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Theoretical proposal to obtain strong Majorana evidence from scanning
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It is predicted that a vortex in a topological superconductor contains a Majorana zero mode (MZM). The
confirmative Majorana signature, i.e., the 2e2/h quantized conductance, however, is easily sabotaged by unavoid-
able interruptions, e.g., instrument broadening, non-Majorana signal, and extra particle channels. To avoid these
interruptions, we propose to obtain strong Majorana evidence following our novel Majorana hunting protocol
that relies on dissipation introduced by disorders at, e.g., the sample-substrate interface. Within this protocol, we
highlight three features, each of which alone can provide a strong evidence to identify MZM. First, dissipation
suppresses a finite-energy Caroli-de Gennes-Matricon (CdGM) conductance peak into a valley, while it does not
split MZM zero-bias conductance peak (ZBCP). Second, we predict a dissipation-dependent scaling feature of
the ZBCP. Third, the introduced dissipation manifests the MZM signal by suppressing nontopological CdGM
modes. Importantly, the observation of these features does not require a quantized conductance value 2e2/h.
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I. INTRODUCTION

A Majorana zero mode (MZM) [1,2] is an exotic quasi-
particle state that has equal electron and hole weights.
Importantly, due to its non-Abelian feature, MZM has
become one important candidate to realize quantum op-
erations and the ensuing topologically protected quantum
computation [3–5]. Some pioneering theories have pre-
dicted the existence of MZMs in multiple physically real-
izable systems [6–12]. Experimental efforts had been made
to detect MZMs in many platforms, e.g., semiconductor-
superconductor nanowire structures [13–25], the vortex
states in iron-based superconductors [26–36] or topological
insulator-superconductor heterostructures [37–40], magnetic
atom chain [41], and topological Josephson junctions [42–44],
etc. Among all those platforms, hybrid nanowire structures
(theoretically proposed by Refs. [9,10]) have received a
worldwide interest. However, the Majorana hunting in these
systems encounters the emergence of false-positive signals
arising from trivial Andreev bound states and other disor-
der effects (see, e.g., Refs. [45–52]). Regarding this debate,
Ref. [53] proposed a scheme to suppress these false-positive
signals by introducing dissipation to the probe (see recent
progress in Refs. [54–56] for more detailed theoretical and
experimental analysis). Recently, Microsoft quantum team
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proposed another solution and considered a more sophisti-
cated design by combining three different measurements on
a single detection device [57,58], which, however, sacrifices
the quality of the local measurement signals [58]. So far, there
is no solid evidence to conclude the existence of the elusive
MZM.

Zero-bias conductance peak (ZBCP) has also been reported
as a Majorana feature in spectroscopic measurements of vor-
tex states via the standard scanning tunneling microscopy
(STM) technique [26–31,33–40]. More inspiringly, recent
progress [59] shows that topological vortices can form into
an ordered lattice through the introduction of a biaxial charge
density wave. This technical advance can potentially reduce
the difficulty of Majorana manipulation: the next stage in
the realization of topological quantum computation. However,
the spectroscopically measured signal is normally influenced
by interruptions (e.g., instrument broadening, potential non-
Majorana signal [51], and possible existence of extra particle
channels [60]) that may sabotage the quantized Majorana
conductance 2e2/h [61]. Actually, most vortex-based research
(e.g., Refs. [26–28,38]) reports ZBCPs in the unit of a.u. (ar-
bitrary unit). In addition, the obtained conductance is close to
the quantized value only under an extremely small tip-sample
distance (see, e.g., Refs. [32,62]). Of this situation, however,
the tip has a spatially wide contact with the sample, where the
validity of the point-contact tunneling model remains an open
question.

In this paper, we solve problems above by introducing
dissipative environments that couple to the electron tunneling
between tip and vortex. Experimentally, dissipation can be
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(a) (b) (c)

FIG. 1. Two possible experimental realizations of our theory. (a) An iron-based superconducting island placed on top of a substrate. A
MZM is expected in the middle of the island (the red circle). Due to the disordered layer, disorders are induced between the island and the
substrate, leading to dissipative tip-sample tunnelings. (b) An alternative structure where a topological insulating (TI) layer is placed on top
of an s-wave superconductor [6,8]. A disordered layer exists between the s-wave superconductor and the substrate, leading to a dissipative
tip-sample tunneling. (c) The equivalent circuit of our system. Scatterings at the disordered layer are incorporated by a resistance R. A voltage
bias Vbias is applied between the tip and the sample.

introduced via a disorder layer [63–65] or strong lattice mis-
match between the superconductor and substrate, illustrated
in Fig. 1. Indeed, a strong dissipation has been observed in
the STM detection [63–68], including Refs. [64,65] where
dissipation arises from a disordered Pb wetting layer. Akin to
the dissipation influence in a hybrid nanowire system [53–56],
dissipation added to a vortex system suppresses possible in-
terruptions from, e.g., soft gaps or that from a continuous
Caroli-de Gennes-Matrico (CdGM) spectrum [69]. Remark-
ably, we also discover strong and vortex-system-specified
Majorana evidence for three generic Majorana hunting sit-
uations. Importantly, all features predicted in our work do
not require the knowledge of the conductance unit or the
quantized conductance value [61], thus greatly reducing
the difficulty of possible experiments. Although disorders
at the superconductor-substrate interface is required in our
protocol, a clean TI-superconductor interface is required
to support the existence of Majorana zero modes. In real
experiments, a clean TI-superconductor interface (on top
of a disordered superconductor-substrate interface) can be
possibly realized after optimizing sample fabrications, e.g.,
increasing the thickness of the superconducting layer.

The observed results in vortex Majorana hunting can be
classified into three generic situations: (i) the case with a
ZBCP and multiple finite-energy CdGM conductance peaks
[27,28,30]; (ii) the case with only one ZBCP [26,37,39], either
topological or trivial, and (iii) the case where the Majorana
ZBCP is concealed by a continuous CdGM spectrum [69].
In the conventional (i.e., dissipation-free) STM spectrum de-
tection, the Majorana signature requires the observation of
a robust quantized conductance with a reasonably small tip-
sample distance: otherwise it is hard to reach a conclusive
statement due to potential interruptions from false-positive
signals. As the central point of our work, we show that dissipa-
tion provides strong Majorana evidence in a vortex system. Of
case (i), dissipation strongly suppresses CdGM peaks within
the gap, leading to splitting of them. ZBCP arising from the
MZM by contrast remains. The distinct responses of CdGM
and MZM peaks to dissipation then provide a strong and
clear evidence of a Majorana. Of case (ii), the MZM pres-
ence can be proven by measuring the dissipation-dependent

universal scaling of the conductance; while the trivial ZBCP
splits due to suppression from dissipation. Of case (iii), con-
ductance from a continuous CdGMs can be suppressed by
dissipation, thus manifesting the dissipation-proof Majorana
signal.

II. SCHEME SETUP AND MAJOR RESULTS

We consider the setup of Fig. 1 where a sample is spec-
troscopically detected by a tip. The sample contains a vortex
in the topological regime. Such a system can be realized
with either an iron-based superconductor in the topological
regime [Fig. 1(a)] [26–31,33–36], or a topological insulator
(TI) on top of an s-wave superconductor [Fig. 1(b)] [37,38].
In either case, a disordered layer can exist between the super-
conducting layer and the substrate. With the disordered layer,
tip-sample tunnelings couple to dissipative modes that can be
mimicked by a circuit Ohmic resistance R [Fig. 1(c)]. The
dissipative modes, arising from the disordered layer, suppress
tip-sample tunnelings. The suppression is especially strong
under low energies (i.e., low temperature and bias), when
the dissipated energy is unaffordable by the system. This
phenomenon, known as dynamical Coulomb blockade, has
been well studied in mesoscopic devices (see, e.g., Ref. [70]),
as well as spectroscopically probed superconducting islands
[63–65,68]. For clarification, we emphasize that not all impu-
rities can produce such dissipative modes. Indeed, impurities
at the sample surface are known to generate only trivial lo-
calized states that interrupt the Majorana detection. On the
other hand, impurities outside of the coherence length, e.g.,
these in the refrigerator or the amplifier, can be considered
as resistors in-series (see discussions in, e.g., Refs. [55,56]),
and are thus irrelevant to our consideration. In our case,
the chosen dissipative resistance R should be large enough
to suppress the CdGM peaks (at experimentally accessible
temperatures), and also r ≡ Re2/h < 0.5 (the dimensionless
dissipation) to avoid sabotaging the Majorana ZBCP [53,54].
Dissipation around several kilo-ohms has been experimentally
realized by the intersurface disorders or the generic mismatch
between superconductor-substrate lattices [63–65,67,68]. The
dissipation strength r in real experiments can be obtained by
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FIG. 2. Conductance landscape of dissipative tunneling into a
vortex for (a) The topological situation and (b) the trivial situation.
In both figures, the red curve refers to the case with a larger tip-
sample distance (or a smaller tunneling amplitude), in comparison
to that of the blue [71]. Here λ refers to the decaying amplitude of
the tip-MZM tunneling tMZM(L) ∝ exp(−L/λ). In (a), the zero-bias
conductance peak arises from the topological MZM. Its peak value,
calculated with Eq. (4) following the thermodynamic Bethe ansatz
(see Ref. [72] or a brief introduction in Appendix B), increases
monotonously when the tip approaches the sample. In contrast,
conductance peaks from both finite-energy CdGMs or zero-energy
Andreev bound state (denoted as “Accidental ABS” in the figure)
split for a small enough tip-sample distance (valleys of blue curves).
The CdGM conductance is evaluated with renormalization group
(RG) equations [see Eqs. (5) and (6) for the initial and final RG
equations, and Appendix fA for more details]. Close enough to these
peaks, the energy from bias difference is smaller than the sample
temperature T = εch. Conductance in these areas, highlighted by
dashed lines, is uncertain from RG method.

measuring the scaling feature of the conductance in the normal
state. We also assume a large enough sample such that its
charging energy is smaller than other relevant energy scales,
including the STM resolution, temperature, and bias in the
system.

Generically, a vortex in a topological superconducting
island contains a zero-energy Majorana, and multiple finite-
energy CdGMs. These CdGMs can be considered as Andreev
bound states that are recognizable in the energy space (see,
e.g., Refs. [27,28,30] for experimental realizations). Fortu-
nately, dissipation influences received by these finite-energy
CdGM peaks are distinct from that of the Majorana ZBCP
(see Appendixes A, B, and Supplemental Material [71] for
the details on the calculation of CdGM peaks and the Majo-
rana ZBCP, respectively). This fact, as will be shown below

(a) (b)

(c) (d)

FIG. 3. Universal signatures of a Majorana-induced conductance
peak [71]. The universal feature can be observed by changing either
the temperature [(a), at zero bias V = 0], or the bias [(b), with a fixed
temperature T = 5εch]. Of the latter case, the universal feature ap-
pears when Vbias is much larger than the temperature T = 5εch. When
Vbias � T , the conductance saturates to a value smaller than 2e2/h,
due to the finite-temperature effect. The Majorana coupling tMZM has
the same value for (a) and (b). The universality might be alternatively
detected by measuring the zero-bias conductance as function of the
tip-sample distance L (c), after obtaining the dependence of tunneling
amplitude on L, i.e., tMZM(L). In making (c) we have assumed the
tip-sample tunneling tMZM ∝ exp(−L/λ), as an easy example. All
curves are obtained following Eq. (4), following the thermodynamic
Bethe ansatz [72]. (d) For an accidental zero-energy Andreev bound
state, the equilibrium (i.e., V = 0) conductance decreases at a low
temperature, following a different scaling feature G ∼ T 8r . Here T0

refers to the temperature with the highest conductance.

(the details of the theoretical analysis and calculation will be
shown in the next section), provides us a strong Majorana
evidence. We first discuss our improved Majorana detection
scheme and main results, and leave the details of the cal-
culation in the next section. Without the loss of generality,
the calculations are carried out with dissipation r ≡ Re2/h =
0.2. We emphasize that features predicted below are also
anticipated for other finite dissipation, as long as r < 0.5.
We define an energy scale εch ∝ t2/(1−2r)

MZM τ (1+2r)/(1−2r)
c that de-

pends on the tunneling amplitude tMZM [of the Hamiltonian
(3)], dissipation r and the inverse of the ultraviolet cutoff
τc (∼1/EF , with EF the Fermi energy). The value of εch is
experimentally tunable by changing the tip-sample distance.
Theoretically, εch labels the energy above which scaling fea-
ture begins to develop. As an experimentally reasonable value,
We take the scale εch = �sc/400 (in both Figs. 2 and 3), where
�sc is the bulk superconducting gap. This corresponds to
an experimentally accessible sample temperature T = 5εch ≈
500 mK [27,28,33,35,38] in real experiments, considering the
typical iron-based superconducting gap ∼35 K. If needed,
temperatures lower than 100 mK are also experimentally
realizable [28,73,74].

More specifically, in Fig. 2, we compare the conductance
landscape of the topological [Fig. 2(a)] and trivial [Fig. 2(b)]
situations. Of the trivial case, the ZBCP is assumed to
come from a zero-energy Andreev bound state. We plot only
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conductance of positive bias, as the landscape is symmetric
in bias. In both figures, the blue curves are plotted with
a smaller tip-sample distance, equivalently, a stronger tip-
sample tunneling than those of the red curves. In Fig. 2(a),
the conductance contains contributions from both the zero-
energy Majorana and a finite-energy CdGM (centered at
Vbias = 0.5�sc). Noticeably, when the tip-sample distance be-
comes small, the CdGM conductance peak (the red curve) can
split into a valley (the blue curve). This peak-valley transition
signifies the influence of dissipation on the tunneling into a
CdGM.

Experimentally, one can fix the experimental temper-
ature Texp, and observe the peak splitting by decreasing
the tip-sample distance L. In this work we treat the tip-
sample junction as a tunneling barrier, with which the
tip-sample transmission �0(L) ∝ exp(−2L/λ) decays expo-
nentially when L increases. The decaying width λ reflects the
feature of the tunneling potential barrier.

As a natural question: What is the requirement on the
tip-sample distance L, to observe the peak splitting at a given
experimental temperature Texp? To answer this question, we
provide the following experimental steps. As the first step,
one measures the transmission �0(L) at a temperature T0. This
temperature is chosen to be high enough such that (within
the range of L during this measurement) interruption from
dissipation can be avoided. Then, we switch back to the
experimental temperature Texp < T0, where dissipation will
play an important role. At Texp, we expect to see the CdGM
peak splitting as long as L < L∗,where the critical distance
L∗ is defined by its corresponding transmission that satis-
fies �0(L∗) = ln[1/(1 − β )]/ ln(T0/Texp) (see Appendix C).
Factor β < 1 is nonuniversal and depends on the position
detected by the tip: β is close to (1 − 2r)/(1 + 2r) in case of
an extremely large asymmetry among different weights of the
CdGM at the tip position. Here, the weight specifically means
the weight between different components of the CdGM wave
function [see Eq. (1) and Appendix A]. For instance, one can
see the peak splitting of CdGM peaks when L changes from
3.7λ to 3.3λ (see Fig. 2). The curves are evaluated by solving
the RG equations numerically.

By contrast, when the total electron and hole weights
are equal, β approaches one, where the CdGM conductance
signature at the detected position strongly mimics that of a
real Majorana. Fortunately, the symmetric weight situation
for a non-Majorana CdGM is not robust and can be only
preserved at some special tip locations. Therefore, a CdGM
with accidental symmetric weight can be distinguished (from
a Majorana) by detecting its tunneling signal at different posi-
tions.

In strong contrast, the zero-energy Majorana peak remains,
and keeps growing when decreasing the tip-sample distance.
We emphasize that for a real MZM, this Majorana-specified
feature does not depend on the tip position [in the two-
dimensional (2D) plane parallel to the sample]. Indeed, the
dissipative tunneling into a MZM is anticipated as a uni-
versal process [53,54], and increases monotonously with an
increasing tip-sample tunneling. The coexistence of a Ma-
jorana ZBCP and split CdGM peaks is a strong Majorana
signature [Fig. 2(a)]. In strong contrast, if the ZBCP arises in-
stead from an accidentally zero-energy Andreev bound state,

the ZBCP always splits if one reduces the tip-sample dis-
tance [Fig. 2(b)]. We emphasize that dissipation is crucial
in this landscape measurement, otherwise the CdGM and
Andreev bound state peaks will not split. The observation
of the proposed phenomenon above, importantly, does not
require knowing the conductance unit. Calibration is thus un-
necessary, lowering the difficulty of its potential experimental
realization. A concrete observation of the peak splitting re-
quires a STM resolution to be smaller than the splitting
temperature. This temperature describes an energy scale at
which the dissipation effect starts to cause the peak splitting
as the temperature drops farther. To date, STM resolution
around or smaller than 100 mK has been realized [73,74].
Given large enough dissipation, this resolution is smaller than
the peak-splitting temperature [for instance, see the evaluated
peak-splitting temperature (∼1 K) in the previous paragraph],
thus being enough to observe the peak splitting.

The above protocol to detect MZM with the conductance
landscape, however, does not apply to the special case (see,
e.g., Ref. [38]) where the MZM state is the only discrete
level within the superconducting gap. Of this case, the dis-
sipation effect in Majorana detection cannot be benchmarked
by the splitting of a CdGM peak. One can instead confirm the
Majorana signal by investigating the dissipation-dependent
universality class (i.e., the conductance scaling features) of the
Majorana ZBCP. Briefly, near the weak tunneling regime, dis-
sipative tunneling into a MZM displays the scaling feature of
the conductance GMZM ∝ ε2r−1 [53], where r ≡ Re2/h refers
to the dimensionless dissipation. The system energy ε can be
either temperature or bias. We thus have two possible choices
to observe the anticipated scaling feature: by changing either
the system temperature T [Fig. 3(a) or tip bias Vbias [Fig. 3(b)].
In these two cases, we anticipate to observe the scaling fea-
tures in temperature (T 2r−1) and bias (V 2r−1

bias ), respectively. As
the third possibility, we can also investigate the dependence
of the ZBCP on the tip-sample distance [Fig. 3(c)]. This
option, however, requires us to know the tip-sample tunneling
amplitude as a function of the tip-sample distance. In making
Fig. 3(c), we simply assumed a Gaussian decaying (with width
λ) of the tip-sample tunneling. In addition, scaling features
emerge at relatively high energies. Their observation thus has
a relatively milder requirement on the STM resolution.

Measurement of the scaling feature also helps confirming
a MZM of generic cases (i.e., the cases with multiple CdGMs
within the superconducting gap). Indeed, with both pieces of
evidence observed (i.e., the scaling feature of the ZBCP and
the splitting of CdGM peaks), the existence of the MZM can
be more strongly confirmed. However, for generic cases, the
observation of the scaling feature in bias requires a large-
enough CdGM energy: otherwise the Majorana ZBCP scaling
feature in bias is disguised by the CdGM contribution.

In previous paragraphs, we assume CdGMs that are dis-
tinguishable in energy. For a vortex with CdGM energy
level spacing smaller than the STM resolution, those CdGMs
instead form into a continuous spectrum described by the
density of states ρ(ε). Of this case, dissipation also benefits
the identification of the Majorana signal. Briefly, when the
tunneling is dissipation free, the Majorana tunneling signal
is disguised by the CdGMs around zero energy [Fig. 4(a)].
Here we have assumed a Gaussian-shape CdGM density of
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(a) (b) (c)

FIG. 4. The conductance of a vortex that contains both a zero-energy Majorana and a continuous spectrum of CdGM [71]. Energy scale
ω0 is the half-width of the continuous spectrum. (a) The r = 0 case. The Majorana signal is disguised by the CdGM conductance background.
Here ω0 refers to the range of energy of CdGM spectrum. (b) The r = 0.2 case. The Majorana ZBCP becomes visible after the CdGM
conductance has been suppressed by dissipation. The red and blue curves correspond to conductance curves with a comparatively lower
and higher temperature, respectively. (c) The zoom-in plot of the conductance curves in the gray dashed box. When temperature decreases,
the peak-valley difference of the ZBCP increases, leading to a more manifest Majorana signal. Here we calculate the conductance from the
continuous spectrum following the P(E ) theory Eq. (7). We emphasize that the ZBCP, while being small, appears under the influence of
dissipation. It is intrinsically different, although appearing similar, in comparison to the pioneering Majorana hunting achievement in a hybrid
nanowire system [13]. Indeed, with dissipation present, possible interruption from, e.g., soft gaps and impurities will be removed by dissipation.
In (b) and (c) temperatures of the blue and red curves equal ω0/50 and ω0/150, respectively. Assuming ω0 ∼ 3meV, the observation of these
two curves require a STM resolution of 0.06 meV and 0.02 meV, respectively, both realizable in real experiments [73,74].

states [69] ρ(ω) = ρ(0) exp(4ω2/ω2
0 ), where ω0 ≈ 0.8�SC.

With dissipation included, in contrast, the CdGM tunnelings
are strongly suppressed at low energies, thus manifesting the
Majorana signal by a sharp ZBCP, especially under lower
temperatures [Figs. 4(b) and 4(c)]. Noticeably, to observe
this feature, the distance between two shoulders of the curve,
∼ω0

√
r should be much larger than the temperature T . This

requirement is normally satisfied as ω0 	 T . On the contrary,
for the cases without MZM, dissipation always strongly sup-
presses the zero bias conductance and leads to a clean valley
structure [53,54]. Based on the strong Majorana evidence
discussed above, we provide a protocol to identify Majorana
in a vortex, in Fig. 5.

III. SYSTEM HAMILTONIAN
AND CALCULATION DETAILS

A vortex of the considered topological system (Fig. 1)
contains a MZM and multiple finite-energy CdGMs. Tunnel-
ing (from the tip) into each of these localized states can be
described by the Hamiltonian

HT(r) =
∑

n

[te↑,n(r)ψ†
↑(r)an + te↓,n(r)ψ†

↓(r)an

+ th↑,n(r)ψ†
↑(r)a†

n + th↓,n(r)ψ†
↓(r)a†

n]e−iϕ + H.c.,

(1)

where r labels the (three-dimension) tip position, ψσ refers
to the tip fermion with spin σ , and an refers to the vortex
state (n = 0 for the Majorana and otherwise for a CdGM).
The electron and hole sectors of a local state are labeled by e
and h, respectively. In Eq. (1), ϕ is the phase fluctuation op-
erator (of the tip-sample junction) that couples to dissipative
environmental modes. This phase is conjugate to the charge
number of the tip-sample junction, with its dynamics given by
the long-time correlation [75]

〈exp[iϕ(t )] exp[−iϕ(0)]〉 ∝ t−2r, (2)

where r = Re2/h is the dimensionless dissipation amplitude.
The dynamics Eq. (2) indeed agrees with experimental data
obtained in a Pb-superconducting island, where dissipation is
introduced via the disordered layer [64,65]

Especially, for the tip-Majorana coupling, parameters
|te↑,0(r)|2 + |te↓,0(r)|2 = |th↑,0(r)|2 + |th↓,0(r)|2, due to the
equality of electron and hole weights of a Majorana [1,2], for
any position r. The tip-Majorana coupling then becomes

HT-MZM(r) = tMZM(r)(ψ†
tipe−iϕ − ψtipeiϕ )γ , (3)

where γ = γ † = (a0 + a†
0)/

√
2 is the vortex MZM. Due to

its polynomial long-time feature Eq. (2), phase ϕ can be
combined with the field φtip introduced from the bosonization
of the tip fermion ψtip ∼ exp(iφtip)/

√
2πa [76], where a is the

short-distance cutoff. By doing so, the tip-Majorana coupling
instead becomes

H ′
T-MZM = −itMZM

√
2

πa
sin(

√
1 + 2r�)γ , (4)

with the combined phase � = (φtip + ϕ)/
√

1 + 2r and the
MZM-coupling strength tMZM. The operator of Eq. (4) has
the scaling dimension 1/2 + r, and is thus relevant as long
as r < 1/2. In this work, “relevance” is defined in the renor-
malization group (RG) perspective. A tunneling is relevant
(irrelevant) if its tunneling parameter (e.g., tMZM) becomes
increasingly important (unimportant) when decreasing the
system energy (e.g., temperature or bias) [76]. The Majorana
fermion γ 2 = 1 and couples only to the tip. The tip-Majorana
tunneling Eq. (4) is then equivalent to the Hamiltonian of
a boundary Sine-Gordon model [72,77], which is exactly
solvable with thermodynamic Bethe ansatz [72] (see a brief
outline in Appendix B). Following Ref. [72], we work out
the MZM conductance in Figs. 2(a) and 3 (for r = 0.2). Es-
pecially, the conductance presents perfect scaling features as
functions of temperature [Fig. 3(a)] and bias [Fig. 3(b)], re-
spectively. Following the results of the boundary Sine-Gordon
[72], the MZM conductance always increases [53], when
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FIG. 5. The protocol to detect Majorana in a dissipative vortex. We emphasize that the coincidence between dissipation r obtained from
scaling features (marked by the asterisk) and that from a direct measurement is a confirmative, yet not strictly necessary Majorana signature.
Indeed, of the single-conductance-peak situation, the nonsplitting zero-bias peak is by itself a strong piece of Majorana evidence.

decreasing the temperature, the applied bias, or the tip-sample
distance: as long as the tunneling model (4) remains valid.

In contrast to the Majorana situation, generically the
tip-CdGM tunneling involves four independent tunneling pa-
rameters as shown in Eq. (1). The tip-CdGM tunneling
then can not reduce to the analytically solvable Hamiltonian
Eq. (4). Now, we perturbatively investigate the tunneling into
CdGMs with the Coulomb-gas RG method (see Appendix A).
Briefly, with RG equations, one obtains the effective tunneling
parameters under different energies ε. In real experiments, ε

can be either bias Vbias in the tip or the system temperature T .
At the beginning of the RG flow, all four tunneling parameters
follow the same flow equation

dtα
dl

=
[

1 −
(

1

2
+ r

)]
tα, (5)

for α = e ↑, h ↑, e ↓, and h ↓, and all n values alike. The pa-
rameter l = exp(ε0/ε) − 1 labels the progress in the RG flow,
where ε0 is the initial RG cutoff. It equals zero initially (where
ε = ε0), and increases with a decreasing RG cutoff ε. In real
experiments, ε refers to the energy fluctuation of the system.
Specifically, it can be considered as either the difference be-
tween local-state energy and the applied bias, or the system
temperature, whichever is larger. Following Eq. (5), when RG
flow begins, all tunneling parameters share the scaling dimen-
sion of the Majorana tunneling r + 1/2 of Eq. (4). They are all
relevant if r < 1/2, and effectively increase when ε decreases.
Scaling dimensions of them, however, become different after

the RG flow (see Appendix A). More specifically, the system
generically begins to prefer the tunneling process with the
leading amplitude. At the end of the RG flow, the system
approaches the weak tunneling fixed point, where only the
tunneling process with the largest initial value dominates at
low enough energies. For instance, near the fixed point where
te↑ dominates (i.e., te↑ 	 te↓, th↑, th↓), the flow of tunneling
parameters follows (here we drop the label of n for simplicity)

dte↑
dl

= te↑,
dth↑
dl

= −(1 + 4r)th↑,

dte↓
dl

= 0 te↓,
dth↓
dl

= −4rth↓, (6)

where only the leading process te↑ remains relevant, and
approaches perfect transmission after the RG flow. Notice
that a finite current can only be produced via the successive
application of e- and h-involved tunneling processes. Of the
te↑-dominating situation, the flow of current is then deter-
mined by th↓, i.e., G/(e2/h) ∝ 2t2

e↑t2
h↓/(t2

e↑ + t2
h↓) ∼ 2t2

h↓ (see
Appendix A), where te↑ 	 th↓ 	 other tunnelings near the
fixed point. This combined process of G is irrelevant in the
RG, with the scaling dimension 1 + 4r. This irrelevance of
current tunneling, remarkably, is distinct from the relevance
of tunneling before the flow Eq. (5). More specifically, trans-
mission is a relevant process initially, where the conductance
increases with a decreasing RG cutoff ε. After the RG flow,
however, transmission becomes irrelevant, where conductance
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instead decreases with ε. A critical energy is thus anticipated
as the watershed that separates the regimes with relevant and
irrelevant transmission. Experimentally, this critical energy
corresponds to the temperature where peak splitting begins,
i.e.. Fig. 2.

Finally, when the island contains a continuous CdGM spec-
trum, the dissipative conductance can be obtained with the
so-called P(E ) method [63,64,78]

�tip→sample(Vbias) = 1

RT

∫
dE

∫
dE ′P(E ) × ρ(E )ρtip

× (eVbias + E ′) f (eVbias + E ′)[1 − f (E )],

(7)

with which the current equals I (Vbias) = �tip→sample(Vbias) −
�sample→tip(Vbias). Here RT is the tunneling resistance (indi-
cating the tunneling barrier strength), ρ is the density of
state of the sample at the tip location, ρtip is the tip density
of state, f (E ) is a fermionic distribution, and finally, P(E )
incorporates the chance to dissipate electron energy E via the
dissipative environment [70]. For a dissipation-free system,
the Majorana is fully disguised by the surrounding CdGMs,
and simply increases ρ of the island [Fig. 4(a)]. It is hard to tell
whether the conductance peak has any Majorana origination.
With dissipation involved, the interrupting CdGM signal is
strongly suppressed, leaving the Majorana signal standing out
[Figs. 4(b) and 4(c)].

IV. DISCUSSION AND SUMMARY

In this paper, we have studied the transport features of
a dissipative tunneling into a topological vortex. Instead of
the 2e2/h conductance quanta, we propose three dissipation-
unique phenomena that can help the identification of a
Majorana. First, the CdGM peak can split when the tip ap-
proaches the sample (see Fig. 2). This nonuniversal feature of
the CdGM peak, if coexisting with a nonsplitting ZBCP, is a
strong Majorana signal. The observation of this phenomenon
requires the existence of finite-energy CdGMs. Observation
at different tip positions is also required, to avoid accidental
equality of electron and hole weights (of CdGMs). In ad-
dition, the STM resolution is preferred to be smaller than
the temperature at which the peak splitting begins. Other-
wise the peak splitting can only be indirectly detected by
measuring the CdGM peak half-width: which is expected to
become larger if peak splitting occurs. For an sample with
transmission 0.25 at temperature T = 10 K, the peak split-
ting is expected to occur around 1 K, larger than the latest
STM resolution [73,74]. Second, one can further confirm
the Majorana existence by measuring the universal feature,
i.e., the dependence of the ZBCP as functions of tempera-
ture [zero-bias, Fig. 3(a)] or bias [temperature smaller than
bias, Fig. 3(b)]. Measuring the power-law scaling feature re-
quires the STM resolution to be smaller than temperature/bias
of the universal regime. In addition, if one measures the
scaling feature with bias, the applied bias is required to be
smaller than the lowest CdGM energy: otherwise the scal-
ing feature is interrupted by the CdGM conductance. Third,
with interrupting CdGM signals suppressed by dissipation,
the Majorana signal becomes manifest and experimentally

accessible even when the CdGM energy difference is smaller
than the STM resolution (Fig. 4). The STM resolution is only
required to be smaller than the energy difference between
shoulders of the continuous spectrum, which is normally at
the order of the superconducting gap. Remarkably, all pro-
posed phenomena do not require knowing the exact unit
of conductance. A complicated calibration (of the measured
current) is then unnecessary, lowering potential experimental
difficulty.

Before closure, we briefly discuss the relevant experimen-
tal parameters, including the dissipation amplitude r and the
charging energy of the sample. To begin with, we choose
the dissipation r ∼ 0.2 since such a dissipation amplitude has
been proven as enough to suppress false-positive signals (i.e.,
conductance peaks due to Andreev bound states) in a hybrid
nanowire system [55,56], at an experimentally accessible tem-
perature ∼200 mK. This dissipation amplitude has indeed
been realized experimentally in a Pb superconducting island
[63–65]. For instance, Ref. [65] reports a dissipation r ∼ 0.26
of a Pb-superconducting island due to a disordered Pb wetting
layer. Similar dissipation amplitude is anticipated as experi-
mentally realizable in a vortex system, by a disordered layer
(Fig. 1). As the second requirement, the charging energy of
the island should be smaller than the temperature required to
see the peak splitting: otherwise the observation of the peak
splitting can be interrupted by the Coulomb blockade effect.
In real experiments, a small charging energy

Ec = e2

4πεsampleε0Rsample
(8)

requires a large sample radius Rsample and large (relative)
dielectric constant εsample (here ε0 is the vacuum dielectric
constant). For instance, a 2D sample with radius Rsample ∼
2 µm is required to have a relative dielectric constant around
εsample ∼ 50, to produce a small enough charging energy Ec ∼
10 µeV ∼ 100 mK. Fortunately, Majorana hunting experi-
ments in iron-based vortices, e.g., Refs. [27–31,33–36] do
not report apparent interruption from Coulomb blockade, thus
supporting the applicability of our theory. As a summary, it is
experimentally feasible to fabricate a sample that is both free
from Coulomb blockade, and also has enough dissipation to
generate our predicted phenomena.
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APPENDIX A: COULOMB-GAS RG EQUATIONS

Briefly, the renormalization group (RG) method investi-
gates the low-energy system features (e.g., the conductance)
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by figuring out the change of system parameters (the so-called
RG flow) when decreasing the system energy (temperature,
bias, or the inverse of some dephasing time). In general, a RG
method deals with the system action with the form [79]

Ssystem[φ,�, {γα}] =
N∑

α=1

γαOα[φ], (A1)

where φ is some field, and γα is the prefactor of the operator
Oα labeled by α. The system has an initial cutoff � in energy
at the beginning of the RG flow. When this cutoff decreases
� → � − δ�, particle states with energies between the ini-
tial and reduced cutoffs should be removed, after effectively
incorporating the interaction between these states and the
states with energies below the new cutoff. These interactions
then effectively modify the prefactors γα , leading to an ef-
fectively new action Ssystem[φ,� − δ�, {γ ′

α}]. When δ� is
infinitesimal, the change of parameters γα follows the RG
flow equations. This basic idea applies to most RG methods,
including the Coulomb-gas RG.

More specifically, for the Coulomb-gas RG method, one
deals with the partition function

Z (τc, {γαOα}) =
∑

n

∫ β

0
dτ1 · · ·

∫ τi+2−τc

0
dτi+1 · · ·

× 〈· · · HT(τi, {γαOα})HT

× (τi+1, {γαOα}) · · · 〉0 (A2)

that is required to be invariant during the RG flow. In Eq. (A2),
the integral of time is between zero and the temperature
inverse β = 1/T . As a consequence, strictly Coulomb-gas
RG equations describe the flow of equilibrium systems by
decreasing the temperature. However, if within the weak-
tunneling regime, temperature and bias are exchangeable as
both can be considered as the energy cutoff. Indeed, difference
between temperature and bias emerges only in the crossover
regime [80], i.e., away from both the strong and weak cou-
pling fixed points.

The partition function Eq. (A2) contains kinks at mo-
ments τ1, τ2 . . . τi . . . when the system state changes. In the
Coulomb-gas RG method, a cutoff in time τc is introduced.
The Coulomb-gas RG contains the steps below. To begin
with, before each RG step, the time difference |τi − τi+1| > τc

between any two kinks is assumed to be larger than the cutoff
τc, forbidding the occurrence of two kinks within τc. When the
RG step begins, this cutoff increases to τc → τc + δτc, where
δτc > 0 refers to the changing of the cutoff. Notice that 1/τc

can be interpreted as the cutoff in energy. The increasing of
τc then indicates the decreasing of the energy cutoff. Due to
the increasing of cutoff in time, kinks now have the chance to
occur within the new cutoff, i.e., τc < |τi − τi+1| < τc + δτc.
Contribution of these kinks should then be integrated out
within this RG step. The contribution of the integrated pairs
to the partition function then leads to the modification of
the partition function Z (τc, {γαOα}) → Z (τc + δτc, {γ ′

αOα}),
with a set of modified parameters γ ′

α . Finally, to guarantee the
invariance of partition function, we rescale the cutoff back to
τc. When δτc � τc is infinitesimal, the modification of param-
eters can be written in terms of differential equations known
as RG equations.

Now we go back to our specific system, i.e., the dissipative
tunneling into the vortex. Experimentally, the realization of
this system is distinct from that of a hybrid nanowire. How-
ever, the tunneling Hamiltonian Eq. (1) is exactly the same
as the dissipative tunneling into an Andreev bound state of a
superconducting-proximitized nanowire. The RG equations of
the hybrid nanowire system [54] are thus also capable to
describe the flow of parameters of the vortex system under
consideration. As the only difference, Ref. [54] considers only
the zero-bias conductance peak, where the Andreev bound
state energy serves as another possible energy cutoff. In our
case, by contrast, nonequilibrium tunneling into a CdGM with
finite energy εCdGM is considered. This problem can however
be solved by treating the bias that equals the CdGM energy
Vbias = εCdGM as the effective zero bias. We emphasize that the
Majorana identification protocol in our work strongly relies on
the vortex-specified feature where finite-energy CdGMs and a
MZM coexist. This feature is novel as it does not appear in
hybrid nanowire systems [54]. With this treatment, tunneling
parameters follow the RG equations

dte↑
dl

=
[

1 − (K1 + 1)2 + g(K2 + 1)2

4g

]
te↑,

dth↑
dl

=
[

1 − (K1 − 1)2 + g(K2 − 1)2

4g

]
th↑,

dte↓
dl

=
[

1 − (K1 + 1)2 + g(K2 − 1)2

4g

]
te↓,

dth↓
dl

=
[

1 − (K1 − 1)2 + g(K2 + 1)2

4g

]
th↓,

(A3)

where g = 1/(1 + 4r), and l ∝ ln ε labels the RG process in
terms of the energy ε. In experiments, ε can be considered
as temperature or bias. Initially, l = 0, where both parame-
ters K1(l = 0) = K2(l = 0) = 0 equal zero. At this point, all
tunneling parameters of Eq. (A3) follow the same flow equa-
tion, i.e., dtα/dl = [1 − (r + 1/2)]tα for α = e ↑, h ↑, e ↓
and h ↓. The values of K1 and K2 begin to change when l
increases, following

dK1

dl
= − 2τ 2

c [(|te↑|2 − |th↑|2 + |te↓|2 − |th↓|2)

+ (|te↑|2 + |th↑|2 + |te↓|2 + |th↓|2)K1],

dK2

dl
= − 2τ 2

c [(|te↑|2 − |th↑|2 − |te↓|2 + |th↓|2)

+ (|te↑|2 + |th↑|2 + |te↓|2 + |th↓|2)K2]. (A4)

Noticeably, Eq. (A4) is asymmetric with respect to tunneling
parameters, through which the final values of K1 and K2 are
determined by the leading process. For instance, with te↑
dominant, K1 = K2 = −1 after the RG flow, leading to a most
strongly reduced scaling dimension of te↑ [Eq. (6)].

By solving flow equations (A3) and (A4), and the conduc-
tance expression

G ∝ e2

h
τ 2

c

(
2t2

e↑t2
h↓

t2
e↑ + t2

h↓
+ 2t2

e↓t2
h↑

t2
e↓ + t2

h↑

)
, (A5)

we arrive at the CdGM conductance peak contributions in
Fig. 2 (see the contained Mathematica notebook). For a
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generic CdGM, one of the four parameters dominates after
the flow. For instance, if te↑ dominates, the conductance G ∝
2t2

e↑t2
h↓/(t2

e↑ + t2
h↓).

APPENDIX B: THERMODYNAMIC BETHE ANSATZ

As has been discussed, since γ 2 = 1, Eq. (4) agrees with
that of a boundary Sine Gordon model. It has been shown
that [72] such a system is perfectly integrable (and thus ex-
actly solvable), and contains quasiparticles including a kink,
an antikink, and may have multiple breathers. To figure out
the number of breathers, we notice that our Hamiltonian
∼ sin(

√
1 + 2r�) has the scaling dimension 1/2 + r. Since

1 < 1/(1/2 + r) < 2 if r < 1/2, following Ref. [72], the sys-
tem we consider has zero breather.

To proceed, one needs to solve the dispersion function of
quasiparticles (kink and antikink), as functions of the rapidity
θ . More specifically, the dispersion function can be figured out
from the integral equation [72]

εβ (θ,Vbias) = Meθ

T
−

∑
β ′

∫ ∞

−∞
dθ�β,β ′ (θ − θ ′)

× ln[1 + eβ ′Vbias/2T −εβ′ (θ,Vbias/T )], (B1)

where β, β ′ equal 1 and −1 for kink and antikink, re-
spectively. The function �β,β ′ is related to the quasiparticle
scattering matrix in the bulk

�β,β ′ (θ ) = − 1

2π cosh θ
. (B2)

The first term of Eq. (B1), i.e., M exp(θ )/T influences the
interaction-free contribution. The choice of M is a common
prefactor that will not influence the final conductance.

With the dispersion function obtained, the current equals

I (Tref,Vbias, T )

= eT n(r)

2h

∫ ∞

−∞
dθ

1

cosh2{(r − 1/2)[θ − ln(Tref/T )]}

× ln

[
1 + eVbias/2T −ε(θ+ln(M/2T ),Vbias )

1 + e−Vbias/2T −ε(θ+ln(M/2T ),Vbias )

]
, (B3)

where Tref is the effective reflection amplitude. When
Tref/T � 1, reflection is weak, and conductance approaches
the quantized value 2e2/h. In the opposite limit Tref/T 	
1, reflection is strong, and conductance approaches zero. A
large Tref indicates a small tip-sample tunneling, or a large

tip-sample distance. In Eq. (B3), the function n(r) is a normal-
ization factor. Theoretically, it equals 2r + 1. In real numerics,
its value might deviates from 2r + 1 by, e.g., one to two
percents. Due to the smallness of conductance in the weak
tunneling limit, one needs to figure out the precise value of the
normalization factor. With Eq. (B3), we obtain the Majorana
conductance peaks in Figs. 2 and 3 (see C coding provided).

APPENDIX C: EVALUATION OF THE PEAK
SPLITTING ENERGY

As an important question, experimentalists would wonder
what is the approximate temperature or tip-sample distance
when peak splitting occurs. Without loss of generality, we
consider the situation where te↑ dominates after the RG flow.
Of this case, peak splitting occurs when the conjugate process
th↓ has become marginal in the RG prospective. For sim-
plicity, assuming equal K1 and K2, the RG marginal of th↓
requires K1 = K2 = −(1 − 2r)/(1 + 2r). Following Eq. (A4)
and noticing that K1(0) = K2(0) = 0 initially, the changing of
K1 and K2 during the RG flow is triggered by the first term
of Eq. (A4). This term is small under a weak particle-hole
asymmetry |te↑|2 + |te↓|2 ≈ |th↑|2 + |th↓|2. Of this situation,
the flows of K1 and K2 are rather slow, and peak splitting can
only occur at a significantly small temperature.

On the contrary, in the opposite limit where |te↑| 	
|te↓|, |th↑|, |th↓|, the flow of K1 and K2 is basically determined
by te↑. One can approximately predict the peak splitting by
measuring the tip-sample transmission �bm at a temperature
Tbm that is high enough to avoid suppression from dissipation.
With this measurement, we ask what is the requirement to ob-
serve the peak splitting at the experimental temperature Texp.
Here we further approximately treat |te↑| as a constant. With
these simplifications, at the experimental temperature Texp,
one anticipates the peak splitting, if the initial transmission
�bm satisfies

�bm >
ln 1+2r

4r

ln Tbm
Texp

. (C1)

From this equation, one sees that in the extremely asymmet-
ric limit, peak splitting requires a large transmission (small
tip-sample distance), or a small temperature Texp. Meanwhile,
since ln[(1 + 2r)/(4r)] decreases monotonously when r in-
creases, the peak splitting of a sample with a larger r occurs
at a relatively larger temperature, since peak splitting occurs
at smaller values of K1 and K2. For a more intuitive under-
standing, if r = 0.2, �bm = 0.2 when Tbm = 5 K, then peak
splitting is anticipated to occur around Texp ≈ 500 mK.
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