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Two-dimensional (2D) materials with high in-plane anisotropy offer promising candidates for hosting highly
directional surface plasmons, but few of them have been demonstrated to reach this goal thus far. In this paper,
we propose a design principle of 2D hyperbolic materials (2D-HMs) based on orbital anisotropy and predict from
first-principles calculations a family of 2D-HMs: aluminum disulfide monolayer and its analogues XY2 (X = Al,
Ga, In; Y = S, Se, Te). These natural 2D-HMs exhibit broadband hyperbolic regimes across the near-infrared
to ultraviolet spectrum, enabling the propagation of highly directional hyperbolic surface plasmons. Undamped
plasmons emerge along the x direction with the maximum wave vector of ∼0.16 Å−1 and frequency of 4.6
eV, whereas the plasmons along the y direction have low frequency (<0.6 eV) and decay rapidly to electron-
hole pairs for the AlS2 monolayer. By solving Maxwell’s equation, we simulate the directional propagation of
the surface waves with hyperbolic dispersion relations. We correlate the fascinating plasmonic properties with
the unique electronic structures of these highly anisotropic 2D materials, which offers a promising strategy for
the design of 2D-HMs.
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I. INTRODUCTION

Materials with highly anisotropic electronic and optical
properties offer a promising platform for studying unusual
physical scenarios that introduce concepts for next-generation
electronic and optoelectronic devices. Hyperbolic materi-
als (HMs) with principal components of opposite signs in
their permittivity tensor are of particular interest due to
their unique electromagnetic response characteristics, such
as optical nanoscale cavities [1,2], spontaneous emission
enhancement [2,3], nanoscale imaging [4,5], and full-angle
negative refraction [6,7]. These interesting properties are
closely related to the peculiar dispersion relation between
frequency ω and wave vector k which is determined by the
permittivity of medium ε (assuming εxx = εyy):

k2
x

εzz
+ k2

z

εxx
=

(ω

c

)2
. (1)

Hyperbolic media have εxx × εzz < 0, corresponding to a
hyperbolic isofrequency surface, in sharp contrast to the ellip-
tic isofrequency surfaces of conventional anisotropic materi-
als with εxx > 0 and εzz > 0. According to the signs of permit-
tivity, they are classified into type-I (εxx < 0 and εzz > 0) and
type-II (εxx > 0 and εzz < 0). Most experimentally realized
HMs are artificially built from metallic and dielectric media
aligned in different patterns. However, there are also many
naturally occurring materials with intrinsic anisotropy in in-
plane and/or out-of-plane directions, such as graphite [8],
hexagonal boron nitride (hBN) [9], metal-organic frameworks
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[10], and so on [11,12]. These natural materials (NMs) offer
several advantages over metamaterials, such as simpler man-
ufacturing processes, lower interfacial scattering losses, and
larger maximum propagation wavelengths, which are quite
crucial for many applications [13–16].

The anisotropic electronic and optical properties of two-
dimensional (2D) materials present a promising avenue for
the development of natural HMs. The inherent nature of 2D
materials allows for the implementation of the hyperbolic
regime in a single sheet without the need for complicated
substrate patterning. Studies have predicted that 2D-HMs can
support highly directional hyperbolic surface plasmons [6].
Like bulk HMs, 2D-HMs require highly anisotropic electron
motion, resulting in an inductive response along one optical
axis and a capacitive response along the other axis. Addi-
tionally, to achieve the desired functionality, the energy loss
due to light absorption in the hyperbolic regime must be min-
imized. The strict requirements on the electronic properties
of 2D-HMs have led to the rarity of natural materials that
meet these criteria. To date, only a few natural 2D-HMs,
such as MoTe2 [17,18], black phosphorus [19], MoOCl2 [20],
and copper borides [21], have been proposed. Unfortunately,
highly directional hyperbolic surface plasmons have not yet
been demonstrated in these materials, partly due to the low
quality factor (Q) and limited hyperbolic regimes. There-
fore, discovering 2D materials that meet the above criteria
of highly anisotropic electron motion, resulting in an induc-
tive/capacitive response, and minimal light absorption in the
hyperbolic regime represents a challenging task in material
design.

In this paper, we propose a design principle for 2D-HMs
based on a simple tight-binding (TB) model of a honeycomb
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lattice of px orbitals and demonstrate the anisotropic (induc-
tive/capacitive) response that arises from orbital anisotropy.
Using first-principles calculations in combination with linear-
response theory, we further predict a family of 2D-HMs with
broadband hyperbolic regimes and exceptional plasmonic
properties. Our analysis focuses on the aluminum disulfide
monolayer and its analogues XY2 (X = Al, Ga, In; Y = S,
Se, Te). These materials exhibit undamped plasmons along
the x direction with energy up to 4.6 eV, while plasmons
along the y direction have low energy (<0.6 eV), which
can be attributed to the anisotropic electronic band struc-
ture. We also verify the directional propagation of surface
waves with hyperbolic dispersion relations in the hyper-
bolic regime by solving Maxwell’s equations. The broadband
hyperbolic regimes from near-infrared to ultraviolet spec-
trum, high quality factors, and ultralow light absorption in
these materials make them highly promising for supporting
highly directional hyperbolic surface plasmons. The corre-
lation between the anisotropic electronic structures and the
intriguing plasmonic properties of these materials uncovered
in this paper provides a promising strategy for the design of
2D-HMs.

II. METHOD AND COMPUTATIONAL DETAILS

We perform first-principles calculations using VASP [22]
and GPAW code [23,24], applying density functional theory
(DFT) with the projector augmented-wave method [25] for
ion-electron interaction. The exchange-correlation functional
is treated self-consistently using a generalized gradient ap-
proximation in the form developed by Perdew, Burke, and
Ernzerhof [26]. We use plane waves with an energy cut-
off of 500 eV to expand the Kohn-Sham wave function
and apply a vacuum space of 30−Å thickness along the
z direction to exclude the interactions between neighboring
images. The structural relaxation and electronic properties
calculations are carried out on a 11 × 11 × 1 k-point grid
with an energy convergence criterion of 10−6 eV. We fully
relax the atomic coordinates and the lattice vectors until the
Hellmann-Feynman forces are < 0.01 eV/Å without any
symmetry constraints. We confirm that the selected settings
converge effectively to determine the optimized lattice param-
eters and the electronic properties of the 2D materials under
investigation. To calculate the subsequent optical conductiv-
ity, we employ a Wannier interpolation technique to obtain
the maximally localized Wannier functions of the bands near
the Fermi level.

The conductivity σαβ (ω) describes the linear response of
the electrical current in the α direction to the electric field
applied in the β direction. We consider a minimal model of
the conductivity tensor of 2D materials:

σ =
(

σxx 0
0 σyy

)
, (2)

where the intraband electron motion and interband electron
transition are involved:

σαα (ω) = σ intra
αα (ω) + σ inter

αα (ω). (3)

The intraband contribution is evaluated using the Drude
model (we set h̄ = 1 hereafter) [27]:

σ intra
αα (ω) = i

(ω + iη)S

∑
k,n

(
∂En,k

∂kα

)2(
− ∂ f

∂En,k

)
. (4)

The interband contribution given by using the Kubo for-
malism reads [28]

σ inter
αα (ω) = i

S

∑
k,n �=n′

f (En,k ) − f (En′,k )

(En′,k − En,k ) − (ω + iη)

1

En′,k − En,k

× |〈k, n|ν̂α|k, n′〉|2. (5)

In these formulas, |k, n〉 and En,k represent the wave func-
tion and energy of an electron at the nth band with the wave
vector of k, f (En,k ) is the Fermi distribution function, ν̂α is
the velocity operator, and S is the sample area.

The dielectric function and the collective excitation spec-
trum are computed using the linear response method. The
noninteracting density response function in the reciprocal lat-
tice space is specified by [29,30]

χ0
GG′ (q, ω) = 1

�

∑
k,n,n′

f (En,k ) − f (En′,k+q)

(En,k − En′,k+q) + ω + iη

× 〈k, n| exp[−i(q + G) · r]|k + q, n′〉
× 〈k, n| exp[i(q + G′) · r]|k + q, n′〉. (6)

With the use of the time-dependent DFT, we can deter-
mine the entire interaction density response function through
a Dyson-like equation, expanded in plane waves [31,32]:

χGG′ (q, ω) = χ0
GG′ (q, ω)

+
∑
G1G2

χ0
GG′ (q, ω)KG1G2 (q)χG1G2 (q, ω). (7)

In this formula, G and q are the reciprocal lattice vectors
and the corresponding wave vector, and KG1G2 is the interact-
ing response function. In the random phase approximation, the
dielectric function converts to [24]

ε−1
GG′ (q, ω) = δGG′ − 4π

|q + G|2 χ0
GG′ (q, ω). (8)

The macroscopic dielectric function is defined as [29,30]

εM (q, ω) = 1

ε−1
00 (q, ω)

. (9)

The electron energy loss spectrum (EELS) L(q, ω) is cal-
culated by evaluating the imaginary part of the inverse of the
macroscopic dielectric function [33,34]:

L(q, ω) = −Imε−1
M (q, ω). (10)

To accurately describe the interband transitions, we uti-
lize a dense k-point grid of 75 × 45 × 1 and consider up to
80 empty bands. For minor q modes, we use a denser k-point
grid of 150 × 90 × 1. Our computations also account for lo-
cal field effects using an energy of 50 eV and a broadening
parameter of η = 0.05 eV.
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FIG. 1. (a) Schematic representation of anisotropic orbital ordering in a honeycomb lattice. (b) Band profile of the tight-binding (TB)
model and the Fermi surface indicated by the intersection lines between the band profile and the plane of E = EF . The Fermi energy (EF ) is
set to 1.5 t .

III. RESULTS AND DISCUSSION

A. TB model of anisotropic orbitals

To illustrate the correlation between orbital ordering and
the anisotropy of electronic band structures that meet the
criteria for a 2D-HM (i.e., metallic in one direction and semi-
conducting in another), we begin with a simple TB model of
a honeycomb lattice with a px atomic orbital at each site, as
shown in Fig. 1(a). In view of the in-plane anisotropy of the
px atomic orbital, we limit our analysis to electron hopping
between two adjacent sites with varying hopping parameters,

−t and −t ′ (t > 0; t ′ > 0), as depicted in Fig. 1(a). This
approach differs notably from the TB model of graphene, in
which the pz atomic orbitals possess in-plane isotropy. The
TB Hamiltonian of the lattice reads

H =
[

0 g(k)

g∗(k) 0

]
, (11)

with g(k) = t{exp[i(
√

3kxa
2 + kya

2 )] + exp[i(−
√

3kxa
2 + kya

2 )]} +
t ′ exp(−ikya), which gives the energy spectrum of

E±(k) = ±
√

2t2 + t ′2 + 2t2 cos(
√

3kxa) + 4tt ′ cos

(√
3

2
kxa

)
cos

(
3

2
kya

)
. (12)

In this expression, a represents the distance between
two adjacent sites. Assuming each site has more than one
electron, the E− band is filled by electrons, while the E+ band
is only partially occupied, resulting in a metallic model. The
profile of the E+ band with t ′ = 0.3t is plotted in Fig. 1(b).
The band exhibits significant anisotropy along the x and y
directions, with a dispersive shape along the x direction but
a flattened shape along the y direction. By setting the Fermi
level (EF ) to 1.5 t , we obtain an open olivelike Fermi surface
which is highly anisotropic, as indicated by the intersection
between the band profile and the plane of E = EF . The open
olivelike Fermi surface implies an anisotropic response of
electron motion to the external electric field. Specifically,
the electron velocity υ(k) = ∇kE perpendicular to the Fermi
surface has a significant component along the x direction,
indicating high electron conductivity along this direction,
according to Eq. (4). On the other hand, the component of
υ(k) along the y direction ∂E/∂ky is negligible, suggesting
low conductivity (semiconducting) along this direction. This
highly anisotropic conductivity promotes the formation of
broadband hyperbolic regime. Furthermore, this principle
applies to the distorted honeycomb structure with stretching
along the [110] direction.

B. Lattice and electronic structures of
XY2 (X = Al, Ga, In; Y = S, Se, Te) monolayers

In this section, we will demonstrate how to design a 2D
material with highly anisotropic electron conductivity, using
the TB model. In our analysis, we focus on XY2 monolayers
with rhombic unit cells and a P2/m space group, where X =
Al, Ga, In and Y = S, Se, Te. The Y atoms form a buckled
honeycomb sublattice, as depicted in Fig. 2(a). Notably, the
Y atoms have a valence of − 3

2 , which is higher than the
conventional X2Y3 compounds (e.g., Al2S3). This results in
their p orbitals being partially occupied, making them well
suited for the TB model. In the following sections, we will
take the AlS2 monolayer as an example to study the lattice and
electronic structures of this anisotropic 2D family. The mono-
layer consists of an Al plane sandwiched by two S planes with
a thickness of 3.0 Å determined from the distance between
the two S planes. Each Al/S atom is coordinated by 6 S/3 Al
atoms, with an Al-S bond length of 2.4 Å. The base vectors
have a length of 3.5 Å, and the angle between them is 49.9◦.
The phonon spectrum of the AlS2 monolayer, as shown in
Fig. 2(b), is free from imaginary frequency modes, indicating
its dynamic stability. We have adopted first-principles molec-
ular dynamics simulations to investigate the thermodynamic
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FIG. 2. (a) Top and side views of the crystal structure of AlS2 monolayer. (b) Phonon spectrum, (c) Brillouin zone, (d) Young’s modulus,
and (e) Poisson’s ratio of AlS2 monolayer.

stability of the AlS2 monolayer at a temperature of 800 K
[35]. Our results demonstrate that the monolayer is thermody-
namically stable under this condition. Furthermore, we have
examined the chemical stability of the AlS2 monolayer by
analyzing the decomposition reaction 2AlS2 → Al2S3 + S.
Our calculations indicate that this reaction is endothermic
with a reaction enthalpy of ∼1.12 eV/AlS2, thus confirming
the chemical stability of the monolayer. The lattice parameters
and the phonon spectra of other XY2 monolayers are presented
in the Supplemental Material [35]. The angle between the two
basis vectors deviates from 60◦ of a perfect honeycomb lattice.
The distorted honeycomb sublattice of Y atoms could enhance
the anisotropy of the 2D materials by reducing the magnitude
of t’ as predicted by the TB model.

Notably, Young’s moduli of the AlS2 monolayer exhibit
minimal anisotropy, as demonstrated in Fig. 2(d). The val-
ues for the moduli are 82.98 and 99.46 N m−1 along the
x and y directions, respectively. While Young’s moduli of
XY2 monolayers are larger than those of the MX (M = Al,
Ga, In, Zn, Cd; X = P, As, Sb, S, Se, Te; 1.43–60.72 N m−1)
monolayers [36], they are lower than those of phospho-
rene (103.32 N m−1) and graphene (354.00 N m−1) [37].
Additionally, the anisotropy of Poisson’s ratio of the AlS2

monolayer is also insignificant, as shown in Fig. 2(e). The
weak anisotropy observed in the mechanical properties of the
AlS2 monolayer is correlated with the weak anisotropy in
the atomic arrangement of the distorted honeycomb lattice.
Additionally, the elastic constants meet the mechanical sta-
bility criteria C11C22 − C2

12 > 0 and C66 > 0, confirming the
mechanical stability of the AlS2 monolayer. Similar results

for other XY2 monolayers can be found in the Supplemental
Material [35].

Compared with its mechanical properties, the electronic
band structures of the AlS2 monolayer exhibit remarkable
anisotropy, as illustrated in Figs. 3(a) and 3(b). It is evident
that the AlS2 monolayer is metallic with two bands across the
Fermi level, which predominantly arise from the px orbitals
of S atoms, in accordance with the TB model. Notably, the
metallic features along the �−K2 (x) direction are particularly
pronounced. We attribute it to the remarkable overlap of the
dispersed S(px ) orbitals along this direction, as shown in
Fig. 3(c), which offers a conducting channel for electron
motion. The high Fermi velocity of ∼106 m/s suggests
the excellent electron conductivity along the x direction.
However, along the �−M1 (y) direction, the overlap between
the S(px ) orbitals is less remarkable than that along the �−K2

direction. Consequently, the relevant two bands are flatter
and situated above the Fermi level. Therefore, a band gap
of 1.74 eV emerges along the �−M1 direction, indicating
the semiconducting natures along this direction. This is also
consistent with the opened Fermi surfaces shown in Fig. 3(b),
which depicts the absence of electronic states along the
�−M1 direction. These results agree with the TB model.
Similar electronic band structures are also observed in the
analogues of the AlS2 monolayer, as illustrated in Fig. S1 in
the Supplemental Material [35].

C. Hyperbolic properties

Utilizing the aforementioned approach, we compute the
conductivity tensor. When characterizing the hyperbolic
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FIG. 3. (a) Orbital-resolved electronic band structure of AlS2 monolayer. The energy at the Fermi level is set to zero. (b) Fermi surfaces of
AlS2 monolayer. The Fermi velocity is indicated by the color of lines. (c)Top and side views of the electron wave function isosurfaces of the
bands across the Fermi level.

properties of a 2D material, the conductivity tensor is a more
appropriate descriptor than the permittivity tensor. The real
and imaginary components of the conductivity tensor are di-
rectly related to the imaginary and real components of the
permittivity tensor, respectively. Specifically, the imaginary
component of conductivity (Imσ ) represents the response of
the material to an electric field, while the real component
(Reσ ) indicates the extent of energy dissipation due to light
absorption.

The hyperbolic regime of a 2D material is characterized
by the condition Imσxx × Imσyy < 0. Figure 4(a) shows the
real and imaginary parts of the conductivity tensor for a
AlS2 monolayer. As seen from this figure, for the frequency
range of 0.55 < ω < 3.8 eV, the AlS2 monolayer has Imσxx >

0, Imσyy < 0, indicating that it exhibits hyperbolic behavior.
The hyperbolic regime covers a wide range of frequencies,
spanning the entire near-infrared, visible, and parts of the ul-
traviolet bands. This range is much broader than those of other
2D-HMs, such as phosphorene (1.73–1.84 eV) [38], CuB6

(0.53–1.44 eV), CuB3 (1.66–3.50 eV) [21], hr−sB (1.0–1.58,
1.84–2.21 eV), and 8Pmmn borophene (0.085–0.27, 1.85–
2.39eV) [39]. Moreover, within the hyperbolic regime, both
Reσxx and Reσyy are very small, except for the peak of Reσxx

near 1.35 eV due to the interband transition, indicating low
light absorption loss. The broadband hyperbolic regime and
weak light absorption loss of the AlS2 monolayer make it
highly suitable for the propagation of electromagnetic waves
in the HMs.

The contributions of the intraband and interband transi-
tions to the conductivity tensor of the AlS2 monolayer are
illustrated in Figs. 4(b) and 4(c). In the case of intraband
transitions, Imσxx exhibits metallic characteristics along the
x direction over a wide range of energy, while Imσyy is
nearly zero, indicating semiconducting or insulating features.
On the other hand, interband transitions cause a decrease in
both Imσxx and Imσyy, as shown in Fig. 4(c), due to the
Kramers-Kronig relation between the real and imaginary parts
of the conductivity. The competition between the two types of
transitions gives rise to the broadband hyperbolic regime of
the AlS2 monolayer.

To evaluate the hyperbolic performance, we define the
quality factor (Q) as

Q = − Imσ j j

Reσ j j
. (13)

Obviously, the quality factor is dependent on the frequency
and indicates better performance at higher values. For the
AlS2 monolayer, the Q value is >20 within the hyperbolic
region of 2.4 < ω < 4.6 eV and reaches a maximal value of
47 at h̄ω = 3.1 eV. These values are significantly higher than
those observed in other materials, such as Al2O3, MgF2, and
SiO2 [40].

The excellent hyperbolic properties of the AlS2 monolayer
are attributed to the anisotropic electronic structures. The
metallic nature of the material along the x direction gives
rise to an inductive response, whereas a capacitive response
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FIG. 4. (a) Conductivity tensor of AlS2 monolayer. (b) and (c) The intraband and interband contributions to the conductivity tensor. (d)
The hyperbolic regimes of XY2 (X = Al, Ga, In; Y = S, Se, Te) monolayers. (e) The maximal quality factor Q of XY2 monolayers. The numbers
show the wavelengths (nm) corresponding to the maximal Q.

is observed along the semiconducting y direction, resulting in
a broadband hyperbolic regime. The valence and conduction
bands along the �-M1 (y) direction near the Fermi level ex-
hibit distinct orbital features. Specifically, the valence bands
arise from the py/pz orbitals of S atoms, while the conduction
bands originate from the px orbitals of S atoms. However,
the transition between these bands is limited due to symmetry
constraints, resulting in low light adsorption ability along the
y direction in the hyperbolic regime.

The hyperbolic properties described above are commonly
observed in the analogues of the AlS2 monolayer. The hy-
perbolic regimes of XY2 (X = Al, Ga, In; Y = S, Se, Te)
monolayers are plotted in Fig. 4(d). Most of these 2D
materials exhibit hyperbolic regimes that span the entire near-
infrared to visible range and parts of the ultraviolet range,
implying their potential for developing hyperbolic media and
device applications. The frequency-dependent conductivity
tensors of these materials are presented in the Supplemental
Material [35]. The maximal Q and the wavelengths (nm) cor-
responding to the maximal Q of XY2 monolayers are plotted in
Fig. 4(e). The AlS2 monolayer has the largest maximal quality
factor, followed by AlSe2 and GaS2 monolayers among these
2D materials.

To examine the effect of the substrate effect on the hy-
perbolic regime of the AlS2 monolayer, we place a AlS2

monolayer on a hBN substrate. The atomic flatness, insulat-
ing nature, and chemical inertness of hBN make it an ideal
material for supporting 2D materials without significantly

influencing their electronic properties. Our calculations
demonstrate that the broadband hyperbolic regime of the
isolated AlS2 monolayer remains intact in the AlS2/hBN
heterostructure, confirming the robustness of its hyperbolic
properties [35]. We attribute it to the wide band gap of hBN
and the weak van der Waals interaction between AlS2 and
hBN, which have a minimal impact on the anisotropic elec-
tronic properties of the AlS2 monolayer.

D. Anisotropic plasmonic properties

The anisotropic electronic band structure also leads to the
anisotropic plasmonic properties of the AlS2 monolayer. We
begin by examining the plasmons in the AlS2 monolayer along
two specific directions. The dispersion relation of plasmons
is depicted by EELS calculated using Eq. (10). Figures 5(a)
and 5(b) show EELS of the AlS2 monolayer along the x
and y directions, respectively, where the magnitude of loss
function L(q, ω) is indicated by color. The anisotropy of the
plasmon modes along the x and y directions is quite evident.
Along the x direction, the frequency of the plasmons increases
rapidly with the wave vector and can attain 4.73 eV before
entering the single-particle excitation region and decaying
into electron-hole pairs. This value is significantly higher than
those reported in other 2D materials, such as TaSe2 (1.0 eV)
[41], β12 borophene (1.8 eV) [42], and LiC2 (2.7 eV) [43].
On the other hand, the energy of the plasmons along the
y direction increases slowly, and the plasmons quickly decay
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FIG. 5. The electron energy loss spectra (EELS) of AlS2 monolayer along the (a) �−K2 (x) direction and (b) �−M1 (y) direction. The
cyan dotted lines represent the fitting data using the expression ω = α

√
q, with α = 16.7 and 2.24 eV Å, respectively. The white dotted lines

indicate the boundaries of the single-particle excitation (SPE) regions. The dielectric function (top panel) and the loss function (bottom panel)
of AlS2 monolayer at (c) qx = 0.028 Å−1 and (d) qy = 0.011 Å−1. The red circles denote the zeros of Reε.

into electron-hole pairs. The undamped plasmons along the
x direction are more prominent from the dielectric function
and electron loss function shown in Fig. 5(c). At the sampling
frequency, both real and imaginary parts of the dielectric func-
tion are zero accompanied by a sharp peak of the loss function,
which is the hallmark of undamped plasmons. Undamped
plasmons in such a wide energy region are rarely observed
in 2D materials.

According to the 2D electron gas model, the plasmon in 2D
materials has the dispersion relation:

ω = α
√

q, (14)

with α = ( ne2

2m∗ε0
)1/2. In this expression, n and m∗ are the

density and effective mass of carriers, ε0 is the permittivity of
the vacuum. The plasmon dispersion of the AlS2 monolayer
along the x and y directions can be well fitted by Eq. (14),
as shown in Fig. 5. Assuming each S atom contributes one
electron, the carrier density of the AlS2 monolayer is 2.2 ×
1015 cm−2. The effective masses of the carrier are then fit-
ted to 0.55 me and 30.25 me along the x and y directions,
respectively, where me represents the mass of a free electron.
Interestingly, the anisotropy of electron motion characterized
by the ratio of carrier masses between the y and x direc-
tions m∗

y/m∗
x ≈ 56 is significantly larger than those of other

2D-HMs, such as boron polymorphs (2.71, 3.71) [44], mono-
layer black phosphorus (4.21) [45], and MoOCl2 (23.56) [20].
Unsurprisingly, anisotropic plasmons are a common feature of
the analogues of the AlS2 monolayer with similar anisotropic
electronic structures, as demonstrated in the Supplemental
Material [35].

E. Directional surface plasmons

Finally, we investigate the potential directional propagation
of surface plasmons on an AlS2 monolayer in the hyperbolic
regime. Surface plasmons are excited by a z-polarized
electric dipole positioned above the sheet, as depicted in
Fig. 6(a). By numerically solving Maxwell’s equations using
a commercial finite-difference time-domain method, we can
determine the dispersion relation and distribution of the
surface plasmon electric field E [35]. These calculations
utilize the conductivities derived from our first-principles
calculations. We examine the behavior of the AlS2

monolayer at four frequencies: ω = 0.30, 0.65, 1.75, and
3.35 eV. The corresponding conductivities, σxx and σyy,
are determined to be 0.084 mS + 2.13 i mS, 0.029 mS +
0.976i mS, 0.084 mS + 0.386i mS, 0.012 mS + 0.07i mS,
and 0.0036 mS + 0.0234i mS, 0.029 mS − 0.0138i mS,
0.0132 mS − 0.0696i mS, 0.0048 mS − 0.2i mS for σxx and
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FIG. 6. (a) Schematic representation of surface plasmons on an AlS2 monolayer disk excited by a vertically polarized electric dipole.
(b) The isofrequency profiles of the surface plasmons on an AlS2 monolayer disk with ω = 0.30, 0.65, 1.75, and 3.35 eV. (c)–(e) The spatial
distribution of electric field E of the surface plasmons at different frequencies.

σyy, respectively, i = √−1. The isofrequency profiles for
the frequencies of 0.65, 1.75, and 3.35 eV, which fall within
the hyperbolic regime, exhibit hyperbolic characteristics
in momentum space, as shown in Fig. 6(b). However,
at the frequency of ω = 0.30 eV, beyond the hyperbolic
regime, we observe an ellipselike isofrequency curve.
The spatial distribution of the electric field on the sheet
confirms the directional propagation features of the surface
plasmons in natural 2D-HMs, as the energy of the surface
plasmons is channeled as narrow beams, as illustrated in
Figs. 6(c)–6(e). Interestingly, we also observe remarkable
directional propagation of surface plasmons at the frequency
of 0.30 eV beyond the hyperbolic regime, as shown in
Fig. 6(c). This behavior is attributed to the unique ultrahigh
anisotropy of the conductivities along the x and y directions,
where the conductivity along the x direction is almost
two orders of magnitude larger than that along the y
direction.

In view of the ultralow energy loss of an AlS2 monolayer
represented by Imσ >> Reσ , the dispersion relation of the
surface plasmons can be determined by the expression [46]:

q2
x

Imσyy
+ q2

y

Imσxx
≈ 2pω

(
ε0

Imσxx × Imσyy
− μ0

4

)
, (15)

where k0 = ω
√

ε0μ0, ε0, and μ0 are, respectively, the
vacuum wave number, permittivity, and permeability, and

p =
√

q2
x + q2

y−k2
0 . This gives a hyperbolic dispersion for

Imσxx × Imσyy < 0 (corresponding to the hyperbolic regime
of a 2D material) with the asymptotes of

qy = ±qx

∣∣∣∣ Imσxx

Imσyy

∣∣∣∣
1/2

. (16)

The isofrequency profiles obtained from our calculations
align with Eq. (15), as illustrated in Fig. 6(b), further support-
ing the accuracy and validity of our calculations. The direction
of the surface plasmon beams given by the group velocity
νg = ∇gω(q) that represents the energy propagation normal
to the hyperbolic asymptotes is

y = ±x

∣∣∣∣ Imσyy

Imσxx

∣∣∣∣
1/2

. (17)

The propagation angle determined by the surface plasmon
electric field distribution agrees with Eq. (17). Additionally,
low energy loss is crucial for achieving directional surface
plasmon propagation. These findings imply that the AlS2

monolayer has the potential to guide anisotropic plasmons,
highlighting their promising applications in nanophotonics
and plasmonic devices.

IV. CONCLUSIONS

In summary, we propose a design principle for 2D-
HMs based on the in-plane anisotropic px orbitals. Through
first-principles calculations, we identify a promising fam-
ily of 2D-HMs, including the AlS2 monolayer and its

195410-8



BROADBAND HYPERBOLIC PLASMONS IN ALUMINUM … PHYSICAL REVIEW B 107, 195410 (2023)

analogues XY2 (X = Al, Ga, In; Y = S, Se, Te). In
this paper, we reveal that the inherently anisotropic px

orbitals contribute to the anisotropic electronic bands
near the Fermi level, resulting in an open olivelike
Fermi surface in these 2D materials. This unique elec-
tronic structure imparts metallic properties along the x
direction but semiconducting properties along the y direction,
rendering broadband hyperbolic regimes that span the visi-
ble light range to the ultraviolet spectrum. Furthermore, we
observe the emergence of undamped plasmons along the x
direction with a maximum wave vector of ∼0.16 Å−1 and
frequency of 4.6 eV. Conversely, plasmons propagating along
the y direction exhibit lower frequencies (<0.6 eV) and decay
rapidly to electron-hole pairs in the AlS2 monolayer. The

strong anisotropic conductivity and low energy loss of these
materials also support the propagation of highly directional
hyperbolic surface plasmons. Overall, in this paper, we un-
cover the correlation between the electronic structure and
plasmonic properties of these 2D-HMs, which could pave
the way for the design and utilization of natural 2D-HMs in
various technological applications.
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