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The formation of pseudomagnetic fields is a well-known consequence due to lattice strain, which has consid-
erable effects on the electronic properties of graphene. To this end, strain engineering remains an effective route
to enable unconventional electronic properties. Particularly, pseudomagnetic fields due to compressive strain
have demonstrated unique advantages such as remarkably high intensities at relatively low magnitude of strains
(e.g., < 5%) in several experiments. For example, pseudomagnetic fields as high as 300 T have been observed in
buckled graphene nanobubbles. Recently, strong pseudomagnetic fields as high as 108 T have been measured in
periodically buckled monolayer graphene, responsible for its band flattening and correlated states. Nevertheless,
the general features and sensitivities of compressive strain-induced pseudomagnetic fields have been rarely
explored, posing challenges for realizing their full potential. In this paper, we carry out large-scale molecular
dynamics simulations to explore the properties of pseudomagnetic fields in buckled graphene nanobubbles,
which are the basic representative graphene structures under compressive strains. We reveal that compressive
strain can induce strong and sensitive pseudomagnetic fields for a variety of nanobubble shapes and boundary
relaxation conditions. We also discuss the effect of the microscopy probe tip, which is frequently used to tune
the morphologies and strain patterns. These results may offer guidance for designing electronic two-dimensional
structures enabled by compressive strain engineering.
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I. INTRODUCTION

The formation of pseudomagnetic fields is a well-known
consequence due to lattice strain, which has considerable
effects on the electronic properties of graphene [1,2]. Re-
cently, the periodical pseudomagnetic fields have been shown
to induce flat band dispersion in buckled monolayer graphene
[3], which could potentially offer an alternative platform to
study correlated states other than twisted bilayer graphene.
Controlling the pseudomagnetic field of graphene through
strain engineering is thus crucial for enabling unconventional
electronic properties. Over the years, tremendous attention
has been paid to manipulating the strain field in graphene.
Both triaxial [4] and uniaxial tensile loading [5] of patterned
graphene have demonstrated the capacity to achieve qua-
siuniform pseudomagnetic fields with large intensities. The
microscopy probe tip has also been frequently used not only
to measure the electronic states [2] but also to induce local-
ized strain field or morphological change by taking advantage
of the interaction between the probe tip and graphene. For
example, the localized deformation induced by the scanning
tunneling microscopy (STM) probe tip creates threefold sym-
metry pseudomagnetic fields, the distribution of which allows
the confinement of electrons like the effect of a quantum dot
[6]. Another recent example is the programmable formation of
graphene nanobubbles and threefold symmetry pseudomag-
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netic fields with the help of the atomic force microscope tip
[7]. There are also investigations on the pseudomagnetic fields
in a graphene nanobubble inflated with gas molecules [8].

Typical strain engineering considerations are based on ten-
sile deformation [4–8] (e.g., a graphene nanobubble inflated
with gas molecules [8], triaxial tensile loading [4], uniax-
ial tensile loading [5]). Compressive strain engineering, on
the other hand, remains an alternative route and has several
impressive demonstrations. For example, the pseudomagnetic
field in buckled graphene nanobubbles can reach as high as
300 T [2], while the strain is estimated to be ∼4%. Very
recently, remarkable experimental evidence on strong pseu-
domagnetic field as high as 108 T from periodically buckled
monolayer graphene hints at another possibility for accessing
correlated electronic states other than magic-angle twist bi-
layer graphene [3,9], although the magnitude of compressive
strains can be <5% [3]. This experimental evidence suggests
that compressive strain engineering can potentially offer a
much higher intensity of pseudomagnetic field than that of
tensile strain engineering and thus much stronger effects on
the dynamics of electrons. Nevertheless, most available the-
oretical and computational investigations are mainly focused
on tensile strain engineering; the general features and the sen-
sitivity of the pseudomagnetic field due to compressive strain
engineering have been rarely explored, posing challenges for
realizing its full potential.

To address the above issues, in this paper, we system-
atically investigate buckled graphene nanobubbles, which
are basic representative structural forms of graphene under
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FIG. 1. (a) Schematic of monolayer graphene (gray) on substrate (purple) under in-plane compression (red arrows). (b) Schematic of the
buckled nanobubble structure. (c) Schematic of the buckled nanobubble structure interacting with the probe tip (brown cone). (d) Schematic
showing three shapes of boundaries (triangular, hexagonal, and circular, marked by dashed lines) of nanobubbles. The atoms inside the
boundaries are free to move, while those outside the boundaries are fixed. (e) Illustration of atomic structure of the buckled nanobubble without
the probe tip. We employ a virtual substrate to support graphene. (f) Illustration of atomic structure of the buckled nanobubble interacted with
a probe tip, which is modeled as a sphere.

compressive strain. The graphene nanobubble study in this
paper is generated by buckling, which is induced by in-plane
compression. Using large-scale molecular dynamics (MD)
simulations, we reveal how the pseudomagnetic field is af-
fected by the geometry of the nanobubbles, the applied global
compressive strain, and the presence of the external micro-
scopic probe tip. Particularly, we find that the intensity of
the pseudomagnetic field can be high and very sensitive to
perturbation from strain field. Our study is expected to deepen
the understanding of pseudomagnetic field of graphene in
terms of compressive strain engineering.

II. COMPUTATIONAL MODELS AND METHODS

In this paper, we aim to reveal how the globally applied
in-plane uniform compressive strain and the interaction with
an external microscopic probe tip affect the pseudomagnetic
fields in buckled graphene nanobubbles of various shapes and
sizes. Specifically, the magnitude of compressive strain that
induced the buckling, the radius of the microscopic probe
tip, the shapes of nanobubbles (i.e., triangular, hexagonal, and
circular), and the nanobubble boundary conditions (i.e., fixed
boundary and relaxed boundary) are the influencing factors
under consideration in this paper.

Since the buckling problem due to compressive strain
concerns large deformation and is highly nonlinear and the
interactions with the probe tip are long-range van der Waals
forces, developing a continuum mechanics analytical theory
is not a straightforward task. Considering the scope of this
paper, we resort to MD simulations, which are performed with
LAMMPS [10]. In this paper, we are concerned with a graphene
nanobubble due to the in-plane compression-induced buckling
[Figs. 1(a) and 1(b)]. Initially, a flat graphene monolayer
is deposited on a substrate [Fig. 1(a)]. Then a displace-
ment field of uniform biaxial shrinking [indicated by the
red arrows in Fig. 1(a)] is applied to graphene to induce
compressive strain. In principle, a large in-plane shrinking

displacement field could induce the formation of buckled
nanobubbles [Fig. 1(b)]. Experimentally, the compressive
strain field could be introduced using a prestretched flexible
substrate [11], due to the difference in thermal expansion
coefficient [2], or due to the lattice mismatch [12]. We choose
to investigate circular, hexagonal, and triangular nanobubbles
because these simple shapes may be suitable for experimental
exploration.

The microscopy probe tip [Fig. 1(c)] has been frequently
used not only in characterizing the electronic states but also
as an effective tool to engineer the morphologies and strain
patterns in two-dimensional materials [13,14]. To this end,
how the probe tip affects the intrinsic pseudomagnetic field
in buckled graphene structures is an intriguing question that
has been subjected to investigation in this paper. In our MD
simulation, we simulate a STM probe tip composed of Pt
atoms. The shape of the tip is a sphere [Fig. 1(f)] with an
assigned radius. The simulation of the effect of the probe
tip follows the strategy outlined in earlier works [6,15]. The
probe tip is initially placed directly above the nanobubble and
then gradually moves away from the nanobubble along the
vertical direction. Due to the interaction between the tip and
the nanobubble, the height of the nanobubble would grad-
ually increase to its critical value, after which the tip loses
contact with the nanobubble. We investigate the out-of-plane
deflection of the nanobubble at the critical state where the
contact between the probe tip and the nanobubble is mini-
mum. In this paper, the tip size refers to the radius of the
probe tip.

Both fixed and relaxed boundary conditions are considered.
For fixed boundaries with triangular, hexagonal, and circular
shapes [Fig. 1(d)], the atoms outside the boundary are not
allowed to relax after the application of the shrinking dis-
placement field, while those atoms inside the boundary are
free to adjust their positions in response to the compressive
strain field. As a result, beyond a certain amount of applied
compressive strain, the graphene buckles into a nanobubble.
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For the relaxed boundary condition, some atoms outside the
boundary are allowed to move but are subjected to constraints
which limit their maximum displacement (more details are
discussed in related sections). In this paper, the nanobubble
size is defined as the diameter of the circular fixed boundary
or the diameter of the circumcircle of triangular and hexagonal
fixed boundaries.

In all simulations, the zigzag direction of graphene is
aligned with the x direction [Fig. 1(d)]. We use the AIREBO
potential to describe the C-C interactions inside graphene
[16]. The Lennard-Jones 9-3 potential is chosen for the in-
teraction between the graphene and the virtual substrate:

V(r) = ε
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r
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]
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Here, ε (energy unit) and σ (distance unit) are two parame-
ters of the potential, while r is the vertical distance between
the carbon and the virtual substrate plane. The virtual sub-
strate is located in the equilibrium position directly below the
graphene. In this paper, we are more focused on the buckling-
induced intrinsic pseudomagnetic field at the interior of the
nanobubble so that we use a parameter set (ε = 0.00001 eV,
σ = 2.9943 Å) that minimizes the effect of substrate inter-
action. Stronger substrate interaction usually only influences
the region close to the nanobubble boundary vertex (see Ap-
pendix A). It is expected that stronger substrate interaction
would effectively tighten the constraints from the boundaries.
Future work may be needed to systematically investigate the
effect of substrate interaction. The interatomic pair interac-
tion between platinum and carbon atoms is modeled using
the conventional Lennard-Jones 12-6 potential with εC−Pt =
0.0039744 eV, σC−Pt = 2.9422 Å. The parameters are deter-
mined through the customary Lorentz-Berthelot mixing rules,
using the platinum-platinum and carbon-carbon parameters
[17]. After the application of global in-plane compressive
strain, the graphene membrane is first relaxed for 10 ps to
allow the formation of a buckled nanobubble structure if
the compressive strain is large enough. Then the energy of
the system is minimized to obtain the optimized nanobub-
ble structure. The canonical (NVT) ensemble is used for the
dynamics run in the relaxation stage, and a Nosé-Hoover
thermostat is used to maintain the temperature at 5 K (see
Appendix B for a discussion of the effect of temperature).
Note that the typical temperature for STM measurement is
<5 K. The energy minimization uses the Hessian-free trun-
cated Newton algorithm until the total energy change between
successive iterations divided by the energy magnitude is
�10−10. From the optimized structure, the atomistic displace-
ment field of the nanobubble can be obtained, from which the
pseudomagnetic field can be calculated, as explained below.

In continuum mechanics, the strain tensor is written in
Cartesian material coordinates (Xi) as [8]

ui j=1
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)
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The displacement of each atom can be obtained by com-
paring the initial and final coordinates of each atom. Then
by numerical interpolation, a continuum displacement field
for the entire surface of the nanobubble is obtained. The

strain field can then be obtained by finding the gradient of
the displacement components according to Eq. (2). The lattice
distortions due to strain in graphene introduce effective gauge
field Aps in the Dirac Hamiltonian [18], leading to a pseudo-
magnetic field Bps. The strain-induced pseudogauge field Aps

is calculated from the strain components ui j as [6,19]

Aps = tβ

evF
(uxx − uyy, −2uxy), (3)

where β = 2.5 is the dimensionless constant, t = 2.8 eV is
the hopping energy, and vF = 1 × 106 ms−1 is the Fermi
velocity. Then the pseudomagnetic field can be calculated as
Bps = ∇ × Aps, which may be nonzero along the z direction.
The field value can be calculated as

Bps = tβ

evF

[
∂
(−2uxy

)
∂x

− ∂
(
uxx − uyy

)
∂y

]
. (4)

In this paper, the field intensity refers to the absolute value
of the field value, unless otherwise notified.

III. RESULT AND DISCUSSION

A. Intrinsic pseudomagnetic fields

We start our atomistic simulations on a representative
system that has been explored experimentally [2], where
the triangular nanobubble possesses a pseudomagnetic field
as high as 300 T. Although the strain fields and the re-
sulting pseudomagnetic fields have been analyzed by using
a triangular lattice [20] to model graphene [2], here, we
provide insights directly from atomistic simulations. In accor-
dance with experimental characterization [2], the triangular
nanobubble size in our model is 4.7 nm [Fig. 2(a)], where the
gray lines denote the boundary of the triangular nanobubble.
The applied global uniform in-plane compressive strain to
trigger the buckling is set to 0.035. Figure 2(a) shows the
out-of-plane deformed morphology of the buckled nanobub-
ble induced by the compressive strain. The deformation has
an axisymmetric tentlike shape. The height of the nanobubble
is ∼0.3 nm. Figures 2(b)–2(d) show the contour plots of the
components of the Lagrange strain tensor in the nanobubble.
For visual clarity, the strain field outside the boundary is
not shown (such a procedure is enforced for all figures until
otherwise notified). The normal strain components (uxx and
uyy) are negative due to the nature of buckling. The magnitude
of the normal strain near the fixed boundary is in general
larger than that in the central region. The shear strain can be
positive or negative depending on the location. The magnitude
of the shear strain also diminishes at the central region. Fig-
ures 2(e) and 2(f) plot the resulting pseudomagnetic field in
the triangular nanobubble. A relatively uniform strain-induced
pseudomagnetic field of ∼300 T across the central region
can be seen. There are also strong pseudomagnetic fields
localized near the boundary (including near the vertices). The
strong pseudomagnetic fields in the central region and near
the boundary would act to confine the motion of electrons.
The deformation profile of the nanobubble and the intensity
profile of the pseudomagnetic field explain the experimental
results well [2], validating our computational methods.
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FIG. 2. Simulation results for a representative buckled triangular nanobubble. The gray lines represent nanobubble boundaries. The
triangular nanobubble size is 4.7 nm. The applied global uniform in-plane compressive strain to trigger the buckling is 0.035. (a) Out-of-plane
deflection (h). (b)–(d) Strain components uxx , uyy, and uxy, respectively. (e) Top view of the pseudomagnetic field (Bps). (f) Perspective view of
the pseudomagnetic field. These results agree with experimental measurement, validating our computational methods.

Next, we discuss the effect of the nanobubble shapes
(Fig. 3). For illustration, the nanobubble size for three
shapes (triangular, hexagonal, and circular) of nanobubbles
is uniformly set to 4.7 nm, and the applied global in-plane
compressive strain is set to 0.03. Figure 3(a) is the result for

the triangular nanobubble. Although the applied compressive
strain only reduces by 0.005 compared with the case shown
in Fig. 2, the maximum pseudomagnetic field intensity in the
central region is reduced drastically to ∼150 T. This is the first
hint of the sensitivity of the pseudomagnetic field in buckled

FIG. 3. Shape-dependent simulation results for representative buckled nanobubbles of three shapes, showing out-of-plane deflection (h),
strain components (uxx , uyy, and uxy), and the pseudomagnetic field (Bps). The gray lines represent nanobubble boundaries of (a) triangular, (b)
hexagonal, and (c) circular shape. In all cases, the nanobubble sizes are 4.7 nm, and the applied compressive strains are 0.03.
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FIG. 4. Pseudomagnetic fields for nanobubbles of three shapes
and different sizes: (a) triangular, (b) hexagonal, and (c) circular.
The nanobubble sizes are 4.7, 9.3, and 14.0 nm, respectively. For all
cases, the applied compressive strains are 0.03. Generally, increasing
the nanobubble size complicates the field distribution patterns while
decreasing the interior pseudomagnetic field intensity.

graphene nanobubble with respect to the applied compressive
strain.

For hexagonal nanobubbles of the same size [Fig. 3(b)], the
distribution of the out-of-plane deflection and strain compo-
nents roughly follows the pattern as in triangular nanobubbles
[Fig. 3(a)]. Unlike the triangular nanobubble, the pseudo-
magnetic field intensity is almost zero at the central region.
The high-intensity fields with alternating signs are located
at the regions near the six vertices; together they represent
a threefold symmetry. The field intensity of the region near
the six vertices reaches ∼150 T. For circular nanobubbles of
the same size [Fig. 3(c)], the pseudomagnetic field intensity
at the interior region further reduces. The maximum intensity
of the pseudomagnetic field (∼200 T) is observed near the
circular boundary. At the interior region of the nanobubble,
we can still observe a threefold symmetry pseudomagnetic
field, with the maximum field intensity of ∼30 T. Briefly, a
buckled nanobubble of higher symmetry shape suppresses the
field intensity at the interior region while enhancing the field
intensity close to the boundary. Pseudomagnetic fields always
have threefold symmetry because the applied compressive
strain is axisymmetric.

Then we proceed to the discussion of the effect of the
nanobubble sizes. Figures 4(a)–4(c) plot the pseudomagnetic
field in triangular nanobubbles with sizes of 4.7, 9.3, and 14.0
nm, respectively. Same as in Fig. 3, the applied compressive
strains are 0.03. It is observed that, as the triangular nanobub-
ble size increases, the pseudomagnetic field at the interior
region no longer appears to be uniform, although it is still
technically under triaxial loading [4]. Here, we see that tri-
axial compressive loading does not always generate a uniform
distribution of pseudomagnetic fields, which can be distinct
from the tensile triaxial loading case [4]. The characteristic

observation is that an increasing number of embedding re-
gions with opposite signs of the pseudomagnetic field appears
as the nanobubble size increases [Figs. 4(b) and 4(c)]. For
example, in Fig. 4(c), the positive and negative pseudomag-
netic field intensities are 70 and 40 T, respectively. The field
intensity at the interior regions decreases as the nanobubble
size increases, although the applied compressive strains are
kept the same. The field intensities are still high at the regions
near the boundary lines and the vertices due to large strain
gradients near the location of strong spatial constraints. For
hexagonal and circular shapes, the increase in bubble size
appears to have even more complex effects. For the smallest
size model as shown in Fig. 4(d), three narrow linelike regions
with zero field intensity passing through the center demarcate
the hexagon into six regions with nontrivial field intensity
(∼150 T), arranging themselves in a pattern of threefold sym-
metry. As the hexagonal nanobubble size doubles, a ring
region with zero field intensity emerges, surrounding the cen-
ter of the hexagon [Fig. 4(e)]. Together with the three linelike
regions, they demarcate the hexagon into multiple regions,
where neighboring regions carry opposite signs. The overall
field intensities at the interior regions also decrease, while
the field intensities are still the highest at regions close to
the boundary. As the hexagonal bubble size further increases
[∼3 times the size in Fig. 4(d)], the distribution pattern near
the vertices becomes even more complicated [Fig. 4(f)], while
the overall field intensities further decrease. The results from
the circular shaped buckled nanobubble [Figs. 4(g)–4(i)] also
exhibit a similar trend. The increase in the nanobubble size
complicates the field distribution patterns while decreasing the
interior pseudomagnetic field intensity.

It is important to realize that the pseudomagnetic fields
in buckled nanobubbles due to compressive strain are fun-
damentally different than those in pressurized nanobubbles
due to tensile strain [8]. First, for pressurized nanobubbles
[8], except in highly anisotropic geometries, the pseudomag-
netic field is generally significant only near the nanobubble
boundaries. The reason is that, under gas pressure, the inte-
rior region of the nanobubble displays nearly isotropic strain,
which has almost zero strain gradient, leading to almost
zero pseudomagnetic field [8]. Nevertheless, in the buck-
led nanobubbles, the interior region of the bubble can still
have very strong pseudomagnetic fields because the strain
is anisotropic due to buckling instability. Second, for pres-
surized triangular nanobubbles [8], the pseudomagnetic field
at the interior region would always be uniform due to the
triaxial tensile loading state [4]. Nevertheless, nonuniform
pseudomagnetic fields can be found at the interior region of
the buckled triangular nanobubble under triaxial compressive
loading [Fig. 4(c)]. This is caused by the anisotropic strain
gradient due to buckling instability. Third, high pressure is
needed to achieve strong intensity of pseudomagnetic fields in
pressured nanobubbles [8]. Nevertheless, strong pseudomag-
netic fields in buckled nanobubbles can be achieved for only a
small amount of compressive strain.

Then we carry out large-scale MD studies to investigate the
averaged intensity of the pseudomagnetic fields at the interior
regions of three shapes of nanobubbles as a function of the
nanobubble size and applied compressive strain. The aver-
aged field intensity of the nanobubbles refers to the averaged
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FIG. 5. The averaged intensity of pseudomagnetic field at interior regions of nanobubbles of three shapes as a function of the nanobubble
size and applied compressive strain: (a) triangular, (b) hexagonal, and (c) circular. Data points on the same curve have the same compressive
strain. In general, the intensity increases when the compressive strain increases or the nanobubble size decreases. Some exceptions found in
the case of small circular nanobubbles are due to the transition of buckling morphology. See more discussions in main text.

absolute value of the field values at the interior region of the
nanobubble since we are more interested in the field intensity
away from the boundary. The largest circumscribed radius
of the nanobubble is ∼23.4 nm. For this size, the triangular
nanobubble contains ∼9000 atoms, the hexagonal nanobub-
ble contains ∼18 000 atoms, and the circular nanobubble
contains ∼22 000 atoms. In the subsequent discussion, the in-
terior region of the nanobubble is quantitatively defined as the
region where its closest distance to the nanobubble boundary
is > 0.4 nm.

In the case of the triangular nanobubble, at small global
compressive strain (i.e., 0.01 and 0.02), the field intensity is
very low (∼0 and 10 T, respectively) for all sizes [Fig. 5(a)].
However, as the global compressive strain increases to 0.03,
the field intensities increase a lot due to the drastic increase in
deflection (see Appendix C). At strain 0.03, the field intensi-
ties for all sizes are > 40 T. For the smallest bubble size (4.7
nm), the field intensity at strain 0.03 is already > 100 T, and
the field intensity further increases to ∼200 T at strain 0.04
[Fig. 5(a)]. Such sensitivity over applied compressive strain is
observed for all nanobubble sizes.

On the other hand, at the same applied compressive strain,
the larger the nanobubble size, the smaller the field intensity.
The above trend is also observed in the case of the hexagonal
bubble [Fig. 5(b)], although the field intensity is lower than
that of the triangular nanobubble for the same nanobubble
size and applied compressive strain. The field intensities in
the case of the circular nanobubble are the lowest among all
shapes [Fig. 5(c)]. However, different trends are observed for
the effect of nanobubble sizes at large applied compressive
strains, which are not observed for the other two shapes. For
example, at strain 0.04 and 0.05, the field intensity for size
4.7 nm is lower than that for size 9.3 nm. The reason is that,
for circular nanobubbles, when the bubble size increases, due
to the constraint of the circular boundary, ripples appear (see
Appendix C). Typically, the strain gradients at these ripples
are very large and can lead to high field intensity compared
with nonrippled bubble morphology, which explains the trend
at strains beyond 0.04. Furthermore, we see that, at strain 0.03,
the field intensity for size 9.3 nm is smaller than those of
size 4.7 and 14.0 nm. This is because, for nonrippled bubble
morphology (see Appendix C), large nanobubble size reduces
the strain gradients at the same applied compressive strain.

B. Probe tip engineered pseudomagnetic fields

As mentioned in the introduction, the microscopy probe
tip is frequently used to interact with the morphologies and
strain patterns in two-dimensional materials [6,7,13,14]. In
this section, we explore how the presence of the microscopy
probe tip affects the intrinsic pseudomagnetic fields in buck-
led graphene structures. Particularly, we are interested in the
sensitivity of the pseudomagnetic field against the tip-induced
perturbation.

Figure 6(a) plots the original out-of-plane deflections (h)
of three sizes of triangular nanobubbles. Figure 6(b) plots
the tip-perturbed out-of-plane deflections (h + �h) of trian-
gular nanobubbles. Figure 6(c) plots the amount of change
in out-of-plane deflection (�h) for visual clarification. We
can see that the heights of the nanobubbles increase due to
the perturbation of the probe tip. The larger the nanobubble
size, the larger increase in height. For the nanobubble of
size 4.7 nm, the change in deflection is relatively uniform.
This is because a tip whose diameter is comparable with the
nanobubble size can almost affect the entire nanobubble. As
the nanobubble size increases while keeping the tip size fixed,
the change in out-of-plane deflection (�h) of the nanobubble
appears more localized under the tip. The change in deflection
(�h) in the center region of the nanobubble is significantly
greater than that near the boundary, meaning that the tip
mainly affects the area directly below it. Figure 6(d) shows the
amount of relative change in out-of-plane deflection (�h/h).
It is found that the relative change in out-of-plane deflection
for the nanobubble size of 4.7 nm appears rather uniform
and is overall significantly larger than those of other bubble
sizes. The above results show that a larger ratio of the tip size
over the nanobubble size renders more global perturbation and
higher relative change in local out-of-plane deflections.

The above sensitive change in deflections explains the
high sensitivity of pseudomagnetic fields against tip-induced
perturbation. Figure 6(e) plots the original pseudomagnetic
field (Bps) of triangular nanobubbles. Figure 6(f) plots the
tip-perturbed pseudomagnetic field (Bps + �Bps) of trian-
gular nanobubbles, which still assume threefold symmetry.
Figure 6(g) plots the amount of change in the pseudo-
magnetic field (�Bps) for visual clarification, and Fig. 6(h)
shows the amount of relative change in pseudomagnetic
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FIG. 6. The effect of microscopy probe tip on (a)–(d) the deflections and (e)–(h) pseudomagnetic fields in buckled graphene nanobubbles.
�h and �Bps are tip-induced change in the out-of-plane deflection and pseudomagnetic field, respectively. Each column is labeled with
corresponding nanobubble sizes (i.e., 4.7, 9.3, and 14.0 nm). The tip size is 2 nm, and the applied compressive strain is 0.02, for all cases.
Larger ratio of tip size over nanobubble size renders stronger perturbation effects. Please note that, here, the field value of percentage increase
is calculated on individual field point.

field (�Bps/Bps). The distribution patterns of tip-perturbed
pseudomagnetic fields are found to follow very much those of
tip-perturbed deflections. The tip-perturbed pseudomagnetic
fields can be a few times larger than their original values. A
larger ratio of the tip size over the nanobubble size renders
stronger perturbation effects.

Next, we investigate the effects of the probe tip size on
several representative nanobubble models where the nanobub-
ble size and globally applied compressive strain are fixed.
Figure 7(a) shows the dependence of the maximum inten-
sity of pseudomagnetic fields at the interior regions of three
shapes of nanobubbles as a function of the probe tip size,
where all nanobubbles have the same size (i.e., 9.3 nm) and
the same applied compressive strain (i.e., 0.02). A threshold
value of tip size (∼5 nm) can be identified in these cases.
For tip size smaller than the threshold value, the tip-perturbed
pseudomagnetic field intensity increases drastically as the tip
size increases. For tip size larger than the threshold value, the
tip-perturbed pseudomagnetic field intensity increases with
a much smaller rate as the tip size increases and gradually
reaches a plateau. Figures 7(b) and 7(c) plot the amount of
change and relative change due to the probe tip, respectively,
where similar trends are observed.

Such a dependence on tip size can be interpreted as follows.
For smaller tip sizes below the threshold value, the area of
effect from the tip on the graphene nanobubble (i.e., the region
where the carbon atoms can strongly feel the van der Waals
force from the tip) expands as the tip size increases, which
results in increased field intensity. As the tip size exceeds
the threshold value, the area of effect from the tip covers the
entire bubble. Because van der Waals forces decay rapidly

over long distances, the further increases in tip size could
not significantly change the overall resultant force of the tip
acting on the bubble, which explains the saturation trend. We
also note that there is an unusual decrease in field intensity
when the tip size increases from 4 to 5 nm. Based on the
deformation profile, we find that, as the tip size approaches the
threshold value, the energy-minimized tip-perturbed heights
of nanobubbles have a sudden decrease [Fig. 7(d)], which in
general could lead to decreased field intensity because the
intensity of strain gradient is expected to decrease. Beyond
the threshold value, the heights of nanobubbles start to slowly
increase, in accordance with the saturation trend.

Furthermore, we investigate the effects of globally ap-
plied compressive strain on several representative nanobubble
models where the nanobubble size and tip size are fixed.
Figure 8(a) shows the resulting maximum pseudomagnetic
field intensity at the interior regions of three different shapes
of nanobubbles but with the same nanobubble size (i.e., 9.3
nm) and the same tip size (i.e., 2 nm). We find that the
dependence of field intensity on the applied compressive
strain can be divided into two regimes in these cases. When
the strain is ∼0–0.015, the out-of-plane deflections for all
nanobubbles without the tip are close to zero so that the
intensities of the strain-induced pseudomagnetic field are zero
(see Appendix D). Within such a strain range, as the strain
increases, tip-perturbed pseudomagnetic field intensities also
increase. The larger the strain, the larger the rate of increase
in �Bps [Fig. 8(b)]. However, such trends do not continue
when the strain increases beyond 0.015, where we see that the
rate of increase in �Bps slows down as strain increases, and
eventually �Bps decreases. This is generally because larger
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FIG. 7. Characterizations of pseudomagnetic fields at (a)–(c) the interior regions and (d) heights of nanobubbles of three shapes as a
function of the probe tip size, where all nanobubbles have the same size (i.e., 9.3 nm) and the same applied compressive strain (i.e., 0.02).
(a) Maximum field intensity at the interior region of nanobubbles. (b) The amount of increment due to the presence of tip. (c) The amount of
relative change. The tip-perturbed effects tend to saturate as the tip size increases. See more discussions in main text.

compressive strain induces a buckled nanobubble, which is
much stiffer and less flexible than its prebuckling flat state
(i.e., the out-of-plane deflection close to zero), so that it is
generally harder for the tip to induce strong local deformation;
therefore, the enhancing effect from the tip reduces. How-
ever, exceptions may occur when the tip further induces new

buckled morphology. For the case of the circular nanobubble
shown in Fig. 8(b), as the strain approaches 0.03, the �Bps

again increases. The reason is that (see Appendix D), at such
strain, the tip can further induce the formation of ripples on the
buckled nanobubble. The emergence of such ripples, which
host large strain gradients, causes the increase in �Bps.

FIG. 8. Characterizations of pseudomagnetic fields at the interior regions of nanobubbles of three shapes as a function of applied
compressive strain, where nanobubble size and tip size are all 9.3 and 2 nm, respectively. (a) Maximum field intensity at the interior region of
nanobubbles. (b) The amount of increment due to the presence of tip. The probe tip can drastically increase field intensity below strain 0.015
because the original state of graphene is flat, and the tip can feasibly induce out-of-plane deflection. At larger strains, the trend in �Bps appears
complicated due to the buckled morphology. See more discussions in main text.
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FIG. 9. Out-of-plane deflection (h), strain components (uxx , uyy, and uxy), and the pseudomagnetic fields (Bps) for triangular and hexagonal
nanobubbles with fixed [i.e., (b) and (d)] and relaxed [i.e., (a) and (c)] boundaries. The gray lines represent original boundaries. For all cases,
the nanobubble size and applied compressive strain are 4.7 nm and 0.03, respectively.

C. Effect of boundary relaxation

In the experiments, it might be difficult to fabricate a
nanobubble with a strictly fixed preassigned boundary. To
assess the effect of possible boundary relaxation in experi-
ments, we also consider the relaxed boundary condition as
described below. To assign relaxed boundaries in triangu-
lar nanobubbles, each atom at the vertex is subjected to a
spring force to prevent it from moving far away from its
initial position, with the spring constant taken as 0.1 eV/Å2

(see Appendix E for a discussion of the effect of the spring
constant). In addition, a circular fixed boundary whose ra-
dius is 1 nm larger than the radius of the circumcircle of
the triangular nanobubble is assigned so that atoms out-
side this additional circular boundary are not allowed to
move. A similar assignment can be applied to the hexagonal
nanobubbles. Since the relaxed circular nanobubble is largely
analogous to the circular nanobubble of a larger fixed bound-
ary, the following discussions mainly focus on the effect of
the relaxed boundary condition of triangular and hexagonal
nanobubbles.

Under the relaxed boundary condition, the out-of-plane
buckled region expands beyond the original fixed boundary
(see Appendix F). Because more atoms are allowed to move in
the out-of-plane direction, the height of bubbles with relaxed
boundaries in Fig. 9(a) is greater than bubbles with fixed
boundaries in Fig. 9(b). The strain fields (uxx, uyy, and uxy) also

differ from the case of fixed boundaries, while the symmetry
remains. It can be further seen that the nanobubble with the
fixed boundary condition in general has higher field inten-
sity than the nanobubble with the relaxed boundary condition
(note that the comparison is made on the region enclosed by
the original boundary). This is because the relaxed boundary
can generally reduce the magnitude of strain gradient within
the area enclosed by the original fixed boundary. Furthermore,
the distribution of pseudomagnetic fields inside the region
enclosed by the original fixed boundary also has threefold
symmetry, where a uniform pseudomagnetic field appears
across the central region of the nanobubble in Fig. 9(a). In
a word, the boundary relaxation generally preserves the rota-
tional symmetry of pseudomagnetic fields and reduces their
intensities. The above conclusion generally applies to the
relaxed hexagonal boundary [Figs. 9(c) and 9(d)] as well,
although more complicated distribution patterns of pseudo-
magnetic fields are found.

On a final note, in the case of the relaxed boundary, ef-
fects of the probe tip and the applied strain are expected
to be largely consistent with the case of the fixed boundary
because the relaxed boundary is qualitatively equivalent to a
fixed boundary that encloses a larger area. For example (see
Appendix F), the probe tip can enhance the field intensity
of relaxed triangular bubbles, and the rate of enhancement
reduces at larger applied strain.
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FIG. 10. Effect of the virtual substrate interaction on the out-of-plane deflections and pseudomagnetic fields of triangular nanobubbles. For
all cases, the nanobubble size and applied strain are 4.7 nm and 0.035, respectively. (a) and (d) are results for ε = 0.00001 eV, while (b) and
(e) are results for ε = 0.00284 eV [a much stronger interaction that mimics the van der Waals (vdW) interaction between graphene layers].

IV. SUMMARY

We systematically investigated the properties of com-
pressive strain-induced pseudomagnetic fields in buckled
graphene nanobubbles, which are the basic representative
structures under compressive strains. Using MD simulations,
we first validate our computational methods by explaining ex-
perimental observation [2] of a buckled triangular nanobubble
possessing a pseudomagnetic field as high as 300 T. Then
we investigate the effect of the nanobubble shape (triangular,
hexagonal, and circular), the nanobubble size, applied com-
pressive strain, and the presence of the microscopy probe tip
(which is frequently used to interact with the morphologies
and strain patterns). In general, we find that the pseudomag-
netic field in buckled graphene nanobubbles is strong and
highly sensitive to the applied compressive strain. A small
increase in the applied strain may drastically increase the
intensity of pseudomagnetic fields. In addition, coupled with
the nanobubble size and the applied compressive strains, the
presence of the probe tip can further induce significant local
changes in the pseudomagnetic fields. Finally, we discuss the
effect of the relaxed boundary which is closer to the actual
experiment. In general, the field intensity is reduced due to
boundary relaxation; nevertheless, its sensitivity against ap-
plied compressive strain and probe tip perturbation remains.
Our work fills the gap of understanding on intensities and
distribution patterns of the pseudomagnetic fields of buck-
led graphene nanobubbles with atomistic resolutions. These
results may offer further guidance for designing electronic
two-dimensional structures enabled by compressive strain en-
gineering.
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APPENDIX A: EFFECT OF SUBSTRATE INTERACTION

Figure 10 shows the effect of the virtual substrate inter-
action on the out-of-plane deflections and pseudomagnetic
fields of triangular nanobubbles. Although the value of epsilon
has a huge increase, changes in the out-of-plane deflections

FIG. 11. Minimized (left column) and dynamic averaged (right
column) (a) out-of-plane deflection and (b) pseudomagnetic field of
triangular nanobubbles. For all cases, the nanobubble size, applied
strain, and simulation temperature are 4.7 nm, 0.035, and 5 K respec-
tively. The dynamic averaged field value is obtained by averaging
the corresponding data for every 1 ps in a period of dynamics run of
50 ps under given temperature.
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FIG. 12. Effects of the temperature on the dynamic averaged (a) out-of-plane deflection and (b) pseudomagnetic field of triangular
nanobubbles. Each column is labeled with the simulated temperature. For all cases, the nanobubble size and applied strain are 4.7 nm and
0.035, respectively. See caption of Fig. 11 for the procedure of obtaining the dynamic averaged results.

and pseudomagnetic fields are focused on the region near the
nanobubble boundary vertex. The influence is much smaller
at the central region of the nanobubble. It is expected that
stronger substrate interaction would effectively tighten the
constraints from boundaries.

APPENDIX B: EFFECT OF TEMPERATURE

Figure 11 shows that the minimized and dynamic average
results are similar. Figure 12 shows that when the temperature
is high, the pseudomagnetic field becomes noisy and may
be hard to measure experimentally. Therefore, it is necessary
to lower the temperature. Note that the typical temperature
for STM measurement is below 5 K. Here our computa-
tion suggests that as the temperature is reduced to about
10 K, the pseudomagnetic field approaches a stable state.
In comparison with Fig. 11, the distributions and intensities
of pseudomagnetic fields at 5 K and 10 K begin to look
similar.

APPENDIX C: RIPPLE FORMATION AT LARGE STRAIN

Figure 13 shows the out-of-plane deflections at large strain
for triangular nanobubbles, where apparent ripple formation
is not observed. Figure 14 shows the ripple formation at large
strain for circular nanobubbles.

APPENDIX D: EFFECT OF TIP ON
NANOBUBBLE BUCKLING

Figure 15 shows the effect of tip for triangular nanobub-
bles. When the applied strain is less than 0.015, the out-plane
deflection is very small so that the probe tip can cause a sig-
nificant height variation. As the strain continues to increase,
the effect of probe tip on the perturbation of nanobubble
height diminishes, which means that the probe tip is no longer
playing a major role. Figure 16 shows the effect of tip for
circular nanobubbles. As the applied strain increases from
0.022 to 0.03, the surface of the circular nanobubble without
probe tip remains ripple-free. After introducing the probe tip,
ripples appear when the strain is increased to 0.028. The strain
gradients and corresponding pseudomagnetic field intensities

FIG. 13. (a) Out-of-plane deflections and (b) pseudomagnetic fields of triangular nanobubbles with different applied compressive strains.
Each column is labeled with corresponding strains (i.e., 0.02, 0.03, 0.04, and 0.05). The nanobubble size is 4.7 nm in all cases.

195417-11



XIAOYI YUAN AND SHUZE ZHU PHYSICAL REVIEW B 107, 195417 (2023)

FIG. 14. Out-of-plane deflections [i.e., (a) and (c)] and pseudomagnetic fields [i.e., (b) and (d)] of circular nanobubbles. The applied
compressive strain is 0.03 for (a) and (b). The applied compressive strain is 0.04 for (c) and (d). Each column is labeled with corresponding
nanobubble sizes (i.e., 14.0, 9.3, and 4.7 nm).

FIG. 15. The height of a nanobubble as a function of the applied
compressive strain for triangular nanobubbles with and without the
probe tip. For all data points, the nanobubble size and tip size are 9.3
and 2 nm, respectively.

are high at these ripples. The rippling effects are more signif-
icant when the applied strain is 0.03, which further enhances
the field intensity. This is the source of the abnormal trend in
Fig. 8(b).

APPENDIX E: EFFECT OF THE DEGREE
OF BOUNDARY RELAXATION

Figure 17 shows the effect of the degree of boundary relax-
ation. The smaller the spring constant, the more relaxed the
boundary so that the pseudomagnetic field intensity is slightly
reduced at the interior region enclosed by the original fixed
boundary. The distribution pattern changes in response to the
different degree of relaxation.

APPENDIX F: TRIANGULAR NANOBUBBLES WITH
RELAXED BOUNDARY

Figure 18 shows the additional changes in the in-plane
displacements and out-of-plane deflection for triangular
nanobubbles after the relaxed boundary condition is applied.
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FIG. 16. The out-of-plane deflection of circular nanobubbles (a) without and (b) with the effect of probe tip. Each column is labeled with
the corresponding applied compressive strain. For all cases, the nanobubble size and tip size are 9.3 and 2 nm, respectively.

FIG. 17. (a) Out-of-plane deflection and (b) pseudomagnetic field of triangular relaxed nanobubbles with different degree of boundary
relaxation. The gray lines represent original boundaries. Each column is labeled with the value of spring constant. The spring constant is used
to characterize the degree of boundary relaxation. For all cases, the nanobubble size and applied strain are 4.7 nm and 0.035, respectively.

FIG. 18. Additional changes in the in-plane displacements (ux , uy) and out-of-plane deflection (h) for triangular nanobubbles after the
relaxed boundary condition is applied. The gray lines represent original boundaries. The nanobubble size and applied compressive strain are
4.7 nm and 0.03, respectively.
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FIG. 19. Maximum intensity of pseudomagnetic field at the interior region enclosed by the original fixed boundary as a function of the
applied compressive strain for triangular relaxed nanobubbles: (a) field intensity and (b) increment. The nanobubble size and tip size are fixed
at 9.3 and 2 nm, respectively.

Figure 19 shows that for relaxed nanobubbles without the tip,
when the strain is less than 0.015, the pseudomagnetic field
intensities in nanobubbles are all close to zero. This means
that there is basically no deformation in relaxed nanobubbles
at this strain. Within such strain range, as the strain increases,
the tip-perturbed intensity of pseudomagnetic field also in-
creases. The larger the strain, the larger the increase in �Bps

[Fig. 19(b)]. However, such trend does not continue when the

strain increases beyond 0.015, where we see that the rate of
increase in �Bps reduces as strain increases, and eventually
�Bps decreases. This is similar to the explanation for the
abnormal trend in Fig. 8. At larger compressive strain, the
buckled nanobubble forms so that the entire nanobubble struc-
ture is more rigid so that the tip is generally harder to induce
strong local deformation, therefore the enhancing effect from
the tip reduces.
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