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Seebeck coefficient of two-dimensional Dirac electrons in an organic conductor under pressure
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The Seebeck coefficient, which is proportional to a ratio of the thermoelectric conductivity to electrical con-
ductivity, has been examined for Dirac electrons in the organic conductor α-(BEDT-TTF)2I3 [BEDT-TTF denotes
a molecule given by bis(ethylenedithio)tetrathiafulvalene] under a uniaxial pressure using a two-dimensional
tight-binding model with both impurity and electron-phonon (e-p) scatterings. We calculate an anomalous
temperature (T ) dependence of the Seebeck coefficient Sν with ν = x (perpendicular to the molecular stacking
axis) and y, which shows Sν > 0 with a maximum at high temperatures and Sν < 0 with a minimum at low
temperatures. The microscopic mechanism of such a sign change of Sν is clarified in terms of the spectral
conductivity. The result is compared with experiments on α-(BEDT-TTF)2I3.
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I. INTRODUCTION

The two-dimensional massless Dirac fermions [1],
which show a linear spectrum around the Dirac point,
have been studied extensively. Several properties as a
bulk material are explored in an organic conductor [2]
given by α-(BEDT-TTF)2I3, where BEDT-TTF denotes
bis(ethylenedithio)tetrathiafulvalene [3]. The conductor ex-
hibits a zero-gap state (ZGS) [4] and the transport property is
characterized by the density of states (DOS), which vanishes
linearly at the Fermi energy [5]. The explicit band structure of
the Dirac cone is obtained using a tight-binding (TB) model,
where transfer energies under pressures are estimated from the
extended Hückel method [6,7]. The Dirac cone was verified
by the first-principles density functional theory (DFT) calcu-
lation [8]. Further, a two-band model [9,10] has been proposed
to examine Dirac electrons in an organic conductor.

Characteristic properties of the Dirac cone appear in the
temperature (T ) dependence of physical quantities. Magnetic
susceptibility with a T linear behavior at low temperatures
shows a good correspondence between the theory and experi-
ment [11–13]. The chemical potential μ, which also depends
on T , takes a significant role in the transport. The reversal
of the sign of the Hall coefficient occurs when μ becomes
equal to the energy of the Dirac point. Such a sign reversal of
the Hall coefficient was proposed theoretically by assuming
the extremely small amount of electron doping [14]. The sign
reversal was also observed experimentally in the Hall conduc-
tivity of α-(BEDT-TTF)2I3 [15].

Since the conductivity of Dirac electrons is fundamen-
tal as the transport, a two-band model with the conduction
and valence bands has been studied, where the static con-
ductivity at absolute zero temperature remains finite with a
universal value, i.e., independent of the magnitude of impu-
rity scattering owing to a quantum effect [16]. At absolute
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zero temperature, the tilting of the Dirac cone provides the
anisotropic conductivity and the deviation of the current from
the applied electric field [17]. At finite temperatures, the con-
ductivity depends on the magnitude of the impurity scattering,
�, which is proportional to the inverse of the lifetime by
the disorder. With increasing temperature, the conductivity
increases for � � T [18]. Although a monotonic increase in
the conductivity is expected for such a model, the measured
conductivity (or resistivity) on the above organic conduc-
tor shows an almost constant behavior at high temperatures
[19–23]. This is a noticeable transport of the Dirac electron
in the presence of the electron-phonon (e-p) interaction, since
the resistivity of the conventional metal at high temperatures
increases linearly with respect to T due to the e-p scattering.
The resistivity showing a nearly constant behavior at high
temperatures is explained by the acoustic phonon scatterings
using a simple two-band model of the Dirac cone without
tilting [24]. Although the effect of the e-p scattering at high
temperatures is qualitatively understood, the model should be
improved to explain the conductivity of the actual organic
conductor, where the energy band shows deviation from the
linear spectrum [25]. Thus, the TB model with transfer en-
ergies of α-(BEDT-TTF)2I3 is examined to show that the
presence of acoustic phonons gives rise to conductivity being
nearly constant at high temperatures [26].

In addition to the electric conductivity, it is of interest to
examine the thermoelectric (i.e., Seebeck) effect on the above
model, where the T dependence of μ takes a crucial role. The
Seebeck coefficient can be obtained microscopically in terms
of linear response theory [27,28]. However, we have to be
careful in treating the heat current because there are several
forms of the heat current depending on the Hamiltonian [29].
In the case with impurity potentials and electron-phonon inter-
actions, Jonson and Mahan [30] showed that the heat current
JQ can be expressed as

JQ = Jkin
Q + Jpot

Q + Je−p(I)
Q + Je−p(II)

Q + Jph
Q (1)
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(see, also, Ref. [29]), where Jkin
Q , Jpot

Q , and Jph
Q represent the

heat current operators originating from the kinetic energy
of electrons, from the (impurity) potentials, and from the
phonon Hamiltonian, respectively. The heat current due to the
electron-phonon interaction, Je−p

Q , is divided into two con-

tributions. If one takes account of only Jkin
Q + Jpot

Q + Je−p(I)
Q

as the heat current operator, one can show that Eqs. (14) and
(15) below (called the Sommerfeld-Bethe relation) hold [29].
However, Je−p(II)

Q and Jph
Q do not satisfy the Sommerfeld-

Bethe relation and will give additional contributions in the
electrothermal conductivity [29,30]. For example, Jph

Q leads
to the phonon drag effect [29,31,32]. Jonson and Mahan also
discussed that the contribution from Je−p(II)

Q is small in nearly
free electron systems. Thus, we do not consider this term
and, in the following, we use the Sommerfeld-Bethe relation
leaving the phonon-drag problem as a future problem.

So far, there are several theoretical studies on the Seebeck
(and Nernst) effect in the Dirac electron systems [33–37],
where the Seebeck coefficient exhibits the variety of the sign.
In this paper, we study the Seebeck coefficient for the ZGS
of Dirac electrons in the two-dimensional organic conductor,
α-(BEDT-TTF)2I3. There have been several experimental and
theoretical studies on this material. As for the experiments, the
ZGS has been obtained under both uniaxial pressures above
Pa = 5 kbar and hydrostatic pressures above 1.5 GPa [2].
Under the uniaxial pressures, the ZGS was found only for
Pa corresponding to the pressure along the a direction [21].
There are several measurements of resistivity suggesting the
ZGS under the hydrostatic pressures [19,20,23]. Regarding
the Seebeck coefficient, the measurement has been performed
only for hydrostatic pressures [38,39], where the sign change
of the Seebeck coefficient with decreasing temperature oc-
curs along the b direction [38]. However, another experiment
[39] exhibits the positive Seebeck coefficient without the sign
change. It could be ascribed to the effect of the hole doping
since the latter material is a different sample from the former
one.

As for the theory, there is a work discussing the sign rever-
sal for the Seebeck coefficient of α-(BEDT-TTF)2I3 under the
hydrostatic pressure [35]. However, the sign of the Seebeck
coefficient for the b direction obtained in this theory disagrees
with that of the experiment [38]. This issue remains as a
future problem. In the present paper, we examine the Seebeck
coefficient for uniaxial pressures, although the experiment has
not yet been performed. We will show the sign change of the
Seebeck coefficient in this case.

The present paper is organized as follows. First, the model
and formulation to calculate the Seebeck coefficient for α-
(BEDT-TTF)2I3 with 3/4-filled band are given. Next, after
calculating the T dependence of the chemical potential, we
show the Seebeck coefficient with the electric conductiv-
ity, which is analyzed in terms of the spectral conductivity.
Finally, discussions, summary, and comparison with the ex-
periment are given.

II. FORMULATION

We consider a two-dimensional Dirac electron system per
spin, which is given by

H = H0 + Hp + He−p + Himp. (2)
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FIG. 1. (a) Crystal structure, where there are four BEDT-TTF
molecules (A, A′, B, and C) in the unit cell indicated by red lines,
which forms a square lattice. Note that x (y) corresponds to the b (a)
direction, which are perpendicular (parallel) to the molecular stack-
ing axis. Seven transfer energies are shown by a1, . . . , a3, b1 . . . b4

for the nearest-neighbor (NN) sites. The cross denotes an inversion
center between two equivalent molecules A and A′. (b) Temperature
(T ) dependence of chemical potential (μ) at a uniaxial pressure
Pa = 8 kbar. The unit is taken as eV. The inset denotes a pair of Dirac
cones around a Dirac point, kD = (0.55, 0.25)π , where (δkx, δky ) =
k − kD with the lattice constant taken as unity. The conduction and
valence bands [E1(k) and E2(k)] touch at kDwith a band energy
μ0 = 0.185 corresponding to the chemical potential at T = 0.

H0 describes a TB model of the organic conductor, α-(BEDT-
TTF)2I3. Hp and He−p describe an acoustic phonon and an
electron-phonon (e-p) interaction, respectively. Himp is the
impurity potential. The unit of the energy is taken as eV.
Figure 1(a) shows the TB model for H0 consisting of four
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BEDT-TTF molecules in the unit cell. H0 is expressed as

H0 =
N∑

i, j=1

4∑
α,β=1

ti, j;α,βa†
i,αa j,β

=
∑

k

4∑
α,β=1

hαβ (k)a†
α (k)aβ (k), (3)

where a†
i,α denotes a creation operator of an electron of

molecule α [= A(1), A′(2), B(3), and C(4)] in the unit
cell at the ith lattice site. N is the total number of square
lattice sites and ti, j;α,βdenote the seven kinds of transfer ener-
gies a1, . . . , a3, b1 . . . , b4 between the nearest-neighbor (NN)
sites, as shown in Fig. 1(a). A Fourier transform for the opera-
tor a j,α is given by a j,α = 1/N1/2 ∑

k aα (k) exp[ik · r j], where
k = (kx, ky) and the lattice constant is taken as unity. H0 is
diagonalized by∑

β

hαβ (k)dβγ (k) = Eγ (k)dαγ (k), (4)

where E1(k) > E2(k) > E3(k) > E4(k).
The Dirac point (kD) is calculated from

E1(kD) = E2(kD) = εD. (5)

The ZGS is obtained when εD becomes equal to the chemical
potential at T = 0. The chemical potential μ is determined
from the three-quarter-filled condition, which is given by

1

N

∑
k

∑
γ

f (Eγ (k)) = 3, (6)

where f (ε) = 1/{exp[(ε − μ)/kBT ] + 1}, with T being tem-
perature and a Boltzmann constant taken as kB = 1. Using the
band energy Eγ (k), the T dependence of μ is examined in the
next paragraph.

On the basis of four molecules in the unit cell of
Fig. 1(a), the matrix element of hαβ in Eq. (3) is expressed
as h12(k) = a3 + a2Y , h13(k) = b3 + b2X , h14(k) = b4Y +
b1XY , h23(k) = b2 + b3X , h24(k) = b1 + b4X , h34(k) = 2a1,
h11 = h22 = h33 = h44 = 0, and hαβ (k) = h∗

βα (k), where X =
exp[ikx] = X̄ ∗ and Y = exp[iky] = Ȳ ∗. Although this model
is complicated, when we use these transfer energies, we
find the zero-gap state (ZGS) composed of Dirac electrons
as shown in the inset of Fig. 1(b), which consistently ex-
plains several experimental results. For the uniaxial pressure
Pa (kbar), which is applied to the a direction, transfer en-
ergies with NN sites, t = a1, . . . , b4 (eV), are estimated by
the extended Hückel method based on the crystal structure
analyses with the x-ray diffraction measurement. Using the
overlap integrals estimated from the coordinates of the BEDT-
TTF molecules, transfer energies are obtained by multiplying
−10 eV corresponding to the atomic energy [3,6]. From an
interpolation method between Pa = 0 and 2 kbar [4,6], the
transfer energies are given by t (Pa) = t (0)(1 + Kt Pa), where
t (0) = a1(0), . . . , b4(0) = −0.028, −0.048, 0.020, 0.123,
0.140, 0.062, and 0.025, and Kt = 0.089, 0.167, −0.025, 0,
0.011, and 0.032, respectively. Note that the ZGS is obtained
for Pa > 3 kbar.

In Fig. 1(b), the chemical potential μ is shown as a function
of T with a fixed Pa = 8 kbar, which decreases with increasing

for T (<0.01). At T = 0, the chemical potential is given by
μ0 = 0.185, resulting in the ZGS as shown on the plane of
δk = k − kD (the inset), where the conduction and valence
bands touch at a Dirac point kD = (0.55, 0.25)π . The Dirac
cone is tilted almost along the kx axis, which gives rise to an
anisotropy of the transport property. With increasing T , μ de-
creases and takes a slight minimum μ = 0.1824 at T � 0.01.
The decrease of μ suggests that the hole exists in the valence
band below the Dirac point. The choice of Pa = 8 kbar is
large as the extrapolation, but could be used considering the
following facts. The Dirac point with increasing Pa is robust
due to a small variation of kD compared with the distance from
the � point (k = 0), where a pair of Dirac points merges at
Pa � 40 kbar [2]. Furthermore, the ZGS has been observed
up to Pa = 10 kbar in the experiment of the resistivity [21].

In Eq. (2), the second term denotes the harmonic phonon
given by Hp = ∑

q ωqb†
qbq with ωq = vs|q| and h̄ =1. The

third term is the e-p interaction with a coupling constant gq,
where [40]

He−p =
∑
k,γ

∑
q

gqcγ (k + q)†cγ (k)(bq + b†
−q), (7)

with cγ (k) = ∑
α dαγ aα (k). The e-p scattering is considered

within the same band (i.e., intraband) owing to the energy
conservation with v � vs, where v � 0.05 [11] denotes the
averaged velocity of the Dirac cone. The last term of Eq. (2),
Himp, denotes a normal impurity scattering.

The spectral conductivity σν (ε, T ) with ν = x and y is
calculated as

σν (ε, T ) = e2

π h̄N

∑
k

∑
γ ,γ ′

vν
γ γ ′ (k)∗vν

γ ′γ (k)

× �γ

[ε − Eγ (k)]2 + �2
γ

× �γ ′

[ε − Eγ ′ (k)]2 + �2
γ ′

, (8)

vν
γ γ ′ (k) =

∑
αβ

dαγ (k)∗
∂hαβ

∂kν

dβγ ′ (k), (9)

where h = 2π h̄ denotes Planck’s constant. The spectral con-
ductivity depends on T due to the e-p interaction. In fact, �γ

denotes the damping of the electron of the γ band given by

�γ = � + �
γ

ph, (10)

where the first term comes from the impurity scattering and
the second term corresponding to the phonon scattering is
given by [24,26,41]

�
γ

ph = C0R × T |ξγ ,k|, (11a)

R = λ

λ0
, (11b)

where λ = |gq|2/ωq, ξγ ,k = Eγ (k) − μ, C0 =
6.25λ0/(2πv2), and λ0/2πv = 0.1. λ0 corresponds to λ

for an organic conductor [42,43] and λ becomes independent
of |q| for small |q|. R is taken as a parameter. We take
� = 0.0005 and R = 0.5 as in the previous papers [24,26],
where a choice of R = 0.5 gives a reasonable suppression of
the conductivity at high T , and � = 0.0005 corresponds to a
weak impurity scattering due to � being much smaller than T .
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In linear response theory, the electric current density j =
( jx, jy) is obtained by the electric field E = (Ex, Ey) and the
temperature gradient ∇T , i.e., the ν (= x and y) component of
the current density, is expressed as

jν = Lν
11Eν − Lν

12∇νT/T, (12)

where Lν
11 is the electrical conductivity σν [25] and Lν

12 is the
thermoelectric conductivity.

From (12), the Seebeck coefficient Sν is obtained by

Sν (T ) = Lν
12

T Lν
11

. (13)

As discussed in the introductory part, in terms of Eq. (8),
we calculate Lν

11 and Lν
12 from the Sommerfeld-Bethe

relation,

Lν
11 = σν (T ) =

∫ ∞

−∞
dε

(
−∂ f (ε)

∂ε

)
× σν (ε, T ), (14)

Lν
12 = −1

e

∫ ∞

−∞
dε

(
−∂ f (ε)

∂ε

)
× (ε − μ)σν (ε, T ), (15)

where e (> 0) denotes the electric charge. Noting that
−∂ f (ε)/∂ε is the even function of ε − μ, and σν (ε, T ) in
Eq. (14) can be expanded as

σν (ε, T ) = σν (μ, T ) + σ ′
ν (μ, T )(ε − μ)

+1

2
σ ′′

ν (μ, T )(ε − μ)2 + · · · , (16)

Eq. (15) is calculated as

eLν
12(T ) = −π2

3
σ ′

ν (μ, T )T 2 − 7π4

90
σ ′′′

ν (μ, T )T 4

+ · · · , (17)

at low temperatures. It is shown later that the sign change of
Sν (T ) with decreasing T comes from that of the first term of
Eq. (17).

III. SEEBECK COEFFICIENT

Now we study Sν (T ) using parameters of α-(BEDT-
TTF)2I3. The Seebeck coefficient of α-(BEDT-TTF)2I3 under
uniaxial pressures provides the following T dependence. In
the present paper, we take Pa = 8, which shows a sign change,
where Sx(T ) > 0 (< 0) at high temperatures (at low temper-
atures). Figure 2 shows the T dependence of the Seebeck
coefficient Sν and the electrical conductivity σν , where σy >

σx for any T and Sx > Sy for T < 0.008. Note that both Sx

and Sy exhibit the change of the sign at low temperatures.
It is found that Sx = 0 at T � 0.0009 and that Sx takes a
maximum � 17 μV/K at T � 0.003. At low temperatures
given by Sx < 0, Sx takes a minimum. Similar behavior is
also obtained for Sy, where Sy = 0 at T � 0.0015 and the
temperatures corresponding to the maximum and minimum
are almost the same as those of Sx. The relation σy > σx,
which comes from the tilted Dirac cone [Fig. 1(b)] [17],
results in Sx > Sy > 0. The inset denotes magnified Sν at
low temperatures. A minimum exists at T � 0.0002 and the
extrapolation to lower temperatures suggests Sν ∝ −T since
Sν ∼ −T σ ′

ν (μ, T )/σν (μ, T ) [see Eqs. (16) and (17)]. The
interband effect (γ 
= γ ′) becomes small at low temperatures

FIG. 2. T dependence of the Seebeck coefficients Sx (red solid
line) and Sy (red dashed line) for Pa = 8 kbar, which are compared
with electric conductivities σx (solid line) and σy (dashed line). The
e-p coupling is taken as R = 0.5. The dotted line shows Sx for R = 0.
The inset denotes the magnified Sx and Sy, which suggest Sν → 0 at
T → 0.

and the increase of � gives a slight reduction of Sν . The
decrease of the uniaxial pressure P reduces the temperature
region for Sx > 0. Note that there is enough range of Pa for a
sign change of Sx, which is in general sensitive to parameters.
In fact, Sx for Pa = 6 kbar(not shown here) also shows the sign
change at T � 0.0005.

In order to comprehend the existence of Sx(T ) = 0, we
examine the spectral conductivity. In Fig. 3, spectral con-
ductivity σν (ε, T ) is shown as a function of ε − εmin, where
σν (ε, T ) takes a minimum at εmin = 0.18447. The minimum
is close but lower than that of the Dirac point εD (εD − εmin �
0.0005). Sx(T ) = 0 occurs when μ(T ) � εmin at some tem-
perature. A similar minimum is obtained for σy(T )(ε, 0.001)
(dashed line), which is larger than σx(ε, 0.001). σx(ε, T ) is
shown for the fixed T = 0.0005, 0.001, and 0.0015, where
the width depends on T due to �

γ

ph [Eq. (11a)]. The vertical
lines denote the corresponding μ(T ), where μ(0.001) = εmin

and εD = μ(0). Since μ(0.0015) < μ(0.001) < μ(0.0005),
σx

′(T ) > 0 for T < 0.001 and σx
′(T ) < 0 for T > 0.001.

From Eq. (17), it turns out that Sν > 0 is obtained for μ(T ) <

εmin and Sν < 0 is obtained for T � 0.00095 < 0.001, i.e., for
μ(T ) being slightly lower than εmin due to the second term of
Eq. (17). Thus, with decreasing T , Sν (T ) changes the sign
from a positive to a negative one at μ � εmin, corresponding
to σ ′

ν (μ, T ) = 0. Note that the sign change of Sν in Fig. 2 is
obtained in the case of μ < εD. This fact is different from that
of the Hall coefficient [14], where the sign change occurs at
μ = εD.

Here we note the minimum and maximum of Sν in Fig. 2.
Such a behavior is also obtained only for the impurity scat-
tering, i.e., without the e-p coupling (R = 0). Compared with
the dotted line in Fig. 2, Sx at high temperature is reduced by
the e-p coupling, while Sx at low temperatures (T < 0.001)
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FIG. 3. Spectral conductivity σν (ε, T ) for ν = x as a function of
ε − εmin, which are obtained for T = 0.0005 (red line), 0.001 (dots),
and 0.0015 (blue line). εmin � μ(0.001). The dashed line shows σy

for T = 0.001. The vertical lines denote locations of the chemi-
cal potential μ(T ) for εD = μ(0) � 0.1850, μ(0.0005) � 0.1846,
μ(0.001) � 0.1845, and μ(0.0015) � 0.1843 [Fig. 1(b)]. The case
of μ(T ) < εmin gives Sν > 0, while the case of μ(T ) > εmin suggests
Sν < 0.

remains the same. We also examined Sν at lower pressures.
For Pa = 6, it is found that Sx decreases and Sy increases,
while the maximum and minimum still exist. The spectral
conductivity σν (ε) shows the existence of the minimum and
the T dependence of the chemical potential similar to Fig. 3.

IV. DISCUSSIONS AND SUMMARY

Here, we discuss the relevance of our result to experiments.
The temperatures of the sign change and the maximum of
Sx (> 0) in Fig. 2 are similar to those obtained in the ex-
periment under the hydrostatic pressures [38]. Although this
is suggestive, note that the experiment is carried out in the
hydrostatic pressure, while our calculation is for the uniaxial
pressure. As another aspect, a minimum of Sx at low tem-

perature, suggesting Sx → 0 at T = 0, is an interesting piece
of information from our calculation that should be examined
experimentally by decreasing the temperature.

Finally, let us comment on the Seebeck coefficient in the
case of the hydrostatic pressure. The previous theory [35]
studied the effect of short-range repulsive interactions on
the TB model with the transfer energies obtained from the
first-principles calculation [8] and showed that the decrease
of T leads to the sign change from Sy > 0 into Sy < 0 at
T � 0.0002. Noting that the Seebeck coefficients are in gen-
eral sensitive to parameters such as transfer energies and site
potentials, we examined Sx and Sy for the following two cases.
One is a model used in the previous calculation [11,26] (but
slightly different from that used in Ref. [35]), in which the
transfer energies obtained from the first-principles calculation
[8] are fixed at a low temperature, and the site potentials
obtained from the mean field of the interaction are taken
as those at T = 0. In this case, we obtained Sy > 0 at high
temperatures followed by the sign change at low tempera-
tures, while Sx is negative at any temperature. The other is
a model in which the transfer energies are obtained by crystal
structure analyses at P = 1.76 GPa. [7] Using a choice of
site potentials that gives a ZGS [7], we obtained that Sy > 0
at high temperatures, with the sign change at a temperature
being slightly higher than that in the former model, while Sx

is negative at any temperature. Thus, we found Sx < 0 as a
common feature of the above two models, which is inconsis-
tent with the experiment [38]. It remains a future problem to
obtain a reliable TB model exhibiting the sign change of Sx

for hydrostatic pressures.
In summary, for the T dependence of the Seebeck coef-

ficient of α-(BEDT-TTF)2I3, Sν (T ) under uniaxial pressures
was calculated although there is no experiment at present. We
obtained the sign change for both Sx and Sy and clarified the
microscopic mechanism in terms of the spectral conductivity
σν (μ, T ). The correspondence of the present theory to the
experiment awaits the future measurement of the Seebeck
coefficient under uniaxial pressures.
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