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Rest-frame quasistatic theory for rotating electromagnetic systems and circuits
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A quasistatic theory for slowly rotating electromagnetic systems observed in their rest frame of reference is
developed. Rotation-induced electrodynamic effects are explored, and their electric circuitry implications are
discussed. It is shown that rotation may induce fictitious charges that affect lumped device dynamics and offer
various device functionalities such as voltage-excited magnetic fields leading to rotation-induced memristors of
positive or even negative memristance and their dualities. Rotation-induced electromagnetic gain and instabilities
may exist, manifested either as parasitic processes that hamper electric circuitry functionality or as a mean
for possible energy harvesting methodology in which the large-scale rotating platform serves as an essentially
unlimited energy reservoir. Furthermore, as many artificially engineered electromagnetic materials consist of
meta-atoms whose internal dynamics is essentially quasistatic, the study also potentially paves the way for new
types of metamaterials. These effects depend on the rotation rate � but are essentially independent of the axis
location. This fundamental property renders them extremely robust and has far-reaching ramifications for a
plethora of applications. A preliminary quantitative analysis for � typical of large-scale platforms ranging from
planets to artificial gravity structures is presented.
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I. INTRODUCTION

The universal ubiquity of rotation is astounding. It can
be observed on nearly any imaginable scale, from multi-
kiloparsec galaxies, to planetary systems, to individual planets
spinning around their own axis, to man-made structures and
machines, down to the microscopic realm. This omnipresence
inevitably affects the human experience in general and sci-
entific and technological advances in particular. It is often
the case that rotation is experienced or most naturally ob-
served in its rest frame of reference, leading to challenging
dynamical problems with intriguing properties. Nonetheless,
the study of applied rest-frame electrodynamics (ED) of ro-
tating systems is traditionally motivated mainly by its use
in optical gyroscopes for rotation sensing with applications
for inertial navigation systems [1–3]. The underlying physics
is based on the Sagnac effect [4], in which the phase ac-
cumulated by a light signal that propagates along a slowly
rotating closed path depends linearly on the path’s angular
velocity � and on its enclosed area when observed in the
path’s rest frame. Recent studies extended the rest-frame ED
to wavelength-scale rotating structures, e.g., photonic crystals
[5–7], degenerate-mode microcavities [6,8–12], and interfer-
ence in metamaterials [13], to name a few. Yet these works
are almost exclusively limited to the wave optics in which
the system dimensions are comparable to or larger than the
electromagnetic wavelength. Little attention has been devoted
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to studying the rotation footprint in the benign building blocks
of technology: electrical devices and circuits operating in the
static or deep quasistatic regime.

This lack motivates the present study; our goal is to de-
velop an ab initio theory governing the internal ED of electric
circuits and systems undergoing rigid slow rotation �, the
precise definition of which is provided below. Our interest is
focused on observing the ED in R�, the rotating system rest
frame of reference (FOR). We limit our study to free rota-
tions, i.e., rotations not caused by gravitational fields. Thus,
it pertains to, e.g., the spinning of a planet around its axis,
the spinning of artificial gravity structures [14–16], and more.
We exclude rotations of a mass trapped in a gravitational field
(e.g., the rotation of Earth around the Sun). While adhering
to the slow rotation regime defined below, � in the aforemen-
tioned physical and engineering settings spans many orders
of magnitude; Earth and Mars rotate at � ≈ 7.3×10−5 rad/s,
whereas space stations and artificial gravity structures cur-
rently under investigation are anticipated to spin at 1–25 rpm,
yielding � ≈ 0.1–2.5 rad/s [14–16]. Rotation-based artificial
gravity is given by �2r, where r is the rotation radius. Thus, in
[15,16] effort was devoted to increasing � in order to achieve
sufficient gravity in smaller structures.

Our study reveals rotation-induced ED effects in R�, such
as fictitious electric and magnetic charges leading to different
device functionalities, and ED gain and instabilities that may
arise in electric circuits, where the rotating platform serves as
an essentially unlimited energy reservoir from which the gain
mechanism is fed. We also derive a general Poynting theorem
in R�, in which an explicit term that formally governs this
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energy exchange is obtained. The effects described above are
essentially independent of r or of the location of the rotation
axis, scaling only with �. This fundamental property renders
them extremely robust. Furthermore, it may give rise to a
new set of conflicting engineering considerations and compro-
mises, e.g., for an artificial gravity design in which the goal
of reducing the structure dimensions implies an increase of
�. We also note that the rotation-induced ED gain in electric
circuits can be regarded not only as a parasitic instability;
potentially, it may be used as a means to harvest electro-
magnetic energy from an already rotating platform without
any additional moving parts. The harvesting rate is again
independent of the distance from the rotation axis; it is the
same whether the system is located at one of the poles or at
the equator. These effects are shown to exist already at the
level of basic inductor-capacitor elements and circuits. Many
modern artificially engineered electromagnetic materials are
made of arrays of meta-atoms such as the omega particle
and split-ring resonators [17,18], whose internal dynamics is
essentially similar to lumped LC circuits. Thus, our study
may pave the way to new metamaterial functionalities and
applications.

It is instructive to point out connections between the
present study and seemingly unrelated research endeavors
of current interest. The rotation is manifested by the bian-
isotropic r-dependent constitutive relations in Eqs. (2a) and
(2b) below, resembling the Tellegen medium [19] and topo-
logical insulators (TIs) [20]. TIs may support an internal
fictitious magnetic monopole induced by an external electric
charge located near its surface [21]. Our rotation-induced fic-
titious electric and magnetic charges do not need the presence
of a material; the TI role is played here by the rotation itself
but in a more complex manner. Along a different track, our
rotation-induced fictitious charges suggest a different imple-
mentation of memristors [22,23] with positive or negative
memristance and their electronic dualities. These connections
may inspire and stimulate further advances in their respective
fields.

II. FORMULATION

We define RI as a static inertial FOR, in which the basic
physical laws appear in their simple familiar form. Space-
time is flat (gravitation is neglected, and Riemann curvature
vanishes); hence, the system geometry is Lorentzian [24], and
Maxwell’s equations (MEs) take on their familiar form in
vacuum within the framework of special relativity. A station-
ary material in RI is presented here by the permittivity and
permeability scalars ε(r) = ε0εr (r) and μ(r) = μ0μr (r).

We study statics and low-frequency ED in materials and
structures that rotate rigidly at a constant angular velocity
� = �ẑ with respect to RI around its ẑ axis. The spatial extent
D ⊥ ẑ occupied by the material is finite and satisfies �D � c.
We focus on the ED as seen by an observer that is fixed to the
rotating material or structure. Hence, we define the rotating
FOR R�; it is at rest relative to the structure. The ẑ axis of R�

coincides with that of RI . Here and henceforth, we observe
the ED as seen in the FOR R�, and the corresponding prob-
lem is termed the “R� problem.” The specific case of R0 and
the “R0 problem” correspond to � = 0, meaning the material

and the observer are at rest in the inertial FOR RI , making R0

and RI identical. R� (� �= 0) is noninertial; an observer at
rest there sees curved space-time. However, space-time in R�

can be considered locally flat (and Lorentzian) for distances D
satisfying [24]

D � L = c2/A, (1)

where A is the acceleration of R� as seen in RI . Here A =
�2D, so Eq. (1) yields the slow rotation condition mentioned
above, �D � c. Our work is limited to this domain, implying
space-time invariance of the (Minkowski) metrics. Then, the
covariant formulation of electrodynamics for the R� problem
is given by the same set of MEs as for the R0 problem but with
modified constitutive relations to account for rotation [25,26],

B = μH + c−2(�×r)×E, (2a)

D = εE − c−2(�×r)×H, (2b)

where ε and μ are the material properties and c = (μ0ε0)−1/2

is the speed of light in vacuum, all of which as apply for
the R0 problem. Note that the rotation-induced term in the
constitutive relations is independent of the material properties.
Here and henceforth, vectors are written in bold letters, and
a hat indicates a unit vector. In R� the coordinates normal
to the rotation axis are denoted by ρ = x̂x + ŷy = ρρ̂. Thus,
�×r = �ρϕ̂, where ϕ̂ is the azimuthal direction.

A. Poynting theorem in R�

The condition in Eq. (1) and the ensuing metric invariance
imply space-time invariance of the momentum-energy tensor.
Consequently, the Poynting vector S = E×H, where E and
H are the full time-dependent fields, has the same physical
meaning for power flow density, whether we are dealing with
the R0 or R� problem. Likewise, E · J preserves its meaning
as well as other quantities in the theorem. Using the standard
derivation and some vector manipulations, we arrive at the
Poynting theorem for R� problems (see the Supplemental
Material [27]),

− ∇ · S = E · ∂

∂t
(ε � E) + H · ∂

∂t
(μ � H) + E · J

+ 2

c2
ρ�̇ϕ̂ · S + 1

c2
ρ�ϕ̂ · Ṡ, (3)

where the overdot represents the time derivative and the star
(�) represents simple multiplication and time convolution for
the nondispersive and dispersive media, respectively. The
two new terms on the right-hand side represent the power
exchange between the electromagnetic (EM) fields and the
rotation energy. This exchange is possible only where S is not
normal to the rotation direction ϕ̂. Usually, the rotation energy
can be considered to be essentially infinitely large compared
to the EM one; hence, it is hardly depleted (or, alternatively,
kept constant by external independent mechanical means),
and one can assume �̇ = 0.

B. Boundary conditions in R�

The field’s continuity or boundary conditions follow di-
rectly from the MEs. Since the structure of the latter is the
same as that for a R0 problem, the boundary conditions
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written on tangential E and H and normal D and B are, in
principle, unchanged. However, it is instructive to examine
the implied conditions on the normal E and H , as they will be
used later. They are given by (see the Supplemental Material
[27])

n̂ · (ε1E1 − ε2E2) = ηef − c−2�ρϕ̂ · Kef , (4a)

n̂ · (μ1H1 − μ2H2) = 0, (4b)

where Kef is the surface density of the free electric current.
This last result tells us that n̂ · μH should pass continuously
just like n̂ · B, despite the additional rotation-induced term in
the constitutive relation for B.

C. Statics in R�

Similar to quasistatic theory for R0 problems, the static
fields in R� constitute the leading terms in the slowly time
varying quasistatic electrodynamics of R� problems. Thus,
we set ∂

∂t ≡ 0 in R� and assume that our domain is simply
connected with no electric current. Then we may still define

E = −∇�e, H = −∇�m. (5)

We now use these expressions in the time-independent
Maxwell equations in R� and the constitutive relations in
Eqs. (2a) and (2b). With no further assumptions or approx-
imations we obtain the following exact equations governing
the static fields (see Sec. I in the Supplemental Material [27]):

∇ · ε∇�e = −ρef + 2�

c2

∂

∂z
�m, (6a)

∇ · μ∇�m = −2�

c2

∂

∂z
�e, (6b)

where ρef is the free real electric charge density. These equa-
tions possess several interesting properties.

(i) The formulation and hence the field solutions are inde-
pendent of the location of the rotation axis. The only footprint
of the rotation axis is its direction ẑ, manifested via the z
derivative on the right-hand side. The axis location may some-
times lurk in only through the boundary conditions in Eq. (4a).

(ii) The set has the form of a static R0 problem, where
the rotation manifests via fictitious sources on the right-hand
side of the equations above; the fictitious electric source is
ρe = 2�c−2Hz, while the fictitious magnetic source is ρm =
−2�c−2Ez. Note, however, that this is a source for μH , as
implied by Eq. (6b): ∇ · μH = −2�c−2Ez. We still have ∇ ·
B = 0, as we should since there is no real magnetic charge.

One fundamental result of the coupled equations above is
the fact that unlike statics in R0 problems, here boundary
conditions for E and H cannot be set independently; imposing
boundary conditions on, e.g., �e affects H at the boundary. To
illustrate this, we consider the high electric conductor (HEC)
in which the conductivity is very high (but not infinite). The
electric field in this material is effectively zero. From Eq. (5),
this implies �e = const in the HEC and on its boundary.
Consider now the schematic example in Fig. 1 consisting of
two HEC plates with potential difference V = �e2 − �e1. We
show below that up to first order in �, E is the same as in
the corresponding R0 problem, namely, E = ẑEz = −ẑV/d
(neglecting the edge effects), as seen in Fig. 1(a). Thus, a
rotation-induced fictitious magnetic charge ρm = 2�c−2V/d

FIG. 1. Penetration of rotation-induced magnetic field into a
HEC in R�. (a) An electric field normal to the surface exists, e.g., in
a capacitor. (b) The ẑ component of this field generates the fictitious
magnetic charge ρm between the plates. Inside the HEC material
E = 0; hence, ρm = 0 there. The application of Gauss’s theorem
for μH in R� to the square volume and the continuity condition in
Eq. (4b) yield a magnetic field normal to the surface that penetrates
the HEC.

is generated in the space between the plates. Since E = 0
inside the HEC, no ρm exists there. By applying Gauss’s law
for μH , say, in the red rectangular volume in Fig. 1(b), it is
seen that normal μH must exist on the HEC surface, and it
penetrates the plates by virtue of the continuity requirement
in Eq. (4b). This field is first order in � and independent
of the distance from the rotation axis. Thus, rotation-induced
magnetic fields in R� may possess a normal component at a
HEC surface and may penetrate it. This is reminiscent of the
magnetic field dynamics in HECs and superconductors. While
the latter are known to repel magnetic fields, a phenomenon
known as the Meissner effect [28], a rotating superconductor
supports normal magnetic fields penetrating through its sur-
face, a phenomenon known as the London moment that has
been studied theoretically [28,29] and experimentally [30].

The above holds for statics in R�. For slow time variation
at the frequency ω for which the quasistatic regime applies,
the solutions of Eqs. (6a) and (6b) constitute the leading term
of a quasistatic power series in ω (see examples below and
in Sec. 4 in the Supplemental Material [27]). Then the EM
fields penetrate HEC with conductivity σ up to the skin depth
δ = √

2/(ωμσ ). Thus, for HEC of thickness T = aδ, a � 1,
the normal H penetrates and passes continuously through
the HEC, whose effective resistance per unit length is R ∝
(σT )−1 = a−1√ωμ/(2σ ). Consequently, R can be made as
small as one wishes (e.g., by tuning ω), while still the normal
H passes through the thin HEC continuously. This parametric
regime is implicitly assumed below.

D. Power series in � for static fields

Solutions to the coupled equations (6a) and (6b) are diffi-
cult to derive even for simple geometries. Great simplification
is achieved by applying the solution technique of power series
in �. This approach is also motivated by the fact that under
the slow rotation condition �D/c is a small parameter; thus,
excellent approximations can be obtained by keeping only
a very small number of leading terms (say, only zeroth and
first order). More precisely, let � � D be the typical length
scale on which �e and �m vary. The right-hand sides of
Eqs. (6a) and (6b) are much smaller than the left-hand sides
if �n�/c � 1 (n2 = μεc2). Below we limit ourselves to this
condition, which is easily met in practice. This procedure can
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then serve as a starting point for a study that incorporates both
rotation at angular frequency � and quasistatic time variation
of the field at frequency ω.

We express �e and �m as

�e(r) =
∞∑

n=0

�n�(n)
e (r) ⇒ E =

∞∑
n=0

�nE (n)(r), (7a)

�m(r) =
∞∑

n=0

�n�(n)
m (r) ⇒ H =

∞∑
n=0

�nH (n)(r), (7b)

where E (n)(r) = −∇�(n)
e (r) and H (n)(r) = −∇�(n)

m (r). Sub-
stituting these series into Eqs. (6a) and (6b) and equating
similar powers of �, we obtain

∇ · ε∇�(0)
e = −ρef , ∇ · μ∇�(0)

m = 0 (8a)

for the leading terms and

∇ · ε∇�(n)
e = 2

c2

∂

∂z
�(n−1)

m

(= −ρ (n)
e

)
, (8b)

∇ · μ∇�(n)
m = − 2

c2

∂

∂z
�(n−1)

e

(= −ρ (n)
m

)
(8c)

for the higher-order terms n = 1, 2, . . .. The leading terms
�(0)

e and �(0)
m are nothing but the solutions of the correspond-

ing R0 problem. They “excite” the higher-order terms that
represent the �-dependent effects. The D and B power series
are given by

D =
∞∑

n=0

�nD(n), D(n) = εE (n) − 1

c2
ρϕ̂×H (n−1), (9a)

B =
∞∑

n=0

�nB(n), B(n) = μH (n) + 1

c2
ρϕ̂×E (n−1), (9b)

with D(0) = εE (0) and B(0) = μH (0). The nth-order term D(n)

incorporates E (n) and H (n−1). The structure of B(n) is similar.
Note that we keep the physical units of �. Thus, the units

of, e.g., E (n) are (s)n×V/m. This could be avoided by using
a normalized dimensionless rotation rate �̄ = ��/c that may
be preferable from the formal mathematical viewpoint. How-
ever, such normalization necessarily reintroduces � into the
equations (with respect to which r can be normalized), render-
ing the ensuing physical examples less transparent. Thus, we
choose to keep the physical units and implicitly assume that
�n�/c � 1 holds. A similar approach is used in many classi-
cal power-series analyses of physical problems; a celebrated
example is the Luneburg-Kline power series of 1/k0 that lays
the foundation of geometrical optics [31].

E. Rotation footprint on self-capacitance and inductance

From Gauss’s law the free real electric charge on the ca-
pacitor plates is ηef = n̂ · (D1 − D2), yielding

ηef = n̂ · (ε1E1 − ε2E2) − �ρ

c2
n̂ · [ϕ×(H1 − H2)]. (10)

From Eqs. (8a)–(8c) the leading terms of the capacitor fields
are E (0) + O(�2) and H = �H (1) + O(�3), where E (0) is
merely the capacitor field in the R0 problem. Thus, the ro-
tation footprint on ηef and on the capacitor voltage is only

FIG. 2. The ED of the R� problem of the LC circuit. (a) The
zeroth-order fields E (0) (blue) and H (0) (red) are obtained from the
corresponding R0 problem. (b) ẑ · E (0) and ẑ · H (0) generate rotation-
induced fictitious magnetic charge ρm (blue) and electric charge ρe

(red), respectively. (c) The R� LC circuit. Connection polarity σ = 1
(σ = −1) for loop points a and b (b and a) connected to the upper
and lower capacitor plates, respectively.

second order in �. As a result, its effect on the capacitance is
also of O(�2). Similar considerations apply to inductors.

III. EXAMPLES

A. LC circuit dynamics

Consider the circuit in Fig. 2. It consists of a parallel plate
capacitor C with capacitance C and a loop inductor L with in-
ductance L. From Sec. II E, the effect of � on L and C is only
of O(�2); thus, these intrinsic properties are practically un-
changed. However, rotation-induced L-C intercoupling may
give rise to an O(�) footprint on the circuit dynamics.

We assume that the plates and the loop areas A and S
are normal to ẑ, but not necessarily at the same height z.
The leading terms of the static solution are obtained from
the corresponding R0 problem; they are the capacitor E field
E (0) and inductor H field H (0) shown in Fig. 2(a). They are
proportional to the capacitor voltage VC and inductor current
IL, respectively, expressed conveniently as

E (0) = VC f e(r), H (0) = IL f h(r), (11)

where f e,h are normalized real field patterns. Both C and
L may possess external leakage fields of essentially a
dipole form [17] but may assume a more complex struc-
ture near their respective devices. These leakage fields are
included in E (0) and H (0). From Eqs. (8a)–(8c) the first-
order rotation-induced fictitious magnetic and electric charges
are �ρ (1)

m = −2�c−2ẑ · E (0) and �ρ (1)
e = 2�c−2ẑ · H (0), re-

spectively, shown in Fig. 2(b). ρ (1)
m (ρ (1)

e ) resides inside the
capacitor (inductor) but may exist also in the external domain
due to leakage fields. A blowout of the internal ρ (1)

m is shown
in Fig. 1(b). ρ (1)

m and ρ (1)
e are the sources in Eqs. (8b)–(8c) and

excite the z-directed first-order electric and magnetic fields,

H (1)
z (r) = −∂z�

(1)
m = VC

2

μc2
Fe(r), (12a)

E (1)
z (r) = −∂z�

(1)
e = −IL

2

εc2
Fh(r), (12b)

where

Fe,h(r) =
∫

∂zG(r, r′)ẑ · f e,h(r′) dv′ (12c)

and G(r, r′) = (4π |r − r′|)−1 is the Poisson equation Green’s
function. The integration extends over the domain where ρ (1)

m
and ρ (1)

e (or E (0)
z and H (0)

z ) do not vanish. From Eq. (12a)
the capacitor E field creates a ẑ-directed magnetic flux β (1)
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through the loop area S,

β (1) =
∫

S
B(1)

z (r)ds = μH (1)
z (rL)S = VC

2

c2
Fe(rL)S, (13)

where rL is the loop center and we assume that H (1)
z is uni-

form. In the above we used Eq. (9b). Note that since E (0)

possesses only a ẑ component at rL the second term in Eq. (9b)
does not contribute to the flux crossing S. β (1) in Eq. (13) adds
up to the flux created by the intrinsic properties of the loop
β (0) = LIL, creating the total flux β = β (0) + �β (1),

β = LIL + VC
2�

c2
Fe(rL)S. (14)

Likewise, the contribution of the rotation-induced electric
field E (1)

z in Eq. (12b) to the voltage on the capacitor plates
is essentially E (1)

z d . Thus, the total voltage developing on C is

VC = Q

C
+ IL

2�

εc2
Fh(rC)d, (15)

where Q and rC are the capacitor charge and center and we
assume uniform E (1)

z . We now follow the standard procedure
of quasistatics for R0 problems. We assume that the leading
terms of the R� problem vary slowly in time, with e−iωt

being the time dependence. A formal double power-series
expansion in both frequencies (ωm�n) on which this approach
is based is provided in the last section of the Supplemental
Material [27]. The results presented so far are nothing but the
m = 0, n = 0, 1 terms. The dynamics of the m = 1, n = 0, 1
terms is similar to the first term in conventional quasistatic
systems. Thus, the inductor and capacitor voltages VL and VC

are [using Eq. (15) with IC = −iωQ]

VL = iωβ, VC = i
IC

ωC
+ IL

2�

εc2
Fh(rC)d. (16)

If L and C are connected as shown in Fig. 2(c), then VL =
σVC + RIL, and IL = σ IC, where σ = ±1 is the connection
polarity and R represents dissipation. Solving Eqs. (14)–(16)
for IL, we obtain[

ω2

ω2
0

+ iωτ −
(

σ − iω
2�

c2
Fh(rC)A

)

×
(

σ − iω
2�

c2
Fe(rL)S

)]
IL = 0, (17)

where ω0 = (LC)−1/2 is the resonance frequency of the corre-
sponding R0 problem, τ = RC is the loss parameter, and A =
Cd/ε is the capacitor effective area (uniform ε is assumed
for simplicity). A nontrivial IL exists at the eigenfrequencies
ω1,2(�) that nullify the polynomial multiplying IL,

ω1,2(�) = ±ω0

√
1 − ω2

0τ

(
σ�F + τ

4

)
− iω2

0

(
σ�F + τ

2

)
,

(18)

where F = [Fh(rC)A + Fe(rL)S]/c2 and we kept terms only
up to first order in � (inclusive). Depending on the connec-
tion polarity σ and rotation direction, the eigenfrequency has
positive or negative imaginary parts. Recall the e−iωt time
dependence. If σ�F < 0 (>0) rotation-induced gain (loss) is
present. This gain (loss) is due to the power exchange between

the EM energy stored in the circuit and the mechanical energy
stored in the structure rotation. If the gain is sufficiently large
to offset dissipation, i.e., δ = −σ�F − τ/2 > 0, net gain
exists, and IL increases exponentially. Note the ω2

0 multipli-
cation; δ does not need to be large to produce observable gain.

A comment on radiation loss is in order. Accelerating
charge always radiates [32]; thus, power loss Pr due to radia-
tion exists even in systems operating in the deep quasistatic
regime. This loss effect can be represented in the system
by adding a resistor with the appropriate radiation resistance
Rr ∝ Pr , a well-established practice in antenna theory [33].
Then, we have R = RL + Rr , where RL represents the circuit
Ohmic loss. Rr sets a lower bound on R, and hence on τ ,
that holds even if the system is made of a superconductor
with zero Ohmic loss (unless encapsulated in a cavity with
superconducting walls). An analytic estimate of Rr is provided
in the Supplemental Material [27]. This estimate is used in the
numerical calculations in Sec. III B 4.

It may be difficult to evaluate Im{ω1,2} for general ele-
ments. In the following sections we zoom in and study the
internal and external near fields of the idealized capacitor and
inductor in R�. This study reveals different functionalities
of lumped devices in R� and also enables us to engineer
different elements for which gain estimates can be obtained.

B. Local fields of lumped devices

The examples in Secs. III B 1, III B 2, and III B 3 consist
of truncated idealized structures in which edge effects are
ignored. They may represent idealized canonical models for
the unintended rotation-induced effect encountered in arbi-
trary electrical circuits or deliberately designed ones aimed
at exploiting these effects. The example in Sec. III B 4 con-
sists of a finite-size structure designed a priori to exploit the
rotation-induced effects, and furthermore, it allows for exact
calculation of the leading fields.

1. Parallel plate capacitor

Consider the structure in Fig. 1. Neglecting edge effects,
E (0) = −ẑV/d between the plates, and it vanishes outside
the capacitor. Clearly, H (0) = 0, and B(0) = 0. However,
from Eq. (8c) the fictitious magnetic charge density of
ρm = �ρ (1)

m = 2�V/(dc2) exists in the capacitor volume. A
straightforward calculation gives for H (1) (see the Supplemen-
tal Material [27])

H (1) = ẑV

{ 2z
μdc2 , |z| � d/2,

±1
μc2 , z ≷ ±d/2.

(19a)

H (1) increases linearly between the plates and is uniform out-
side, pointing upward (downward) for z ≷ 0. It is independent
of the rotation axis location. With Eq. (9b) we have

B(1) = V

{
ẑ 2z

dc2 − ρ̂ ρ

dc2 , |z| � d/2,

±ẑc−2, z ≷ ±d/2.
(19b)

Interestingly, while inside the capacitor it depends on the
rotation axis location, the external B(1) is uniform and carries
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FIG. 3. The leading B field in electric and magnetic capacitors,
and the rotation-induced memristor. (a) The electric capacitor H (1)

(blue) and B(1) (red) fields. They are symmetric around ẑ. A fic-
titious magnetic charge density ρm = 2�V/(dc2) resides between
the plates. (b) The magnetic capacitor, consisting of two electric
capacitors with inverted voltages. This structure can function as a
memristor. (c) A resonant structure consisting of a magnetic capaci-
tor and loop.

no information about the axis location. The leading orders of
H and B are shown in Fig. 3(a).

2. Rotation-induced magnetic capacitor and memristor

The uniformity of B(1) in the external domain of the par-
allel plate electric capacitor suggests that it can be used
to form a magnetic capacitor for fictitious magnetic charge
densities ±ρm = ±2�V/(dc2), as shown in Fig. 3(b). Two
parallel plate electric capacitors are situated normal to ẑ and
parallel to each other and are connected to the source and
Earth in inverted polarities. Electrically, these two capacitors
are connected in parallel. The fields external to the structure
mutually cancel and are doubled in the domain between the
capacitors, yielding B = −ẑ� 2V/c2. This device generates
magnetic field that is proportional to the electric voltage V ,
as opposed to B in conventional inductors, which is propor-
tional to the electric current, thus suggesting a potentially
different circuit functionality. This functionality resembles
the memristor [22,23], a device that generates magnetic flux
β due to electric charge q, with memristance M ≡ β/q.
Here q = V 2C = V 2εA/d , and β = A�ẑ · B(1), yielding M =
�d/(c2ε). Note that epsilon near zero (ENZ) metamaterials
[18] at the specific operation frequency ω can be used to
increase M. Traditional memristor implementations are non-
linear and active [23]. Here it is a linear passive device in
R�, with energy provided by rotation. Interestingly, M can
be positive or negative depending on the rotation direction.

This magnetic capacitor can resonate with a coupled in-
ductor as a special case of the system discussed in Sec. III A.
The example shown in Fig. 3(c) is studied in the Supplemental
Material [27]. The general expression for the eigenfrequencies
in Eq. (18) holds with the substitution F = Sc−2 (see the
Supplemental Material [27]).

3. Magnetic inductors and rotation-induced electric capacitor

This example, shown in Fig. 4, is the dual structure of
the capacitor-inductor system in Secs. III B 1 and III B 2. A
conventional inductor is shown in Fig. 4(a). Clearly, E (0) = 0
everywhere. Neglecting the edge effect (for h � �, d), the
R0 magnetic field is H (0) = ẑIL/h inside the inductor, and
it vanishes outside. Thus, in the R� problem, a fictitious
electric charge whose leading term is ρe = �ρ (1)

e , with ρ (1)
e =

2IL/(hc2), is generated inside the inductor. Then E (1) =

FIG. 4. The leading rotation-induced fields in the inductor-
capacitor system. (a) Three-dimensional view of a conventional
inductor in R0 (top) and a top view in R� (bottom). A fictitious
rotation-induced electric charge exists inside the inductor. (b) Two
inductors create a rotation-induced electric capacitor with uniform
electric field. (c) A resonant structure.

ŷε−1ρ (1)
e y inside the inductor, and E (1) = sgn{y}ŷ(2ε)−1ρ (1)

e �

outside the inductor (we neglect edges). If two inductors are
placed in parallel with current directions as shown in Fig. 4(b),
then the electric fields outside the structure mutually cancel
and vanish, while E = −ŷ2��(εc2h)−1IL between the induc-
tors. Thus, a rotation-induced electric capacitor is created
between the two inductors. The electric field inside this device
is proportional to the electric current IL, as opposed to a con-
ventional capacitor in which E is proportional to the voltage,
thus suggesting a potentially different circuit functionality that
can be viewed as the dual of the rotation-induced memristor
discussed in Sec. III B 2.

The LC circuit shown in Fig. 4(c) consists of an additional
“true” capacitor C, possesses the eigenfrequencies given in
Eq. (18), with F = A(�/h)c−2, where A is the capacitor plate
area (see the Supplemental Material [27]).

4. The core-shell structure

Here we study the structure shown in Fig. 5. It can be
viewed as a natural way to connect the two plate systems in
Fig. 3(b), thus enclosing the structure into a finite-size one
that allows for a more accurate calculation and control of the
leading fields. The inner and outer spherical shells are made
of an ideal conductor, have radii a and b = a + d , and are
held at the potentials −V0 and 0, respectively. The correspond-
ing R0 problem is shown in Fig. 5(a). Since Eqs. (6a)–(8c)
are independent of the rotation axis, we conveniently solve
the leading field terms in the coordinate systems R0

c,R�
c =

(xc, yc, z) and (rc, θc, φc), whose origin coincides with the
shell’s center and which have the same z axis as R0 and R�.
We divide the space into three domains, defined conveniently
in R0

c and R�
c as Di, i = 1, 2, 3, for rc < a, a � rc � b, and

rc > b, respectively. Di is filled by a material with εi and μi.
The R0 fields, written in R0

c , are

E (0)
1 = E (0)

3 = 0, E (0)
2 = −r̂cV0

ab

dr2
c

, H (0) = 0 ∀ r. (20)

From Eq. (8c) the rotation-induced fictitious magnetic charge
in Di is given by ρm,i = �ρ

(1)
m,i, i = 1, 2, 3, with

ρ
(1)
m,1 = ρ

(1)
m,3 = 0, ρ

(1)
m,2 = −V0A

cos θc

r2
c

, A = 2ab

μ2c2d
, (21)
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FIG. 5. The core-shell structure. (a) The R0 problem. (b) The
rotation-induced fictitious magnetic charge ρ (1)

m . (c) H (1) and (d)
B(1) for a = 1 m, b = 2 m, and μ1 = μ2 = μ3 = μ0 (arbitrary scale).
H (1)

1,2,3 and B(1)
1,3 are independent of the rotation axis location. Only

B(1)
2 (in D2 : a � r � b) depends on the rotation axis, which here is

centered at the sphere.

as shown in Fig. 5(b). The first-order �m in Di satisfy Eq. (8c)
with n = 1. They are expressed as the spherical harmonics

�
(1)
m,1 = V0C1rc cos θc = V0C1z, (22a)

�
(1)
m,2 = V0

(
C2rc + D2r−2

c

)
cos θc + V0(A/2) cos θc, (22b)

�
(1)
m,3 = V0D3r−2

c cos θc. (22c)

The last term in Eq. (22b) is a particular solution that ac-
counts for the source term ρ

(1)
m,2. The yet unknown coefficients

C1,C2, D2, and D3 are determined by imposing continuity on
the tangential H (1) = −∇�(1)

m (no electric currents yet) and
normal B(1). We note that these magnetic fields are solely
rotation-induced fields; thus, they are not repelled by the
perfect electric conductor (PEC) shells (see Sec. II and the
discussion pertaining to Fig. 1).

Since E (0)
1,3 = 0 [see Eq. (20)], we have

B(1)
k = μkH (1)

k , k = 1, 3. (23)

Regarding B(1)
2 , note that from Eq. (9b) and from E (0)

2 in
Eq. (20) this field formally depends on ρ. Nevertheless, this
dependence does not survive the continuity conditions for
normal B, which is evident from Eq. (4b) (see details in the
Supplemental Material [27]). As a result C1,C2, D2, and D3

are independent of the rotation axis and, consequently, the
same holds for the fields H (1)

� , � = 1, 2, 3, and B(1)
1,2. By im-

posing the continuity conditions as discussed above we obtain
a set of linear equations for the unknown coefficients that can
be solved analytically. See the Supplemental Material [27]
for details and for explicit expressions of the coefficients for

FIG. 6. The resonating core-shell structure. (a) An inductor L is
inserted in D1 with ports connected to the inner and outer shells. (b)
|μ0C1| = 2F/S vs μr2 for various values of u = b/a. (c) The same as
(b), but for a different domain of μr2. (d) |μ0C1| = 2F/S vs u = b/a
for various values of μr2.

arbitrary εi and μi. Note that B(1)
1 = −μ1C1ẑ is uniform. It can

be increased by tuning μ2 such that C1 becomes singular. For
μ1 = μ3 = μ0 unbounded C1 can be achieved with moderate
μr2 < 0 (see the Supplemental Material [27]). The structures
for H (1) and B(1) are shown in Figs. 5(c) and 5(d).

The core-shell structure may exhibit rotation-induced gain
by letting the rotation-induced B(1) generate flux inside an
inductor. A possible configuration is shown in Fig. 6(a). An
inductor with inductance L is inserted into D1, with the cross
section normal to ẑ. The resistor RL represents the system’s
Ohmic loss. Note the polarity of the coil-shell connection with
respect to rotation. By following essentially the same analysis
as in Sec. III B 2, we obtain Eq. (18) for the eigenfrequencies,
where ω0 = (LCs)−1/2; Cs = 4πε2ab/d is the double-shell ca-
pacitance in R0; τ = (RL + Rr )Cs, with Rr being the radiation
resistance; and F = μ1C1S/2, where S is the inductor area;
see the Supplemental Material [27] for details. Figures 6(b)
and 6(c) present μ1C1 for μ1 = μ3 = μ0 vs μr2 and u = b/a.
C1 is unbounded at the μr2 < 0 values given by Eq. 20(b) in
the Supplemental Material [27].

Recall that while F is extremely small, due to the ω2
0

multiplication in the imaginary part of Eq. (18) F needs to
be only marginally larger than τ to produce observable gain.
We perform a preliminary parametric study of the complex
eigenfrequency. Note that [Im(ω1,2)]−1 is the characteristic
rise (decay) time of the rotation-induced gain (loss). Fig-
ure 7 shows Im{ω1,2} vs u = b/a for various values of a
for μr2 = −0.35 and μr1 = μr3 = εr2 = 1. Within this range
of parameters Re{ω1,2} is on the order of 1–20 MHz and
is provided in the Supplemental Material [27]. Calculations
are performed for Earth rotation rate � = 7.2722×10−5 (very
similar to Mars’s) and for � = 0.1. In all cases the inductor L
consists of a loop with N = 10 turns of a thin wire whose
diameter is 0.2 mm, and the loop radius is 0.75 times the
inner shell radius. We used standard expressions for the self-
inductance of thin wire loops available in the literature [17].
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FIG. 7. The imaginary part of the complex eigenfrequency, ωi =
Im{ω1,2}. (a) |ωi| in log scale, with no loss (R = 0), for the Earth
rotation rate (� = 7.2722×10−5). (b) |ωi| with R = RL + Rr = 10−6

and for the Earth rotation rate. Gain, corresponding to Im{ω} > 0,
is shown by circles. It is obtained whenever −σ�F > τ/2. Loss
(Im{ω} < 0) is shown by dots. Peak values are higher than those seen
in the plot but below the scan resolution. (c) The same as (b), but for
� = 0.1, resulting in a nearly 3 orders of magnitude increase in gain
and b/a bandwidth.

We assume RL = 0 in Fig. 7(a) and RL = 10−6 � in Figs. 7(b)
and 7(c), corresponding to superconductors and exceptionally
high-quality conductors. In all calculations we set the total
resistance to R = RL + Rr , where the radiation resistance Rr

is estimated with the standard expression provided in the
Supplemental Material [27] (see details there). The specific
values of Rr vary as a function of a and b, but in all the cases
shown it is on the order of 10−5 �.

IV. CONCLUSIONS

We have developed a systematic framework governing the
ED of rotating electrical circuits and systems in their rest

frame of reference R�. Rotation-induced effects such as ficti-
tious magnetic and electric charges and gain and instabilities
were reported. These effects may pave the way for various
circuit devices such as magnetic capacitors with fictitious
magnetic charge in which the charge and the associated H
field are proportional to the device voltage, and electric ca-
pacitors with fictitious electric charge in which the latter and
the associated E field are proportional to the device current.
The rotation-induced fictitious charges are proportional to the
rotation rate �. These effects lead to new implementations of
memristors with positive or even negative memristance and
their dualities. A Poynting theorem in R� was derived, and
it was shown that a power exchange between the rotating
platform and the electric circuit is possible in R�. Gain and
instabilities induced by rotation were studied in a general
setting of LC circuits, and several specific examples were pro-
vided. The rotation-induced gain and loss are manifestations
of the aforementioned power exchange laws. These findings
may pave the way to new materials, circuits, and energy har-
vesting technologies.

Finally, we note that rest-frame analysis of acoustic and
elastic waves in rotating bulk materials was developed and
studied for several decades, essentially in the context of geo-
physics (see, e.g., [34–36]). The interest there is focused
on the effect of rotation on wave trajectories and polariza-
tion for geophysical remote sensing applications. This class
of problems is fundamentally different from electromagnetic
problems since they can exist only inside materials, and
the material mechanics plays a pivotal role. Centripetal and
Coriolis forces affect the wave dynamics. The passage to
rest-frame quasistatic acoustics or elasticity theory of rotating
systems may find application in the field of acoustic metama-
terials, which consist of small mechanical inclusions [37,38].
While the acoustic equivalent of negative-index EM meta-
materials and the corresponding circuit elementlike building
blocks have been explored, the effect of rotation on the rest-
frame acoustic and elastic constitutive relations in this regime
of parameters still needs to be studied.
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