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Properties of dissipative Floquet Majorana modes using a quantum dot
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We study the electronic conductance of dissipative Floquet Majorana zero modes (FMZMs) in a periodically
driven nanowire coupled to a quantum dot. We use a numerical method which can accurately take into account the
dissipation effects from the superconducting bath, which causes the FMZMs to have a finite lifetime. Our results
show that, in the weak nanowire-dot coupling regime, the peak conductance at zero temperature of the resonant
dot can be well approximated by a universal function of the FMZM lifetime rescaled with the nanowire-dot
coupling strength. For a long FMZM lifetime, the conductance approaches the characteristic quantized value of
G = e2/2h, whereas G → e2/h (uncoupled dot) as the FMZMs’ lifetime goes to zero. Moreover, we show how
the conductance-lifetime relation is modified when considering the full Floquet structure of the nonequilibrium
Green’s function, undesired coupling to non-Majorana states, a nonresonant quantum dot, and finite-temperature
effects. Assuming good control over the system parameters, our method can be used to test the presence and
lifetime of FMZMs in such devices, which is key for any practical application of these topological states.
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I. INTRODUCTION

Topological superconductors can host zero-energy modes,
also called Majorana zero modes (MZMs) [1,2], which, if
experimentally engineered, have the potential to make topo-
logical quantum computation practical [3,4] due to to their
non-Abelian braiding properties [4–7]. MZMs have, so far,
proven to be extremely difficult to engineer experimentally. A
possible platform is given by semiconductor nanowires with
spin-orbit coupling proximitized to an s-wave superconductor
(SC) [8–12]. Seeking the realization of Majorana modes in
such devices has been the subject of extensive research in the
past decade, with recent experimental progress [13–26].

Topological states of matter and nontrivial band structures
can also be accessed through Floquet engineering, i.e., the
control of quantum systems through the application of a con-
trolled periodic drive [27–48]. The characteristic “replicated”
Floquet band structure in energy space for solid-state systems
has been experimentally verified through time and angle-
resolved photoemission spectroscopy [49–51]. In particular,
Floquet methods can induce a topological phase transition,
while the static system is topologically trivial, as for the case
of Floquet Majorana modes (FMMs), the periodically driven
equivalent of MZMs [34,36,37]. The study of nonequilibrium
phases of matter that can exhibit FMMs has been an active
field of research in the past years, as it connects the field
of topology in condensed matter to problems in nonequilib-
rium physics such as prethermalization, thermalization, and
disorder in open/closed quantum systems, time crystals, etc.
[52–59]. Specifically, open quantum systems can show a

*nforcellini@baqis.ac.cn

complicated behavior in particle statistics, depending on the
details of the bath and the system-bath coupling [60–63]. In
addition, recent works about realistic Floquet superconductors
[64] and on dissipative FMMs in nanowires [65] highlight
the importance of taking the SC bath-nanowire coupling into
account. In the presence of dissipation, while bosonic conden-
sation in the SC survives in the presence of a periodic drive,
fermionic quasiparticles, including FMMs, acquire a finite
lifetime which the standard Floquet theorem cannot correctly
capture.

Therefore, in this work we further investigate the life-
time of dissipative Floquet Majorana zero modes (FMZMs)
[65]. The effects of dissipation from the superconducting bath
are taken into account using the Floquet-Keldysh formalism,
which allows us to realistically model the SC bath embed-
ding the system [64–66]. We model a setup which would
allow to experimentally probe the lifetime of the dissipative
FMZMs, see Fig. 1. The setup consists of a quantum dot
(QD) resonantly coupled to a FMZM located at the end of a
nanowire, which is periodically driven with frequency �; two
external leads (L,R) are used to measure the QD electronic
conductance. We show that reducing the FMZMs’ lifetime by
increasing the periodic drive amplitude in the nanowire leads
to a transition in the QD single-spin conductance from G =
e2/2h (Majorana mode signature, see, e.g., [67]) to G = e2/h
(resonant uncoupled dot).

In the weak nanowire-dot coupling regime, the conduc-
tance in the presence of dissipation in the nanowire-SC system
can be modeled by using a finite-lifetime (MZM) toy model,
with the conductance being a universal function of the FMZM
lifetime rescaled with respect to the nanowire-dot coupling
strength. However, the Floquet structure of the FMZMs’
Green’s function needs to be taken into account for a stronger
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FIG. 1. Setup of the proposed device: The nanowire is period-
ically driven with frequency �, with one of its ends coupled to a
quantum dot through an effective coupling λnw−d . The dot itself is
connected to external leads L and R to measure its conductance.

coupling. The functional form of the conductance becomes
more complex and deviates from the simpler toy model for
short FMZM lifetimes, maintaining the same asymptotic be-
havior for long lifetimes. Therefore, we show through our
results that the QD conductance can be used as a signature
of the presence of dissipative FMZMs in periodically driven
topological nanowires, and it can also be used as a measure of
the FMZM’s lifetime in such devices.

The paper is organized as follows: In Sec. II we introduce
the model of the driven-dissipative nanowire coupled to a QD
and derive the expression of the QD Floquet conductance. In
Sec. III we present and discuss our numerical results on the
QD spectrum and conductance, as well as introduce a toy
model that allows for a good physical understanding of the
numerical results. Our results are first presented for the case
of a resonant dot at zero temperature, and in Sec. III C we
show how deviations affect the peak conductance. Finally, in
Sec. IV we report our conclusions.

II. MODEL

A. Superconducting nanowire

Consider a one-dimensional (1D) semiconducting
nanowire (SM) in the proximity of an s-wave superconducting
bath. We introduce a periodic drive in the SM region. The
1D Bogoliubov–de Gennes (BdG) Hamiltonian representing
such a system is given by

H (t ) = Hnw(t ) + Hsc + Hc ; (1)

the SM Hamiltonian, in real space, is [65,68]

Hnw(t ) =
∫ L

0
dx ψ†

x

[(
p2

x

2m
− μ + 2A cos (�t )

)
σ0τz

− αpxσyτz + Vzσzτz

]
ψx, (2)

with spinor representation ψx = (cx↑, cx↓, c†
x↑, c†

x↓)T , where
cx↑/↓ annihilates an up-/down-spin electron at location x on
the nanowire of length L; μ is the chemical potential; A and
� = 2π/τ are the amplitude and frequency of the periodic
drive; Vz is the Zeeman energy; and α is the spin-orbit cou-
pling strength. σμ and τμ indicate the Pauli matrices in the
spin and Nambu spaces, respectively. Note that we assume
the nanowire to be uniform, and therefore effects such as
the appearance of nontopological edge states such as “quasi-

Majorana modes” (QMMs), which can be induced by disorder
and other imperfections in the nanowire [68–73], are not con-
sidered. The study of QMMs for this setup goes beyond the
scope of the present work and shall be left for a follow-up
study.

In our system the bulk proximity SC also serves as a ther-
mal bath, which we assume to be much “larger” than the SM
nanowire system. Indeed, the density of states (DOS) for the
normal metal phase of the SC is much larger than that of the
SM nanowire. Therefore the thermal energy generated within
the system from the drive will be dissipated into the bulk prox-
imity SC. Hence we ignore any transient effect in the nanowire
and we assume that the system has reached the nonequilib-
rium steady state, meaning that energy transfer/heating influx
and outflux between the system and the bath are balanced
[28,29,65,66]. This leads to a Green’s function (GF) periodic
with the period τ of the drive Q(t, t ′) = Q(t + τ, t ′ + τ ),
which we define as the nonequilibrium Keldysh GF for our
full nanowire-QD-external leads system, after integrating out
the SC bath degrees of freedom—see below and the Ap-
pendix for more details and definitions.

The Hamiltonian of the SC bath is, in the mean-field BdG
form in momentum space, Hsc = ∑

q φ†
q (εqτz − �σyτy)φq,

where � is the SC gap, and φq = (aq↑, aq↓, a†
−q↑, a†

−q↓)T ,
where aq↑/↓ is the annihilation operator for spin-up/-down
electrons of momentum q in the SC bath. The SC-nanowire
coupling Hc is modeled as follows: First, the nanowire Hamil-
tonian is discretized with lattice spacing a becoming

Hnw(t ) = 1

2

∑
i

ψ
†
i {(2th − μ + 2A cos �t )σ0τz

+ Vzσzτz}ψi −
[
ψ

†
i+a

(
thσ0 + α

2a
σy

)
τzψi + H.c.

]
,

(3)

where the hopping constant th ≡ h̄2/2ma2.
Then the Markovian approximation [65], through which

correlations in the bath are neglected, allows to couple each
site of the chain to independent and identical SC baths Hsc,i =∑

q φ
†
qi(εqiτz − �σyτy)φqi. Hence, the coupling Hamiltonian

can be expressed as

Hc =
∑
i,q,σ

V (c†
i,σ aq,σ + a†

q,σ ci,σ ). (4)

The SC gap � and the nanowire-SC coupling V are taken to
be real, positive numbers without loss of generality. Choosing
the system-bath hybridization V to be independent of the
mode q of the bath allows for a simpler treatment of dissipa-
tion and amounts to the definition of an “effective” coupling
strength [65]. The external degrees of freedom can then be
integrated out as shown in [65] using the Floquet theorem, and
the resulting effective Floquet Hamiltonian, which includes
the energy-dependent bath self-energy correction �sc(ω) and
on-site Green’s function, are reported in the Appendix. The
main point is that a finite SC gap � broadens the quasi-
particle spectrum, representing dissipation caused by the SC
bath via the imaginary part of �sc(ω). On the other hand,
the nondissipative limit � → ∞ is equivalent to the introduc-
tion of a simple induced gap term �indσyτy in the nanowire,
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with induced order parameter �ind = πρFV 2, where we set
πρF = 1 as the DOS of the SC bath. See the Appendix and
[65] for more details on the dissipation model and the large-�,
nondissipative limit.

B. Coupling the dot

Consider the undriven QD coupled to one of the ends of
the nanowire through some effective hopping λnw−d [67]:

Hd =
∑

σ

εd d†
σ dσ + λnw−d

∑
σ

(d†
σ cL,σ + H.c.)

+
∑

k,α=L,R,σ

λασ (c†
kασ

dσ + H.c.) + V d
z (d†

↑d↑ − d†
↓d↓).

(5)

In the above, εd is the dot level and cL is the annihilation
operator for the last site of the nanowire. The two leads
labeled as left (L) and right (R) have Hamiltonian Hleads =∑

k,α=L,R c†
kασ

ckασ and couple to the dot with a width �ασ ≡
2π |λασ |2ρFl , where the lead DOS 2πρFl = 1 is assumed to be
constant. ckασ (dσ ) denotes the electron annihilation operator
for the leads (QD). V d

z is the Zeeman splitting for the dot,
which might be different from Vz of the nanowire, or, when
assuming that the QD and nanowire materials are the same,
can be set to have the same value. In any case, we assume
that the Zeeman energy is the largest scale in the QD, and
therefore we can consider only one spin channel, ignoring
any electron-electron interaction in the above Hamiltonian.
Moreover, we tune the QD such that the energy of the spin-↓
electron εd − V d

z = 0, allowing this state to be resonant with
the FMZM.

From this model, and following the method described in
[65], we use the recursive Floquet-Green’s function technique
to obtain the relevant components of the dot Green’s function
used for our calculations—see the Appendix for more details.

In this work we investigate the QD conductance due to
its coupling to dissipative FMZMs of finite lifetime τFM . As
mentioned in the previous section, a finite SC gap � induces
dissipation, i.e., a broadening of the quasiparticle spectrum.
Our operational definition of the FMZM lifetime is the inverse
of the width �FM = τ−1

FM obtained by fitting the FMZM peak
of the spectrum at the end of the nanowire. With the (time-
averaged) DOS of a FMZM at the end of the nanowire,

νFM (ω) = − 1

π
ImTr

{
QR

FM (0, ω)
}
, (6)

and the retarded FMZM Floquet Green’s function having
the form QR

FM (0, ω) = [ω − �FM (ω)]−1, then one has, in the
zero-frequency approximation,

νFM (ω) ∝ �FM

ω2 + �2
FM

. (7)

Hence, we identify the self-energy �FM (ω = 0) =
−i	[�FM (ω = 0)] = i�FM in the FMZM Green’s function
as purely imaginary, since the peak of νFM (ω) is always
at ω = 0 for a FMZM. In addition, increasing the driving
amplitude A also leads to an increase in dissipation and a
decay in quasiparticle lifetime in the nanowire [65]. Hence,
we use A as the tuning parameter for the FMZMs’ lifetime

control. For a more detailed discussion of the definition of
Floquet Majoranas’ lifetime, we refer to [65]. For this work
the above definition suffices.

C. Quantum dot conductance for a Floquet system

The time-dependent current in the left lead is given by

IL(t ) = ie

h̄

∑
kσ

(λkLσ c†
kLσ

dσ − λ∗
kLσ d†

σ ckLσ ), (8)

with the equivalent definition for the current through R.
Details of the derivation of the expression for the current
I (t ) = IL(t ) + IR(t ) through the QD using Floquet-Keldysh
field theory are left to the Appendix. Here we report the
final expression for the zero-bias time-averaged conductance
(G = d〈I〉/dV |V →0):

G = −2e2

h̄

∫
dω

2π

�L�R

�L + �R
ImTr

{
QR

dd (0, ω)
}(−∂nF

∂ω

)
. (9)

In the above, nF (ω) = [1 + e−h̄ω/kBT ]−1 is the Fermi-Dirac
distribution at temperature T , �L/R are the leads’ coupling
widths as defined under Eq. (5), and QR

dd (0, ω) is the zeroth
Fourier component (time average) of the retarded component
of the QD GF, defined as, with trel = t − t ′,

Qdd (n, ω) = 1

τ

∫ τ

0
dt

∫ ∞

−∞
dtrel e

−in�t e−iωtrel Qdd (t, trel )

(10)

for n = 0, where we made use of the periodicity of the GF
[66]. In our system we assume that the driving frequency
� is higher than the other energy scales, which makes it
sufficient to compute the time-averaged conductance and al-
lows for efficient numerical calculations. (We keep the driving
amplitude-frequency ratio κ ≡ A/� < 1 for numerical con-
vergence of the Floquet matrices, which are truncated to some
[65,66], see the Appendix for more details.) Equation (9)
can be seen as the Floquet generalization of the static QD
conductance [67].

As a special case, consider symmetric coupling to the leads
�L = �R = � leading to the peak conductance (as the temper-
ature T → 0):

Gpeak = −e2

h
� ImTr

{
QR

dd (0, ω → 0)
}
. (11)

For our numerical calculations of the conductance, we only
select the spin ↓-electron. From now on, Gpeak will be referred
to as G, and Eq. (11) will be used to produce our numerical
results for the time-averaged QD conductance.

III. RESULTS AND DISCUSSION

A. Quantum dot spectral function

As a first step, in Fig. 2 we investigate the single-spin
spectral function of the dot A↓(ω) ≡ −�	{QR

dd,↓(0, ω)}; for
simplicity we will drop the ↓ label. In Fig. 2(a), in the nondis-
sipative limit, the dot spectrum has the same characteristics
of a quantum dot coupled to a (non-Floquet, static) Majo-
rana zero mode with the same setup [67]: The dot spectral
function A(0) = 1/2 whenever the MZM is coupled to the

195412-3



FORCELLINI, CAO, AND LIU PHYSICAL REVIEW B 107, 195412 (2023)

FIG. 2. Quantum dot spectrum when coupled to (a) a nondissi-
pative FMZM, note the value A(0) = 1/2, expected from Majorana
modes for any λnw−d = 0, and (b) a dissipative FMZM, with the same
parameters as in (a) except for the SC gap �. Note how the 1/2
value at ω = 0 is lost, with A(0) → 1 for small λnw−d . For the calcu-
lations, εd = V d

z , placing the ↓ electron at zero energy. �L = �R =
� = 0.1, th = 2.0 (bandwidth D = 4th = 8.0), μ = −2.0, α = 3.0,
Vz = V d

z = 4.0, V = 1.2, A = 3.0, and � = 12.0.

dot, independently of the coupling strength, and A(0) = 1
with λnw−d = 0 (resonant isolated dot). This translates in a
peak conductance with a value G = e2/2h, which is a sig-
nature of MZMs [67]. This is in fact not surprising and
can be explained using a simple theoretical argument us-
ing standard Floquet theory for time-periodic Hamiltonians
[37]. The physical wave function in real space of some
Floquet state with quasienergy ε is �(x, t ) = eiεt/h̄ψ (x, t ),
with ψ (x, t ) = ψ (x, t + τ ) satisfying the eigenvalue equation
HF (x, t )ψ (x, t ) = εψ (x, t ), with the Floquet Hamiltonian
HF (t ) = H (x, t ) − ih̄∂/∂t [74]. Assuming the existence of an
ε = 0 eigenmode, we can define its wave function η(x, t ) ≡
�(x, t ) = ψ (x, t ), defined at any t by the Floquet eigenvalue
equation, where t has now assumed the role of a simple
parameter. Hence, a MZM exists at each t since ψ (x, t ) solves
the eigenvalue equation with ε = 0. Therefore FMZMs, de-
fined by quasienergy ε = 0, are MZMs at all times, i.e.,
localized at each end of the nanowire, which has also
been shown numerically [36,75], leading to the G = e2/2h
signature.

On the other hand, Fig. 2(b) shows the spectrum in the
presence of a dissipative FMZM. In this case, the A(0) = 1/2
signature is generally lost, with a decreasing λnw−d leading
to A(0) → 1. Intuitively, this is due to the FMZM having
acquired a finite lifetime due to dissipation, which approaches
the uncoupled limit A(0) → 1 as the lifetime gets shorter

FIG. 3. Conductance G from Eq. (11) as a function of the FMZM
lifetime τFM (arbitrary units), as the nanowire-dot coupling λnw−d

is changed. With a sufficiently long lifetime, the conductance G is
stabilized around the topological signature G = e2/2h. A larger value
for λnw−d , meaning a stronger coupling to the finite-lifetime FMZM,
leads to a more stable signal around G = e2/2h. Parameters as in
Fig. 2 (� = 12.0, etc.), with amplitudes 0 � A � 5.2, which allows
to tune the lifetime τFM in the x axis, and NF = 10 the Floquet matrix
cutoff.

and/or the coupling λnw−d gets weaker. λnw−d should be
kept small enough. With the current parameters (see caption
of Fig. 2) the induced gap parameter is �ind = 1.44, and
therefore we must have λnw−d < �ind to limit the undesired
influence of modes above the gap. In our calculations, the
nanowire has a length L = 200 sites, and we set the Floquet
cutoff NF = 10 to ensure convergence of the numerics [65].
The parameters used in this work and reported in Figs. 2 and
5 agree with previous works on dissipative and nondissipative
FMZMs [37,65], and are consistent with proposals of FMZM
realization in cold-atom systems [34].

B. Conductance and FMZMs’ lifetime

In order to better understand the conductance signal of the
dissipative FMZMs, we show in Fig. 3 the values of G as
a function of FMZM lifetime τFM for different λnw−d . By
increasing the strength A of the Floquet drive (and shorten-
ing the FMZM lifetime τFM) we find a transition between
G = e2/2h, indicating the presence of a Floquet Majorana
mode, to G = e2/h, which is the conductance of an uncoupled
dot resonant at zero energy. A stronger coupling stabilizes
the conductance signal around the Majorana signature G =
e2/2h. In the following we start from the simplest toy model
for dissipative Majorana modes in order to better analyze the
numerical results.

1. Toy model of a dissipative Majorana mode

Consider the following toy model for a normal MZM cou-
pled to the dot. The effective Hamiltonian for the single-spin
dot-MZM system is

H = Hleads + HT + HQD−MZM, (12)

where [67]

HQD−MZM = εd d†d + λnw−d (d − d†)η1 + iδη1η2, (13)

with δ being the exponentially small coupling δ ∼ e−L/ξ with
coherence length ξ = vF /�ind , vF being the Fermi velocity.
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Here, we set δ = 0 to isolate one of the Majoranas. Hleads

and HT are the single-spin versions of the lead and lead-dot
coupling Hamiltonians previously defined after Eq. (5). In
order to impose a finite lifetime for η1, we assign it a width
�M (ω) in its GF QR

η (ω) = C0/[ω + i�M (ω)], where C0 is a
normalization constant.

Assuming symmetric coupling to the leads �L = �R = �

and εd = 0, the retarded component QR
dd (ω) for this toy model

is given by

QR
dd (ω) =

[
1 − C0|λnw−d |2

(ω+i�M (ω))(ω+2i�)

]
(ω + 2i�)

[
1 − 2C0|λnw−d |2

(ω+i�M (ω))(ω+2i�)

] . (14)

This leads to G with the following simple form:

G(λ̃) = e2

h

1 + C0|λ̃|2/2�

1 + C0|λ̃|2/� , (15)

where |λ̃|2 = |λnw−d |2/�M (ω → 0) ∼ |λnw−d |2τM . Hence,
we found that, given a certain � coupling strength with the
leads, G is a universal function of the rescaled coupling λ̃. This
coupling represents the two competing energy/timescales of
the nanowire-QD system: MZM lifetime τM and the inverse
of the nanowire-QD coupling strength ∼|λnw−d |2.

While the above expression is strictly only exact for this
toy model, it agrees with the numerical results of Fig. 3 for
the weak nanowire-dot coupling limit. The main features of
the conductance curves can be seen by inspection of Eq. (15).
For a perfect MZM with τM → ∞, Gpeak = e2/h if the QD is
decoupled from the MZM, while Gpeak = e2/2h for any finite
λnw−d . For a finite τM , Gpeak > e2/2h. Specifically, reducing
τM would smoothly increase the peak conductance to e2/h.
Moreover, a larger λnw−d brings Gpeak closer to the quantized
value e2/2h. However, as the nanowire-dot coupling strength
increases, the toy model needs to be modified to include the
Floquet structure of the Green’s function. This is analyzed in
the next section.

2. Floquet Green’s function correction

Due to their time periodicity, FMZMs can be expanded as
η(t ) = ∑

n e−in�t ηn, and since their quasienergy ε = 0, the
Green’s function is given by

QR
η (n, ω) =

∞∑
k=−∞

ηk+n(ηk )∗

ω − k� + i�M (ω)
, (16)

where the �M (ω) must be the same for each k due to the
Floquet theorem, as shown in [65]. By definition, we have
η†(t ) = η(t ), and therefore (ηn)∗ = η−n. Hence, for n = 0 the
Green’s function can be written as

QR
η (0, ω) = C0

ω + i�M (ω)
+

∞∑
k=1

2Ck[ω + i�M (ω)]

[ω + i�M (ω)]2 − (k�)2
,

(17)

where Ck ≡ ηk (ηk )∗, so that Ck � 0. These k-dependent fac-
tors can be considered as decaying as a function of k due to the
properties of the Fourier series. For our numerical calculations
we set Ck ∼ k−α , α = 2. Different choices for the form of the
decaying Ck lead to qualitatively similar results.

FIG. 4. Log-log plot of the conductance G − e2/2h from Eq. (19)
using our toy model corrected for the Floquet structure of the FMZM
Green’s function, Eq. (16). In this plot, Ck ∼ k−α , α = 2. The fig-
ure shows that, with increasing λnw−d , the curve deviates from the
low-λnw−d limit of Eq. (15), which is shown in orange, only for small
enough lifetimes. The values set for λnw−d are 1.0 (red line, almost
overlapping with the orange line), 2.0 (blue) and 3.0 (black), and
4.0 (magenta). The values are chosen arbitrarily in order to show the
qualitative behavior due to the Floquet structure, with � = 12.0.

The dot Green’s function becomes

QR
dd (ω) =

[
1 − |λnw−d |2

(ω+2i�) Q
R
η (0, ω)

]
(ω + 2i�)

[
1 − 2|λnw−d |2

(ω+2i�) QR
η (0, ω)

] . (18)

From this expression, the generalization of Eq. (15) is easily
obtained as

G(λ̃) = e2

h

1 + |λ̃|2/2�
(

A0 + ∑∞
k=1

2Ak�2
M

�2
M+(k�)2

)
1 + |λ̃|2/�

(
A0 + ∑∞

k=1
2Ak�2

M

�2
M+(k�)2

) , (19)

where �M ≡ �M (ω → 0). Note that the introduction of the
energy scale defined by h̄� does not allow G to be a universal
function of the dimensionless parameter λ̃, since the expres-
sion in brackets has a dependence on the FMZM width �M .
In the � → ∞ limit, the expression reduces to the previous
model. We can also check the relevant limits of Eq. (19) in
the same way that we did for Eq. (15). For the uncoupled
dot, G = e2/h, and the large-τFM limit, (�M → 0) leads to
G = e2/2h, with the Floquet contribution (second term in the
bracket) vanishing. This leads to a G(λ̃) as reported in Fig. 4.
The results show a deviation from the form of Eq. (15) for
shorter lifetimes while maintaining the same G − 1/2 ∼ τ−1

FM
behavior for long lifetimes, in agreement with our numerical
results.

To summarize, in this section we showed that the conduc-
tance through a resonant quantum dot as a function of the
rescaled coupling/lifetime |λnw−d |2τFM has a characteristic
functional form, which is almost identical when the dot is
coupled to either dissipative MZMs or FMZMs, with the con-
ductance curves differing only for short lifetimes and strong
enough nanowire-dot coupling. In particular, given the possi-
bility of tuning of the FMZMs’ lifetime and the nanowire-dot
coupling strength, our results provide a signature for the pres-
ence and stability—in terms of their lifetimes—of FMZMs in
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FIG. 5. (a) Same plot as Fig. 3, showing G < e2/2h for short τFM

and large λnw−d , where the model parameters have been modified to
get FMZMs with smaller �ind = 0.64. Specifically, th = 1.0 (D =
4.0), α = 1.5, Vz = V d

z = 1.2, V = 0.8, � = 6.0, and 0 � A � 5.2,
as in Fig. 3, with a Floquet matrix cutoff NF = 20. (b) G(τM ) from
Eq. (21) for the toy model with an additional off-resonant fermion.
We can see that the model can qualitatively reproduce the large-λ
short-lifetime behavior shown in (a). Equation (21) is computed with
� = 0.1, δ = 0.3.

topological nanowires. The QD conductance should behave as
shown in Figs. 3 and 4 and as described by Eqs. (15) and (20).

In the next section we briefly explore how the QD conduc-
tance is modified if other modes in the nanowire also couple
to the QD, which happens when λnw−dot � �ind through the
influence of above-gap states. Moreover, we consider the case
of the QD being off-resonance and finite-temperature correc-
tions to G.

C. Soft SC gap (coupling to a normal fermion), nonresonant
QD, and finite-temperature effects

A setting in which the undesired coupling could happen is
the case in which the nanowire-dot coupling gets too large; the
coupling of states above the induced gap can affect the value
of the conductance. For instance, this effect can manifest itself
when engineering very short FMZM lifetimes, corresponding
to larger amplitudes in the drive, as explained in Sec. II B
and as established in [65]. In such a case the spectrum in
the nanowire is broadened and the SC gap derived from the
Floquet GF becomes soft [64]. The effect on the conductance
is shown in Fig. 5(a), where we modify our model param-
eters and we set some λnw−d � �ind ; the numerical results
show values G < e2/2h when approaching shorter FMZM
lifetimes. However, these conductance curves show a mini-

mum for small τFM , reverting to G → e2/h for τFM → 0. A
value of G = 0 is a signature of a dot coupled to a normal
fermion. Hence the features seen in the figure are probably due
to the contribution of states above the induced gap, detected
via the strong coupling. However, since such quasiparticles
also acquire a finite lifetime due to the drive and dissipation,
the limit G(τ → 0) = e2/h should be maintained.

To analyze this behavior, we add to the MZM a normal
fermion with finite width � f (ω) and with finite energy δ—
slightly off-resonant with the QD—to the MZM toy model.
Hence, the GF become, in particle-hole space,

QR
nw(ω) ≈

(
1

ω+i�M
+ 1

ω−δ+i� f
0

0 1
ω+i�M

+ 1
ω+δ+i� f

)
. (20)

In order to derive the simplest possible expression for G cap-
turing the numerics, we make the following assumptions: The
lifetimes of both the MZM and the off-resonant fermion are
set to be the same � f = �M ≡ 1/τM , as well as the nanowire-
QD coupling λnw−d . This leads to the following expression for
the conductance (εd = 0):

G(τM ) = e2

h

1 + δ2|λnw−d |2τM/[2�
(
δ2 + 1/τ 2

M

)
]

1 + |λnw−d |2
[

τM
�

+ 1
δ2+ 1

τ2
M

(
1

�τM
+ |λnw−d |2

2�2

)] .

(21)

A plot of the above function is shown in Fig. 5(b). The
model is able to replicate the small-τM/large-λ features of the
numerical simulation of 5(a), which we can now explain as
follows. On the one hand, the FMZM lifetime is reduced by
dissipation, leading to a reduced “effective coupling” λ̃ to the
dot. On the other hand, the effect of SC gap softening in the
nanowire as the amplitude of the periodic drive is increased
can lead to a signal G → 0 as the dot starts coupling to
a normal fermion above the gap. This effect only becomes
important as the nanowire-QD coupling λnw−dot � �ind . An
assumption that was made so far is that of a resonant dot. If
the QD energy level εd = 0, then the G(τFM → 0) < e2/h,
with the expression for the conductance of Eq. (15) becoming

G(λ̃) = e2

h

1 + C0|λ̃|2/2�

1 + C0|λ̃|2/� + (εd/2�)2 , (22)

which agrees with our numerical results when we choose
εd = 0 for weak nanowire-QD coupling, as shown in Fig. 6—
Eq. (19) for the Floquet case is similarly modified by adding
the (εd/2�)2 term in the denominator, showing the same
qualitative behavior as the above. The finite εd correction
especially affects the small-τFM behavior, as clearly seen from
Eq. (22). While it is in principle always possible to tune
the QD to be resonant by measuring its conductance when
uncoupled from the nanowire, it may not be straightforward
in realistic experimental scenarios.

At finite temperature T , Fig. 6(c) shows that the value of
the conductance changes with increasing T for longer FMZM
lifetimes, an effect that is suppressed for a larger value for
λnw−d , as long as the thermal energy scale is small enough
compared to other energy scales. These effects need to be
taken into account when considering the application of the
conductance-lifetime relation of Eq. (15) to experimentally
measure the FMZM lifetime.
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FIG. 6. Conductance G(τFM ) from Eq. (11) (arbitrary units),
same parameters as in Fig. 3, QD energy level (a) εd = 0.1 and (b)
εd = 0.3. We can see how, especially for short lifetimes, the values
of the peak conductance get affected, with G(τFM → 0) < e2/h as
described by Eq. (22). For three values of temperature T , (c) shows
the conductance as computed from Eq. (9) with the same parameters
as in Fig. 3, with a resonant QD and λnw−d = 0.1, 0.2. Note that
the effect of temperature becomes negligible for large enough λnw−d

compared to T .

IV. CONCLUSIONS

In this work we studied the transport signatures of dissipa-
tive FMZMs coupled to a resonant quantum dot. We derived
an expression for the conductance from first principles via the
Floquet-Keldysh formalism, allowing for a nonperturbative

treatment. We showed that the peak conductance of a dot
coupled to a FMZM shows a characteristic transition from
the Majorana signature G = e2/2h to the uncoupled value
G = e2/h as the FMZM lifetime decays. We showed that the
peak conductance can be well approximated by a universal
function of the FMZM lifetime, rescaled with respect to the
nanowire-dot coupling strength, despite the fact that the true
functional form of the conductance is in fact more complex
due to the Floquet structure of the FMZM’s GF. Indeed, we
showed that the Floquet correction only becomes important at
short lifetimes and strong nanowire-dot coupling.

Periodically driven nanowires seem to be a convenient
platform for the study of the lifetime and stability of FMZMs,
given the simple nanowire-QD coupling setup and tunability
of the periodic drive. However, the setup requires a good
degree of control and fine-tuning of the coupling strength with
the QD, as well as making sure that the induced supercon-
ducting gap stays large enough under a strong periodic drive,
which might represent obstacles for an experimental realiza-
tion. In addition, our calculations showed that imperfections
in QD energy level tuning and finite-temperature effects can
affect the measured QD conductance in relation to the FMZM
lifetime.

Nonetheless, with the above premises, our work illustrates
a clear signature for the presence of FMZMs in topological
nanowires, even when taking into account the effects of dissi-
pation from the SC bath. In future work it would be interesting
to include more realistic effects in the setup, such as disor-
der and imperfections in the periodically driven-dissipative
nanowire, to study their effects on electronic transport.
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APPENDIX

1. Nanowire model and recursion method

After integrating out the bath degrees of freedom, the
on-site retarded component of the nanowire Floquet Green’s
function (GF) takes the form

gi(ω) = [ω − Heff,i(ω)]−1, (A1)

where the on-site effective Floquet Hamiltonian is

Heff,i(ω) =

⎛
⎜⎜⎜⎜⎝

...

Hnw,i − � + �sc(ω + �) Aσ0τz 0
Aσ0τz Hnw,i + �sc(ω) Aσ0τz

0 Aσ0τz Hnw,i + � + �sc(ω − �)
...

⎞
⎟⎟⎟⎟⎠, (A2)
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where Hnw,i = (2th − μ)σ0τz + Vzσzτz and the bath self-
energy term is [65]

�sc(ω) = V 2 1√
−(ω + iη)2 + �2

[−(ω + iη) − �σyτy],

(A3)
where η = 0+ and the bath DOS is assumed to be uniform.
For the numerical calculations η is set to a finite positive value,
much smaller than any other energy scale in the system. The
notation M indicates a matrix in Floquet space, which is in
principle infinite-dimensional due to the Fourier expansion,
and we denote this by [M]mn.

For instance, in Eq. (A2) [Heff,i(ω)]nn = Hnw,i + �sc(ω −
n�) + n�. In Heff,i(ω) the off-diagonal elements represent
the harmonic drive. A value of κ ≡ A/� < 1 ensures con-
vergence and allows for the truncation of the matrices in
the Floquet Hilbert space for any value of �, and the
matrix dimensions can be kept conveniently small with-
out any appreciable loss of accuracy [65,66]. Moreover, the
Q(0, ω) elements of the Floquet GF used in the main text
to compute time averages of observables are extracted from
the [Qdd (ω)]00 component of the Floquet GF matrix. The
meaning of the self-energy of Eq. (A3) is that it repre-
sents dissipation through its ω dependence, i.e., a broadening
of the quasiparticle spectrum via its imaginary part; when
� < �, the self-energy of [Heff,i(ω)]11/−1−1 becomes purely
imaginary, which means that “single-photon” Floquet transi-
tions lead to energy-particle exchange directly above the SC
bath; when � > �, higher-order transitions are necessary and
therefore the FMZM lifetime is longer. The nondissipative
limit is found by letting � → ∞, whence �sc = �indσyτy,
with the self-energy simply becoming a real-valued induced
gap parameter in the nanowire, with �ind ≡ ρFV 2.

The spectrum and local density of states of the FMZMs at
the end of the nanowire can be calculated from the retarded
part of the local GF, which is found by using the following
recursive matrix equation in the Floquet-Keldysh-BdG space
[65],

Qi+1,i+1(ω) = [
g−1

i
(ω) − Ti+1,iQi,i(ω)Ti,i+1

]−1
, (A4)

where g
i
(ω) is the on-site “bare” GF defined in Eq. (A1). The

above equation is iterated for N = 200 sites in our calcula-
tions, with an appropriate NF Floquet matrix cutoff to ensure
convergence. The hopping matrix in the nanowire is

Ti,i+1 = Ti+1,i
T =

⎛
⎜⎜⎝

−th 0 −α/2a 0
0 th 0 α/2a

α/2a 0 −th 0
0 −α/2a 0 th

⎞
⎟⎟⎠,

(A5)
which, extended in F-K-BdG space, is simply Ti,i+1 =
I2NF +1 ⊗ I2 ⊗ Ti,i+1.

The quantum dot coupled to the leads of Eq. (5) can
be included as an additional site of the recursive chain,
which means that we need to perform an additional
iteration of Eq. (A4) with g−1(ω) = diag[ω − εd −
V d

z + i(�L + �R), ω − εd + V d
z + i(�L + �R), ω + εd +

V d
z + i(�L + �R), ω + εd − V d

z + i(�L + �R)] and Ti,i+1 =
diag[−λnw−d , λnw−d ,−λnw−d , λnw−d ].

2. Derivation of the current and conductance
using Floquet-Keldysh field theory

In order to derive the expression of conductance of Eq. (9)
in the main text, one can start from the effective action with
current source term [76]

S = S0 + SL−D + Ssource, (A6)

where

S0 =
∑

kk′,α=L,R

∫
C

∫
C

dtdt ′�†
k,α

(t )Q−1
0,kk′α (t, t ′)�k′,α (t ′)

+
∫

C

∫
C

dtdt ′�†
d (t )Q−1

0,dd (t, t ′)�d (t ′), (A7)

and the coupling part of the action is given by

SL−D =
∑
kα

∫
C

dt (λkαc†
kα

d + H.c.)

=
∑
kα

∫
C

dt (�†
k,α

(t )M̂T,kα�d (t ) + H.c.), (A8)

where we choose to work in the Nambu basis �
†
k,α

=
(c†

k,α
, ck,α )/

√
2 and �

†
d = (d†, d )/

√
2; the tunneling matrix

element is MT,kα = (λαk 0
0 −λ∗

αk
); Q0,dd (t, t ′) is the Green’s op-

erator for the dot; and Q0,kk′α (t, t ′) is the Green’s function of
the lead.

By defining a spinor for the whole space �† =
(l†

kL, lkL, d†, d, l†
kR, lkR)/

√
2, the above action terms can be

expressed as

S0 + SL−D =
∫

C

∫
C

dtdt ′�†(t )Q−1(t, t ′)�(t ′), (A9)

where the Green’s function is

Qkk′ =
⎛
⎝QLk,Lk′ QLk,d QLk,Rk′

Qd,Lk′ Qd,d Qd,Rk′

QRk,Lk′ QRk,d QRk,Rk′

⎞
⎠. (A10)

Out of these components, for the transport calculations we
only need the Qdd from the dot, as we will show in the
following derivation.

Finally, the source term is defined as

Ssource = −
∫

dtA(t )IL(t ) = −
2∑

a,b=1

∫ ∞

−∞
dt�̄aÂabM̂L�b,

(A11)

where the spinors and matrices are now in Keldysh space after
performing a Larkin-Ovchinnikov rotation, where Â = Aqγ q,
γ q = σ1, and the Keldysh spinors �1,2, �̄1,2 are defined as
�1/2 = (�+ ± �−)/

√
2 and �̄1/2 = (�̄+ ∓ �̄−)/

√
2, where

�+ and �− are the components of the Grassmann field �

that reside on the forward and backward parts of the time
contour C, respectively [77]. The retarded, advanced, and
Keldysh components of the Green’s function are defined as
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(with a, b ∈ {1, 2}) [77,78]

Qab(t, t ′) = −i 〈�a(t )�̄b(t ′)〉 =
(

QR(t, t ′) QK (t, t ′)
0 QA(t, t ′)

)
,

(A12)

where the retarded, advanced, and Keldysh compo-
nents have the usual definitions QR/A(t, t ′) = ∓iθ (±
t ∓ t ′)〈{�(t ), �†(t ′)}〉 and QK = −i(〈�−(t )�̄+(t ′)+〉〈�+
(t )�̄−(t ′)〉).

The source term of Eq. (A11) generates the current through
the left lead

IL(t ) = ie

h̄

∑
kσ

(λLkl†
Lkσ

dσ − λ∗
Lkσ d†

σ lLkσ ) = ��†(t )M̂L ��(t ).

(A13)
The transport matrix M̂L is defined as

M̂L = ie

h̄

⎛
⎝ 0 M12

L 0
M21

L 0 0
0 0 0

⎞
⎠, (A14)

with M12
L = (λLk 0

0 λ∗
Lk

) and M21
L = (−λ∗

Lk 0
0 −λLk

). The generat-

ing function is Z[A] = ∫
D[�̄�]eiS , and upon Gaussian in-

tegration to linear order in Aq, ln Z[A] = Tr ln [1̂ − QAM] ≈
−Tr[QAqγ qML]. The current can be expressed as

IL(t ) = i

2

δ ln Z[A]

δAq

∣∣∣∣
Aq=0

≈ − i

2
Tr[Q(t, t )γ qML], (A15)

leading to

IL(t ) = e

2h̄

∑
k

∑
n

∫
dω

2π
ein�t Tr

[
QK

Lk,d (n, ω)M21
L

+ QK
d,Lk (n, ω)M12

L

]
, (A16)

where the trace over the lead-QD space has been performed,
and the following identity was applied:

Tr[Qαγ q] = QK
α (t, t ) =

∑
n

∫
dω

2π
ein�t QK (n, ω), (A17)

where QK is the Keldysh component of the Green’s function.
The above Green’s functions (for the left lead) can be ex-
pressed as follows, in terms of the lead GF g0

Lk and dot GF
Qdd :

Qd,Lk = M21
T Qdd g0

Lk, (A18)

QLk,d = M12
T g0

LkQdd . (A19)

Taking the Keldysh component of these products leads to

(Qd,Lk )K = M21
T

[
(Qdd )R

(
g0

Lk

)K + (Qdd )K
(
g0

Lk

)A]
, (A20)

and

(QLk,d )K = M12
T

[(
g0

Lk

)R
(Qdd )K + (

g0
Lk

)K
(Qdd )A

]
, (A21)

where (Q, g0)R/A are the QD/lead Green’s function retarded
and advanced components. Upon substitution in Eq. (A16),
it leads to the following expression for the time-dependent
current:

IL(t ) = ie

2h̄

∑
n

ein�t
∫

dω

2π
�L{[1 − 2nL(ω)]

× [
Qdd

R(n, ω) − Qdd
A(n, ω)

] − Qdd
K (n, ω)},

(A22)

where nL(ω) is the Fermi-Dirac distribution of the L lead.
Note that at this stage the expression shows the exact current
with its full time dependence. The only assumption, as stated
in the main text, is that the system is in a nonequilibrium
steady state, and thus the Green’s function is periodic in time
with the period τ of the drive. In addition, for the derivation
of Eq. (A22), the following are used:

(1) Identities for the lead GF, [g0
Lk (ω)]K = −2π iδ(ω −

εk )[1 − 2nL(ω)] and [g0
Lk (ω)]R − [g0

Lk (ω)]A = −2π iδ(ω −
εk ).

(2) The summation over k is performed with the help of
the δ function, and we assume the wide-band limit for the
leads, with a constant density of states ρ(ω) = ρFl .

(3) The linewidth function is defined as �L = 2πρFl |λL|2.
The equivalent expression can also be derived for IR(t ),

defined as

IR(t ) = ie

h̄

∑
kσ

(λRkl†
Rkσ

dσ − λ∗
Rkσ d†

σ lRkσ ). (A23)

For a time-dependent system, IL(t ) = −IR(t ) only holds for
time averages, i.e., 〈IL(t )〉 = −〈IR(t )〉 [79].

Therefore for the time-averaged current through the dot
〈I〉 = 〈(IL − IR)/2〉, the following simple expression for the
current is valid:

〈I〉 = ie

h̄

∫
dω

2π
[nL

F (ω) − nR
F (ω)]

×Tr

{
�L�R

�L + �R
[QR

dd (0, ω) − QA
dd (0, ω)]

}
. (A24)

This leads directly to the expression for the conductance of
Eq. (9) in the main text.
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