno-Lewis approach [36–39]
is advantageous. This method bypasses the complicated sum
over states in the traditional approach, which, incidentally in-
cludes an involved integral over states whenever a continuum
of excited states occurs, as in the present case. We previously
[39] applied this approach to the related Stark effect in one-
dimensional, one-sided Kratzer potentials V (x) with x � 0.
Briefly, the Dalgarno-Lewis approach proceeds by solving
Eq. (8) order by order in the electric field. To this end, we
expand ϕ(r, θ ) = ϕ0(r, θ ) + Eϕ1(r, θ ) + E2ϕ2(r, θ ) + ... and
similarly, E (E ) = E0 + E2E2 + .... Note that only even orders
appear in the series for the energy in geometries that are
inversion symmetric in the absence of the field. In the case
of the ground state, we write ϕ1(r, θ ) = cos θ f (r)R1s(r), such
that f obeys the inhomogeneous equation

{
−1

2

d2

dr2
− D − 1

2r

d

dr
+ D − 1

2r2
− R′

1s(r)

R1s(r)

d

dr

}
f (r) + r = 0.

(9)

Upon solving, the polarizability αD = −2E2 is given by

αD = − 2

D

∫ ∞

0
R2

1s(r) f (r)rDdr. (10)

The first-order problem, Eq. (9), is relatively complicated
and obtaining a solution requires some effort. However, a
homogeneous solution fH (r) containing a 1F1 hypergeometric

function is readily found, i.e.,

fH (r) = r1−γ+λ
1F1[1 − γ + λ, 1 + 2λ, 2kDr] (11)

A particular solution to Eq. (9) is harder to find. Our brute-
force approach relies on the fact that it may be shown that the
following series is a solution:

fP(r) = r3
∞∑

n=0

anrn, a0 = 2

4 + 6γ − D
,

an = 2kD(n + 2)

(n + 2 + γ )2 − λ2
an−1. (12)

Because of the simple form of the recursive relation between
an and an−1, a general solution can be found:

an = 	(n + 3)	(3 + γ − λ)	(3 + γ + λ)(2kD)n

	(3 + n + γ − λ)	(3 + n + γ + λ)(4 + 6γ − D)
.

(13)

It then turns out that the sum in Eq. (12) can be performed an-
alytically with a result given in terms of a 3F2 hypergeometric
function

fP(r) = 2r3

4 + 6γ − D
2F2[1, 3, 3 + γ − λ, 3 + γ + λ, 2kDr].

(14)

Both homogeneous and particular solutions diverge as r →
∞. Hence, the full solution f (r) = fP(r) − N fH (r) must be
constructed such that the divergences cancel with the result

N = 	(1 − γ + λ)	(3 + γ − λ)	(3 + γ + λ)

(2kD)2+γ−λ(4 + 6γ − D)	(1 + 2λ)
. (15)

In this manner, a complete solution to Eq. (9) valid for arbi-
trary D and β is found.

Next, the problem of performing the integral in Eq. (10)
must be tackled. A straightforward insertion of Eqs. (11) and
(14) is problematic because both contributions diverge indi-
vidually. Fortunately, using integral representations of both
hypergeometrics, it can be shown that

αD = γ (1 + γ )(1 + 2γ )(3 + 2γ )(γ + λ)(1 + γ + λ)(2 + γ − λ)

2Dk4
D(4 + 6γ − D)

∫ 1

0
(t − 1)2tγ+λ−1

2F1[1, 4 + 2γ , 3 + γ + λ, t]dt (16)

In this form, both contributions are included leading to a cancellation of divergences. Finally, in terms of another 3F2

hypergeometric function,

αD = γ (1 + γ )(1 + 2γ )(3 + 2γ )(γ + λ)(1 + γ + λ)(2 + γ − λ)

Dk4
D(4 + 6γ − D)(1 − γ + λ)(3 + γ + λ)(4 + γ − λ)

3F2[3, 3, 1 − γ + λ, 2 − γ + λ, 5 + γ + λ, 1] (17)

This important closed-form expression is an exact formula for the polarizability valid in arbitrary dimensions D and repulsive
core potentials β.

It is interesting to study the behavior of αD in the limit β → 0. This means taking somewhat involved limits of hypergeometric
functions, the details of which are found in the Appendix. Using these results, in D > 2,

αD = (D − 1)4(D + 1)(2D + 3)

128
+ (D − 1)3(32D3 + 49D2 + 6D − 7)

128D(D − 2)
β2

+ (D − 1)2

{
F (D)

128(D − 2)3D3(D + 2)2(D + 3)2 + (D2 − 1)2
ψ (1)(D + 4)

64(D − 2)2D

}
β4 + O(β6) (18)
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with

F (D) = 190D10 + 1581D9 + 3481D8 − 3698D7

− 22972D6 − 24199D5 + 833D4 + 9140D3

+ 1396D2 − 168D − 144. (19)

This result breaks down in D = 2, but separate evaluation
using the correct form in Eq. (A1) shows that

α2 = 21

128
+ 457

256
β + 2084 + 3π2

256
β2 + O(β3). (20)

In D = 3, Eq. (18) becomes

α3 = 9

2
+ 329

12
β2 + 1539 + 8π2

36
β4 + O(β6). (21)

The β = 0 values in Eqs. (18), (20), and (21) agree perfectly
with previous results [15,16,37]. It is also clear from the nu-
merical values of the dominating corrections, i.e., 457β/256
in two dimensions and 329β2/12 in three dimensions, that
even relatively small values of β should imply huge correc-
tions to the polarizability. In the opposite limit of large β � 1,
we find from Eq. (A3)

αD = 4

D(D − 1)
β8 + 18

D(D − 1)
β7

+ 41 − 7D + 4D2

D(D − 1)
β6 + O(β5). (22)

Thus, an extremely rapid increase in polarizability is observed
as β → ∞. In Fig. 2, we plot the evolution of αD with increas-
ing β for three characteristic dimensions D = 2, 2.5, and3.
Here, noninteger dimensions should be viewed as a device
for interpolation between integer values. Thus, D = 2.5 em-
ulates a finite-width quantum well [12,13] as opposed to a
“zero-width” ideal quantum well. In each plot, the asymp-
totic expansions Eqs. (18), (20), and (22) are included. The
asymptotic results are seen to be in excellent agreement with
exact ones in the appropriate limits. In fact, simple addition of
small- and large-β expansions leads to a good global approx-
imation, as is easily checked. In all cases, it is clear that core
potential strengths of β ∼ 1 implies polarizabilities increased
by one to two orders of magnitude compared to hydrogenic
β = 0 values.

IV. OSCILLATOR STRENGTHS
AND DYNAMIC POLARIZABILITY

The previous section demonstrated that Dalgarno-Lewis
perturbation theory provides analytical, closed-form results
for the static polarizability. In the dynamic case, however, the
need to solve time-dependent perturbation problems renders
analytical expressions highly nontrivial, although closed-form
exact results for β = 0 but arbitrary D have recently been
found [17]. As a feasible semianalytical alternative we opt
to compute analytical oscillator strengths, which are sub-
sequently summed numerically. Thus, for an electric field
oscillating with frequency ω, the dynamic polarizability is

FIG. 2. Static polarizabilities of D-dimensional excitons versus
core potential. Exact results (blue curves) are compared to O(β5)
expansions (red curves) as well as asymptotic large-β limits (green
curves).

obtained from the formula

αD(ω) =
∑

n

gD(n)

(Enp − E1s)2 − ω2

+
∫ ∞

0

g′
D(k)

(Ekp − E1s)2 − ω2
dk. (23)

Here, gD(n) = 2(Enp − E1s)|〈ϕnp|r cos θ |ϕ1s〉|2 is the bound-
bound oscillator strength. Similarly, the second term in
Eq. (23) contains bound-continuum contributions involv-
ing continuum p states with energy Ekp = k2/2 and radial
part

Rkp(r) = (2k)λ+1/2	
(

1
2 + i

k + λ
)
eπ/2k

2
√

π	(1 + 2λ)
e−ikrr1+λ−D/2

× 1F1

[
1

2
+ i

k
+ λ, 1 + 2λ, 2ikr

]
(24)
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For bound-bound transitions 1s → np, the oscillator strength becomes

gD(n) = 4γ+λ2	(2 + γ + λ)2	(n − 1 + 2λ)
(
kD + k(p)

n
)
k2γ

D

(
k(p)

n
)3+2λ

D	(2λ)	(1 + 2λ)2(n − 2)!
(
kD − k(p)

n
)3+2γ+2λ

∣∣∣∣2F1

[
2 + γ + λ, n − 1 + 2λ, 1 + 2λ,

2k(p)
n

k(p)
n − kD

]∣∣∣∣
2

(25)

Similarly, the bound-continuum 1s → kp oscillator strength is

g′
D(k) = eπ/k4γ+λ	(2 + γ + λ)2k2γ

D k1+2λ

πD	(2λ)	(1 + 2λ)2
(
k2

D + k2
)1+γ+λ

∣∣∣∣	
(

1

2
+ λ + i

k

)
2F1

[
2 + γ + λ,

1

2
+ λ + i

k
, 1 + 2λ,

2ik

kD + ik

]∣∣∣∣
2

(26)

The oscillator strengths satisfy the Thomas-Reiche-Kuhn
[40,41] sum rule S0 = 1, where Sp is the pth transition energy
moment of the oscillator strength

Sp =
∑

n

gD(n)(Enp − E1s)p +
∫ ∞

0
g′

D(k)(Ekp − E1s)pdk.

(27)

Several other moments can be found from matrix elements of
the ground state only [42] and some characteristic important
cases are

S−2 = αD, S−1 = γ (1 + 2γ )(1 − 2γ )2

4D
,

S0 = 1, S1 = 4
(D − 2)2 + 2(γ − 1)

D(1 − γ )(1 − 2γ )3 ,

S2 = 16
12 + 8D2 − D3 − 2D(10 − γ ) + 2γ (1 − 2γ )

D(2 − γ )(1 − γ )(3 − 2γ )(1 − 2γ )5 .

(28)

These relations have all been verified numerically. Also, in
Fig. 3, the dominant oscillator strengths are shown versus
core potential β. The plot includes the summed bound-bound
contributions

∑
n gD(n) that, it should be stressed, do not

equal unity because bound-continuum contributions are omit-
ted. However, irrespective of dimension, the sum

∑
n gD(n) is

seen to approach unity as β increases. Importantly, the lowest
transition 1s → 2p oscillator strength gD(2) increases dramat-
ically with β initially and reaches a maximum gD(2) � 0.95
around β ∼ 1–2, which coincides with the physically relevant
range. This means that this single transition is completely
dominating in this range. In cases of larger β, the 1s → 2p
transition loses intensity, while 1s → 3p, in particular, gains
intensity. It is interesting that, apparently, a characteristic (D-
dependent) value of β can be found, at which gD(n) ≈ 0 for
all n > 2.

We now turn to the dynamic polarizability given by
Eq. (23) and illustrated in Fig. 4. Note that, in this plot, the fre-
quency ω is actually the photon energy h̄ω in natural exciton
hartree units Ha∗. Also, an imaginary part i0.002kD is added
to the frequency to regularize divergencies at resonance. Be-
low, results converted into physical units are provided as
well. From Fig. 4 it is seen that discrete bound-bound tran-
sitions contribute by amounts that decrease with transition
energy. Thus, 1s → 3p transitions are always significantly
less intense than 1s → 2p transitions. Moreover, the β = 0
and β = 0.1 cases are seen to be qualitatively quite similar
except for the compressed energy range in the latter case. In
contrast, the more realistic β = 1 case differs by featuring a

nonmonotonic D dependence of 1s → np transition energies.
In fact, at β = 1, the two-dimensional case has the lowest
1s → 2p resonance, in stark contrast to the hydrogenic model.
Finally, it is observed that the overall intensity of the spectra
increases significantly with β.

We finish this section by presenting polarizability spec-
tra for real two-dimensional transition-metal dichalcogenides
obtained by converting normalized quantities into physical
values. To this end, we consider suspended (ε = 1) and
hexagonal boron nitride (hBN) encapsulated (ε = 4.9)

FIG. 3. Oscillator strengths of the three lowest bound-bound
transitions versus β. The black curves illustrate the sum of all bound-
bound contributions.
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FIG. 4. Dynamic polarizability of low-dimensional excitons in
various dimensions as indicated by color. The three panels show
cases of vanishing (top panel), weak (middle panel), and realistic
(bottom panel) core potentials.

materials. For MoS2, the corresponding core potentials are
β = 2.04 and β = 0.448, while for WSe2 we find β = 1.92
and β = 0.412, respectively. The dynamic polarizability spec-
tra are shown in Fig. 5 including 1s → np transition energies
indicated by bars. In both MoS2 and WSe2, the dominating
1s → 2p resonance is close to h̄ω = 0.1eV, irrespective of
screening. In the screened cases, the bound-bound spectral
range is greatly compressed, however, with a 1s ionization
energy (i.e., negative of the 1s binding energy) around 0.17
eV. In contrast, the 1s ionization energy is 0.58 and 0.54 eV
in suspended MoS2 and WSe2, respectively. These values are
naturally in perfect agreement with Keldysh results [24] as
this is precisely the requirement applied to fix β.

Turning to the polarizability spectra, the individual con-
tributions to the full response are readily resolved and a
smooth transition to the continuum regime at the dissociation
threshold h̄ω = |E1s| is observed. The magnitude of the

FIG. 5. Dynamic polarizability of MoS2 and WSe2 in different
dielectric environments. The 1s → np transition energies are indi-
cated by colored bars.

static polarizability is in reasonable agreement with numerical
Keldysh values. In Ref. [24], the polarizabilities of freely sus-
pended MoS2 and WSe2 were determined to be 4.6 × 10−18

and 6.3 × 10−18eV(m/V)2, respectively. The corresponding
values in the present Kratzer model are both approximately
7.3 × 10−18eV(m/V)2. The approximately identical values
for two different materials result from an accidental cancel-
lation of effects due to r0 and μ. In contrast, the Kratzer
polarizabilities in screened (ε = 4.9) environments are sub-
stantially different from their Keldysh counterparts [24]. In
fact, the static Kratzer polarizability decreases with ε, in
marked contradiction to Keldysh values and physical intu-
ition. Mathematically, this is a consequence of β decreasing
rapidly as ε increases. This occurs irrespective of whether
β is determined by matching to potential or exciton binding
energy. In fact, in physical units, αD as a function of ε goes
through a minimum and eventually increases as ε becomes
sufficiently large. Such behavior is presumably an unphysical
artifact of the Kratzer model. Unfortunately, measurements in
favor of either model do not exist as systematic experimental
studies of exciton polarizabilities in different dielectric envi-
ronments are still lacking.

V. SUMMARY

In summary, we have adopted the recently proposed
Kratzer model to study Stark effects in nonhydrogenic
excitons in low-dimensional semiconductors. The model
incorporates position-dependent dielectric screening by in-
cluding a repulsive core potential, yet remains analytically
solvable in arbitrary dimensions. The perturbation by static
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electric fields is handled analytically using the Dalgarno-
Lewis approach. In turn, an exact expression for the static
polarizability valid for arbitrary core potential strength and di-
mension is obtained. Moreover, analytical oscillator strengths
of both bound-bound and bound-continuum transitions are
derived, allowing for simple computations of the dynamic
polarizability.

APPENDIX: LIMITING BEHAVIOR

In this Appendix, we derive expansions required to explain
the behavior of αD in the extreme limits β → 0 and β → ∞.
In the former case, we see that

−γ + λ =
⎧⎨
⎩− 2β2

(D−2)D + 2(4−6D+3D2 )
(D−2)3D3 β4 + O(β6), D > 2

−β + β2

2 − β4

8 + O(β6), D = 2
.

(A1)

In the opposite limit β → ∞, i.e., the case of a domi-
nating repulsive core, we find 1−γ + λ = (D−1)[ 1

2β−1 −
1

16 (2−2D + D2)β−3 + O(β−5)] valid in any dimension.
Hence, in both limits, we may expand Eq. (17) since −γ + λ

approaches an integer. In practice, one writes the 3F2 hyperge-
ometric function as an infinite sum over Pochhammer symbol
ratios, expands each term in the sum, and finally re-sums the
result order by order. The final expressions for the required
expansions can be written as

3F2[3, 3, 1 + x, 2 + x, 5 + y, 1]

= (4 + y)(3 + 2y)

2y(1 + y)
+ (4 + y)(36 + 37y + 9y2)

4y(1 + y)(2 + y)(3 + y)
x

+ 4 + y

4

{
ψ (1)(4 + y) − 5 + y

(1 + y)(3 + y)

}
x2 + O(x3)

(A2)

and

3F2[3, 3, x, 1 + x, 5 + y, 1]

= 1 + (8 + 3y)(18 + 16y + 3y2)

y(2 + y)(3 + y)(4 + y)
x −

{
ψ (1)(5 + y)

+ 176 + 257y + 115y2 + 16y3

2(1 + y)(2 + y)(3 + y)(4 + y)

}
x2 + O(x3), (A3)

where ψ (1)(z) = d2 ln 	(z)/dz2 is the trigamma function.
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