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The Nielsen-Ninomiya theorem, dubbed “fermion doubling,” poses a problem for the naive discretization
of a single (massless) Dirac cone on a two-dimensional surface. The inevitable appearance of an additional,
unphysical fermionic mode can, for example, be circumvented by introducing an extra dimension to spatially
separate Dirac cones. In this work, we propose a geometry-independent protocol based on a tight-binding model
for a three-dimensional topological insulator on a cubic lattice. The low-energy theory, below the bulk gap,
corresponds to a Dirac cone on its two-dimensional surface which can have an arbitrary geometry. We introduce
a method where only a thin shell of the topological insulator needs to be simulated. Depending on the setup,
we propose to gap out the states on the undesired surfaces either by breaking the time-reversal symmetry or by
introducing a superconducting pairing. We show that it is enough to have a thickness of the topological-insulator
shell of three to nine lattice constants. This leads to an effective two-dimensional scaling with minimal and fixed
shell thickness. We test the idea by comparing the spectrum and probability distribution to analytical results for
both a proximitized Dirac mode and a Dirac mode on a sphere, which exhibits a nontrivial spin connection. The
protocol yields a tight-binding model on a cubic lattice simulating Dirac cones on arbitrary surfaces with only a
small overhead due to the finite thickness of the shell.
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I. INTRODUCTION

A long-standing problem in physics is the efficient simu-
lation of massless Dirac fermions. Contrary to systems with
nonrelativistic kinetic energy, the introduction of a lattice
and straightforward discretization of space does not lead to
a correct low-energy description of the Dirac cone. At the
core of the problem is the fermion doubling theorem [1] which
predicts the inevitability of additional unphysical low-energy
modes. Mathematically, the doubling can be traced back to the
discretization of a first- instead of second-order differential
equation.

Over the years, various remedies have been put forward
that can be clustered into two general categories accord-
ing to the dimensionality of the underlying model. The
first category contains true two-dimensional models, such as
Wilson fermions [2,3] or staggered fermions [4–6]. These
are computationally efficient but complicate the description
and bandstructure of the system. Moreover, a discretization
method of the transfer matrix has been developed to solve
quantum transport problems in open systems [7–10]. While
these methods work well for a flat 2D surface, their gen-
eralization to curved surfaces is not at all straightforward
[11]. One problem is that on a curved space the proper spin
connection has to be taken into account which arises due to
the coupling of spin to momentum.
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The second category contains higher-dimensional systems
in either space [12–15] or time [16]. In this approach, the
Dirac equation arises as the surface model of a gapped bulk
system. Upon discretization, these systems circumvent the
fermion doubling by separating the Dirac cones. A prominent
example are three-dimensional topological insulators where
the bandstructure of the surface modes is described by a
Dirac cone [17]. These models allow for a surface of arbitrary
geometry. They do so at the expense of less computational
efficiency due to the addition of an extra dimension.

The goal of this work is to introduce a method to efficiently
simulate Dirac fermions on a two-dimensional surface S of
arbitrary geometry. To this end, we follow the second cat-
egory and embed the system in three-dimensional space. In
particular, we use a topological insulator (TI) [18,19] whose
boundary coincides with the surface S. However, instead of
filling the entire volume V enclosed by S with the bulk of
a TI, we only consider a small shell �V of finite thickness
d . This procedure creates an additional inner surface Sa with
new surface modes. To avoid hybridization corrections to the
surface physics on S, the thickness of the shell must be larger
than the decay length of the surface modes λ into the bulk.
The loss of computational efficiency is given by the size of
d . The thickness d is minimized in our approach by locally
introducing a term in the Hamiltonian that gaps out the surface
mode on Sa. The selection of this term depends on the details
of the system. The inclusion of such a term allows for the
reduction of the thickness to d � λ. We show that by correctly
tuning the parameters of the TI model, a thickness of 3–9
lattice constants is enough to accurately model the surface
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states on S. Thus we achieve an effectively two-dimensional
scaling. This procedure gives a (local) tight-binding model for
which existing packages, like KWANT [20], can be employed.
Thus both the calculation of the spectrum as well as of trans-
port properties can be delegated to dedicated and optimized
packages.

The overview of the paper is as follows. In Sec. II, we
introduce the tight-binding model for the TI. We discuss
the optimal choice of parameters and the low-energy surface
model that results. We present a protocol to efficiently simu-
late an isolated Dirac cone based on gapping out the undesired
modes on additional surfaces. This protocol is intentionally
kept general to convey the principles of the method and enable
its transfer to platforms and geometries not studied in this pa-
per. We propose two general methods and test them in Secs. III
and IV. These examples are chosen such that a comparison to
analytical results is possible. In Sec. III, the surface of a TI
is proximitized by an s-wave superconductor, and a circular
surface region is left uncovered. For such a system, Andreev
bound states form below the superconducting gap and are lo-
calized in the bare surface region. Both the probability density
as well as the spectrum of the Andreev states closest in energy
to the center of the superconducting gap are computed and
found to be in agreement with analytic calculations. This setup
can be readily extended to simulate vortex Majorana bound
states in this heterostructure [18,21–26]. In Sec. IV, a Dirac
sphere is simulated, where spinful two-dimensional Dirac
fermions are restricted to the curved surface of a two-sphere.
The probability density and the spectrum of the finite-size
quantized states closest to charge neutrality are simulated and
tested by comparing to analytical results. The conclusion and
outlook is deferred to Sec. V.

II. THE GAPPED-SHELL MODEL

In this section, we present the tight-binding model of the
TI that is used and detail the required parameter choices. Fur-
thermore, we describe the inclusion of the boundary effects
to obtain the effective two-dimensional model for an arbitrary
surface S. As a model of a three-dimensional topological insu-
lator, we take the 3D Bernevig-Hughes-Zhang (BHZ) model
[17,27]

HBHZ = Mτz − 2B
∑

j

[1 − cos(ak j )]τz

+ A
∑

j

sin(ak j )σ jτx , (1)

with the wave vector k = (kx, ky, kz )T and j = x, y, z. The
model can be realized on a cubic lattice with 4 degrees of
freedom per unit cell (2 for the spin σ and 2 for the orbital τ );
in the following, the length scales are measured in multiples
of the isotropic lattice constant a = 1. The parameter A is
proportional to the linear velocity vD of the surface modes
[28], M and B > 0 are mass terms. The system described
by the Hamiltonian transitions as M changes sign between
a trivial (M < 0) and topological (0 < M < 4B) phase. The
Hamiltonian is time-reversal symmetric with [HBHZ, T ] = 0,
where T = iσyK (K denotes complex conjugation).

FIG. 1. Cross section (at y constant) of a cubic lattice that can be
used to model the Dirac equation on the flat plane S (z = 0). (a) The
bulk has a width d̃ . The surface modes decay in z-direction on a scale
λ from the surfaces (green) into the bulk (black) from both surfaces at
z = 0, d̃ . As the surface mode at z = d̃ is unwanted, we need d̃ � λ

and care has to be taken that it does not influence the result on S. A
more efficient model is shown in (b), where the additional surface Sa

at z = d < d̃ (red) is gapped out, e.g., by an artificial magnetic field
(in the direction of the blue arrows). The gap on the upper boundary
is improved by increasing the hoppings on the links (red) involving
at least one surface site.

A. Optimal parameters and surface Hamiltonian

Since we are only interested in an accurate description of
the low-energy surface modes around k = 0, we specifically
tune the parameters in the tight-binding model to increase
the bulk gap and thus decrease the decay length of surface
modes, λ. Evaluating the bandstructure of Eq. (1) at the high
symmetry points of the Brillouin zone (in the topological
phase with 0 < M < 4B), we find the optimal bulk gap of
M for B = M/2 and A � M. The decay length of the surface
modes is then given by λ ≈ A/M. To simulate the bulk as
efficiently as possible and minimize the thickness d of the
3D model, we want to minimize the decay length. Without
sacrificing the bulk gap, the optimal parameters A = M = 2B
lead to a decay length of λ ≈ 1. A thickness of three lattice
spacings is sufficient to suppress the wave function by a factor
of e−3 ≈ 5% compared to the value on the surface S.

The only purpose of the BHZ model is to produce the
correct Dirac equation on its surface. To fix ideas, we focus on
a flat interface in z direction with a topological insulator at z �
0 and vacuum at z < 0 [see lower surface in Fig. 1(a)]. The
corresponding outward surface normal is n̂ = (0, 0,−1)T . To
determine the low-energy modes for small k = |k|, which cor-
responds to long wavelengths, we expand Eq. (1) to quadratic
order in k and analytically continue the bandstructure around
k = 0 to kz = iκ with κ > 0 in order to find the zero energy
modes decaying for z > 0. Projecting onto the space of sur-
face modes, which consists of the two +1 eigenstates of σzτy,
yields the effective Hamiltonian

Hsur = A(kxσy − kyσx ) = A(σ × k) · n̂. (2)

This describes a Dirac cone around k = 0 with the Dirac
velocity given by the parameter A [29] and a spin that is locked
to the momentum. The reformulation in the second step of
Eq. (2) shows the extension of the Hamiltonian to differently
oriented surfaces. In general, due to the basis selection in
Eq. (1) the modes on a surface with an outward-pointing nor-
mal vector n̂ are the +1 eigenstates of −(n̂ · σ )τy. The spin of
the surface modes in turn are oriented parallel to the surface.
Note that the gap closing at k = 0 in Eq. (2) is protected by the
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time-reversal symmetry. Adding a symmetry-breaking term
G n̂ · σ that corresponds to a magnetic field perpendicular to
the surface will open a gap in the spectrum, a fact that will be
used in the following.

In summary, using the lattice model of the three-
dimensional topological insulator in Eq. (1) and the parameter
choice discussed above, Dirac cones around k = 0 can be
simulated with a bulk penetration depth of λ ≈ 1. Figure 1(a)
shows a sketch of a cross section at fixed y through a
three-dimensional tight-binding model on a cubic lattice with
finite z ∈ [0, d̃] that is extended in the x direction. The two-
dimensional Dirac surface modes at z = 0 are captured by
the Hamiltonian in Eq. (2). However, as there are low-energy
modes at all interfaces of the TI with a trivial region (e.g., at
finite z = d̃ > 0), the bulk size needs to be kept large enough
to avoid hybridization between any of the surface modes.
This intersurface hybridization limits the thickness d̃ of the
model orthogonal to the surface and thus the computational
efficiency. In the next section, we circumvent this limitation
through intrasurface hybridization by introducing additional
terms in the Hamiltonian that gap out the modes on the addi-
tional surfaces.

B. Gapping unwanted surface modes

In this section, we present a protocol to determine an opti-
mized model to simulate Dirac fermions on specific surfaces.
The steps consist of the choice of the gapping term, tuning
of the gapping parameters, choice of boundary conditions for
the finite system and a generalization of the procedure for an
arbitrary geometry.

To couple the surface modes described by Eq. (2), we
follow two methods. The mode duplication method (MDM)
is inspired by superconductivity. We can double the degrees
of freedom by adding an (artificial) duplicate of the surface
model to our description. Coupling the unwanted mode on
Sa between the system and its duplicate gaps out the surface
mode. For the local coupling method (LCM), we keep the
number of degrees of freedom constant and couple the two
modes within a surface by a “magnetic field” that breaks
the time-reversal symmetry and opens a gap. In particular,
the magnetic field must have a component perpendicular to
the surface in order to open a gap. Because of this, the cou-
pling terms have to be position-dependent for the LCM [30].

The MDM is rather easy to implement. We introduce an
extra local degree of freedom with Pauli matrices η j acting
on it. The surface states are gapped out by considering the
Hamiltonian (G > 0)

H ′
BHZ = HBHZ ηz + Gηx , (3)

acting on the enlarged Hilbert space. Thereby, a gap of size
2G is opened symmetrically around ε = 0 in the spectrum of
HBHZ. Physically, this Hamiltonian corresponds to coupling
the BHZ system to an s-wave superconductor with pairing-
strength G. In this way, the time-reversal symmetry of the
system is retained. The projection on the surface mode is not
affected by the additional degree of freedom. We obtain

H ′
sur = Hsurηz + Gηx . (4)

As a result, the surface states become gapped due to the mass
term Gηx. Adding the mass term only on the unwanted surface
Sa [red sites in Fig. 1(b)], the low-energy model corresponds
to a (massless) Dirac equation only on the green surface S. For
the black and green sites, we do not couple the two lattices
and set G = 0. On the other hand, for the red sites, we locally
choose G > 0. In this case for energies |ε| < G, surface states
only exist on S so that no hybridization with surface states
on Sa is possible. Therefore, in the aforementioned energy
regime, the opposite surface can be ignored and the intended
surface physics on S is simulated already accurately with a
shell of thickness d = 4 [see Fig. 1(b)].

For the LCM, we need to incorporate a local term to (1)
such that on the unwanted surface Sa a magnetic field per-
pendicular to the surface is produced which gaps the surface
modes. We thus choose

H ′
BHZ = HBHZ + G n · σ , (5)

with n = (nx, ny, nz )T the local outward-directed surface nor-
mal and G > 0. The implementation is best understood by
again studying the sample system with a surface at fixed z = d
[cf. Fig. 1(b)]. For the artificial surface Sa (red), the surface
normal is (0, 0, 1)T (blue arrows) leading to a gapping term
Gσz and a low-energy mode governed by the last expression
in (2). For the projection onto the low-energy sector on this
specific surface, we obtain

H ′
sur = Hsur + Gσz. (6)

The spectrum of Eq. (6) has a gap of 2G > 0 for the surface
states around k = 0. Analogous to the procedure of the MDM,
we only introduce the gapping term with G > 0 on the upper
surface Sa (red sites) to prevent the surface states on the simu-
lated surface S (green) for |ε| < G from hybridizing. Thereby,
we can again limit the shell thickness to d = 4.

The remaining question is how to optimize the gapping of
the modes at Sa without affecting the physics on S. Simply
increasing G until it reaches the value of the bulk gap M does
not work as intended. We observe the surface states to move
one layer inwards into a former bulk layer for G > M/2. A
similar behavior of inward motion for the surface states is
observed in the case of strong surface disorder [31]. To force
the states back into the surface layer to get affected by the
coupling term, we increase the hopping into and within the ar-
tificial boundary region depicted by the red links in Fig. 1(b).
To achieve this, we introduce additional scaled TI parameters
(MG, BG, AG) on the red sites and links, where it is clear from
the previous Sec. II A that the ratio of the TI parameters needs
to stay fixed to preserve bulk properties. We have found that
the choice of G = 100M and MG = AG = 2BG = 10M has
yielded optimal results by gapping the surface states up to the
bulk gap [32].

C. Simulating arbitrary geometries

So far, we have only studied a simple half-plane. Without
periodic boundary conditions, the surfaces of the TI have to be
closed as it is surrounded by the vacuum which corresponds to
the trivial phase. This means that we either simulate a closed
(green) surface, cf. Fig. 2(a) or Sec. IV for an example, or we
have to gap out also part of the outer surface to be left with
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FIG. 2. Cross section of a tight-binding model for different
topologies of the surface that are aligned with the lattice (color
scheme as in Fig. 1). (a) The system (green) models a closed surface.
In order to simulate an open topology, as in (b), the artificial surface
(red) is neighboring the system.

an open surface, cf. Fig. 2(b) and see Sec. III for an example.
In the latter case, the direct coupling of the surface modes
(green region) to the gapped surface (red) is also increased
to the value of the red links in order to impose hard-wall
boundary conditions. This allows us to truncate the simulated
system after a single gapped surface site. The selection of
the closing procedure is determined by the efficiency for the
specific physical platform that is simulated.

The MDM is readily adjusted as the term Gηx gaps the
surface mode in an arbitrary direction. For the LCM, we need
to adjust the direction of the magnetic field according to the
orientation of the surface, see Fig. 3. We have found that the
following simple and local method works well: at each lattice
site, we sum the vectors pointing to missing neighbors. This
yields a vector n that approximates the normal vector at this
site. We then add the onsite potential G n · σ. Note that, for
optimal results, we do not normalize the vector n such that
the strength of the effective magnetic field Gn depends on the
number of missing neighbors. This method only relies on the
(local) knowledge of the boundary points and missing neigh-
bors of the cubic lattice and as such can be easily implemented
for arbitrary geometries.

Before demonstrating the described method for two ex-
plicit examples, we comment on the main sources of errors.
The simulated surface states have an exponentially small
probability ∝e−d/λ to be found at the artificial surface. This
has two potential consequences. First, the surface states ob-
tain a small gap leading to an error in simulated energies
O(e−d/λ). This error has to be seen in relation to the dis-
cretization error, where system scales are compared to the
lattice scale. As a second consequence, since the LCM locally
breaks time-reversal symmetry, the simulated surface modes

FIG. 3. Tilted surface that can be used to implement arbitrary
geometries. Here, the specific case of a 45◦ tilting is shown. Mul-
tiple neighboring sites are missing at the upper surface. The surface
normal is given by the sum of the directions to the missing neighbors.

FIG. 4. (a) The surface of a TI (blue) is covered by an s-wave
superconductor (orange) except for a disk of radius R. (b) A lattice
model that corresponds to the system in (a). A small bulk of thickness
d is added to the surface layer. The sides and bottom surface are
gapped out by superconducting pairing. The system has a radius of
R + dr . (c) Simulation of the low-energy spectrum of the system as
a function of the surface chemical potential μ (black curves). All
energies are doubly degenerate due to the time-reversal symmetry.
They are in good agreement with analytic predictions for εα � μ

[red, see (A4)], εα ≈ μ [orange, see (A7)] and εα 	 μ [green, see
(A10)]. The orange dots mark the crossover points εα = μ between
the different regimes. The parameters are R = 24.5 and d = dr = 3
in units of the lattice spacing.

only approximately preserve time reversal, with an error again
exponentially decaying in d .

In the following, we test our method on two examples. The
examples are chosen to show the versatility of the method
while still allowing the comparison of the results to analytics.
Whether to choose the MDM or LCM is a matter of conve-
nience. The MDM is easier to implement as it does not require
knowledge of the normal vector. However, this comes with
the drawback of doubling the degrees of freedom. As a result,
we propose to use MDM when simulating a superconducting
system as in Sec. III, where doubling is required anyway. For
normal-conducting setups, as in Sec. IV, we consider LCM to
be the method of choice.

III. PROXIMITIZED TOPOLOGICAL INSULATOR

In this first application, we simulate a TI whose surface
is partially proximitized by a superconductor, see Fig. 4(a).
Note that we would like to simulate the Dirac surface mode
in the disk of radius R that is proximity coupled to the su-
perconductor at its boundary. The Hamiltonian of the system
can be described in Bogoliubov-de Gennes formalism with
H = 1

2

∫
d2r 
†(r)HBdG
(r). As a basis, we choose 
(r) =

[ψ↑(r), ψ↓(r), ψ†
↓(r),−ψ

†
↑(r)]T with the fermionic field op-

erators ψσ , where σ is the spin degree of freedom of the
surface modes. The matrix Hamiltonian for the proximitized
TI surface is [18]

HBdG = (vD p · σ − μ)ηz + �(r) ηx , (7)

with p = (px, py)T , the surface velocity vD, the chemical
potential μ and the superconducting pairing profile �(r).
We simulate the system without a magnetic vortex such that
the pairing term is real-valued. For the gap profile, we take
�(r) = ��(|r| − R) with �(x) the Heaviside step-function.
The Hamiltonian has particle-hole symmetry {H, P} = 0, with
the particle-hole operator P = σyηyK .
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The problem lends itself to the MDM. In particular, as
we are interested in the modes well below the superconduct-
ing gap �, we are free to increase � as much as we want
(which then approaches a hard-wall boundary condition). We
choose � = G = 100M in order to obtain a decay length ξ �
A/G 	 1 of the surface modes into the proximitized region
with |r| � R. Being only interested in the correct low-energy
description, we are free to minimize the bulk of the TI that we
simulate. Figure 4(b) depicts the minimal tight-binding model
that captures the correct low-energy physics. The physical
system that is to be simulated is represented by the upper-most
layer, where a ring of width dr with superconducting pairing
� > 0 traps the surface states in the unproximitized TI region.
This cross section is continued for four layers in the bulk
direction (d = 3) in order to allow for the surface modes
to decay. The physical system of approximately Nph = πR2

lattice points is embedded in a tight-binding model with Ntot =
π (R + dr )2(d + 1) lattice sites with dr = d = 3. For large
R, we find Nph/Ntot ≈ (d + 1)−1, i.e., approximately only a
fourth of the lattice sites used in the simulation are “part of
the system.” Because of this scaling, it is important to keep d
as small as possible, which explained the detailed fine-tuning
of the parameters in Sec. II B in order that λ ≈ 1.

As mentioned above, we are only interested in the surface
states well below the superconducting gap. For those states
with energy |ε| 	 � the exact value of the superconducting
pairing is irrelevant and we may choose � = G throughout
the orange region. If the physics for |ε| � � is of interest,
a gradient in � can be introduced along the bulk direction
and the width of the proximitizing ring has to satisfy dr >

3ξ = 3h̄vD/� to correctly capture the surface physics. A code
example for the implementation of the tight-binding model in
KWANT, where we chose dr = d is available at [33].

The simulation results for the twelve lowest energy states
as a function of the surface chemical potential μ are depicted
in Fig. 4(c). The time-reversal symmetry of Eq. (7) is reflected
in the occurrence of Kramers’ pairs, leading to a twofold
degeneracy of the energy levels. Due to the particle-hole sym-
metry the levels are symmetric around ε = 0 such that only
the positive energies are shown.

The spectrum εα of the Hamiltonian (7) is analytically
obtained in the Appendix. We find that due to the angular
symmetry of the system, each state can be labeled by a tuple
α = (m, n) of the angular and the radial quantum number. For
εα � μ, the simulated curves accurately follow the analytic
prediction in (A4) to second order in μ. With increasing
μ the energies εα tend to decrease and a crossover regime
is reached for μ ≈ εα . At this point, the chemical potential
becomes large enough that the distance to charge neutrality
is larger than the quantized energy of the state α leading to
electron-like states.

Around the crossover points, with μ ≈ εα , the simulated
spectrum closely follows the analytic prediction (A7) of linear
decay. The slope of the decay is purely dependent on the
angular quantum number m. In the regime εα 	 μ, the results
are only valid for μ � M/2 as otherwise unwanted effects due
to the bulk-modes play a role. The range of chemical potential
in Fig. 4(c) with R = 24.5 corresponds to μ ∈ [0, 0.3M]. In
order to increase the range of μ, a larger radius has to be
simulated [34].

FIG. 5. [(a)–(c)] Probability density of the lowest energy mode
of the proximitized TI simulation with R = 10.5 and d = dr = 3.
Note that the opacity changes along the color bar in panels (a, b)
to allow for a three dimensional view. The complete system that is
simulated corresponds to the gray cylinder. (a) The lowest mode is
trapped in the bare region of the topological insulator surface (green
circle) and does not enter the proximitized sites. The side view, (b),
shows that the mode also decays rapidly into the bulk. The line cut in
(c) of the probability distribution ρ for y = 0 (blue), normalized to its
maximal value ρmax, shows excellent agreement with the analytical
prediction (orange dashed) of Eq. (A1). [(d)–(f)] Same as (a)–(c) but
for the first excited state. The mode decays more slowly towards the
bottom surface and has one node in the radial direction.

The analytic result in (A10) shows that for μ → ∞ the en-
ergies εα go towards a limiting value that is independent of the
angular quantum number m. Indeed, we observe the clustering
of the energies εαR/h̄vD in Fig. 4(c) for large μ around π/4
(for n = 0) and 3π/4 (for n = 1). The first correction in this
limit is captured by sinusoidal oscillations (that depend on m).
The simulated oscillations for the lowest three initial states
are in good agreement with the analytical prediction (green).
Generally, we found that the discrepancy between simulation
and analytic results exponentially converges in d towards the
discretization error O(1/R).

Besides the spectrum, the simulation also gives access to
the wave functions. This allows to test the localization of the
low-energy modes to the physical surface region S. In Fig. 5,
we show the probability density ρ = |ψ |2 of the ground [(a)–
(c)] and first excited state [(d)–(f)] for μ = 0. The states are
confined to the region of unproximitized topological insulator
surface (inside the green circle). We find a good agreement
with the expected decay length λ ≈ 1 into the bulk direction
normal to the surface. We observe that along the surface of
the model the modes decay even faster, such that we could
set dr = 1 without compromising the accuracy of the lowest
modes. We find that even though the radius of R = 10.5 is
small, the cubic lattice approximates the circular geometry
of the analytical model, see the Appendix rather well. In
particular, in Figs. 5(c) and 5(f), we compare the probability
distribution for the ground state and the first-excited state
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with analytical results, which demonstrates that the simulation
protocol based on the MDM works well for this setup.

IV. DIRAC SPHERE

As a second test of our method, we simulate the spectrum
of the Dirac equation on the (two-)sphere. This example is
particularly interesting, as a proper modeling of the system
entails the simulation of the spin connection on a curved
manifold. In spherical coordinates (r, θ, φ), the Dirac sphere
of radius R is governed by the Hamiltonian [35–37]

HD = −i
h̄vD

R

[
σx

(
∂θ + cot θ

2

)
+ σy

∂φ

sin θ

]
. (8)

The eigenspectrum is given by ε j = ± h̄vD
R ( j + 1

2 ) [14,35,36].
Each level has a 2 j + 1-fold degeneracy according to mj =
− j, . . . , j, the projection of the total angular momentum j
along a given direction. The total angular momentum is a
combination of the orbital angular momentum l = 0, 1, . . .

with the spin 1
2 of the Dirac particle. The degeneracy of each

energy eigenspace is even due to the Kramers’ degeneracy
between the states with ±mj . The energy of the system orig-
inates from the orbital angular momentum L of the Dirac
particle. This can be understood as follows: L is in an equal
superposition of l± = j ± 1

2 . The average value of L2 is thus
given by 1

2 [l+(l+ + 1) + l−(l− + 1)] = ( j + 1
2 )2 which coin-

cides with the square of the eigenspectrum measured in units
of h̄vD/R (for details see Ref. [36]).

Due to the curved surface, methods that rely on a two-
dimensional lattice such as Refs. [2,4,5] cannot be easily
transferred to this setup, as constructing a two-dimensional
lattice on the surface of the sphere either has lattice vectors
with varying length as in longitude-latitude grids or approxi-
mately evenly spaced lattice sites with a strong local variation
of the lattice vector direction [38]. In contrast, our method can
be easily adopted to this setup, while only producing a small
overhead due to the finite thickness d of the spherical shell.

To closely approximate the surface of a sphere, we intro-
duce a mass profile M(r) = −M tanh[(r − R)/w] smoothly
describing the interface between trivial [M(r) < 0 for r > R]
and topological region [M(r) > 0 for r < R]. Here, M > 0
is the mass parameter and w controls the smoothness of the
transition. We set w = 1 throughout this section. The lattice
model is sketched in Fig. 6(a). The outside surface at R + d/2
is free of surface modes, because a trivial insulator is in
contact with vacuum. In the range r ∈ [R − d/2, R + d/2] the
mass profile M(r) is present, smoothly transitioning between
topological and trivial insulator. The sign transition appears
at r = R and defines the curved surface S of the two-sphere
we intend to simulate. At R − d/2, we truncate the lattice
model and employ the LCM to remove the low-energy states
from the additional interior surface Sa. In Eq. (5), we set G =
B = 100M with the magnetic field strength only on the inner
surface. The outward pointing surface normal n is determined
according to the rule explained in Sec. II B. For the thickness
of the ring, we set d = 9 as we have to account both for the de-
cay of the modes towards the trivial (r > R) as well as towards
the nontrivial (r < R) side of the transition. A minimal code

FIG. 6. (a) Schematics of the tight-binding model for the spher-
ical shell of finite thickness d . The artificial surface Sa, located at
R − d/2, is constituted of those blue sites which border the hollow
inside (black). A mass profile M(r) smoothly varies from 1 (topo-
logical) at R − d/2 to −1 (trivial) at R + d/2. The position R of the
sign change of the mass defines the location of the Dirac sphere.
(b) Results for the eigenenergies εn of the finite-size quantized modes
on the Dirac sphere. The discrete levels are displayed as a function of
the level index n for different radii R. For a radius of R = 11, the first
40 states agree with the theoretical prediction ε j = (h̄vD/R)( j + 1

2 )
(orange); note that we had to rescale the vertical axis of the theoret-
ical plot by 7%, such that the constant heights of the plateaus are in
good correspondence. For R = 21, already ≈140 states agree rather
well (blue).

sample for the implementation of this tight-binding model in
Kwant is available at [33].

For radii R = 11 and 21, the spectra of the simulation
for the Dirac sphere are depicted in Fig. 6(b) [39]. The 140
lowest and positive energy levels εn are plotted against the
level index n. Note that the spectrum is symmetric around
zero such that negative energies are omitted. We observe the
energy quantization and 2 j + 1-fold degeneracy for the states
at low energy. For both R = 11 and 21, the ground-state space
to j = 1

2 is doubly degenerate whereas the state space for
the first excited level is fourfold degenerate with j = 3

2 . The
plateaus are expected to increase in size for larger j, due
to a larger degeneracy for higher energy. We observe that
this degeneracy becomes less accurate for larger j. This is
due to the fact that for larger j, the wave functions have
more structure and thus are affected by the corrections due the
finite lattice spacing. As the surface has Nsur ≈ πR2 lattice
sites, we expect that the number of states that are accurately
modeled by the finite system grows as R2. Indeed, we find that
40 states are approximated well for R = 11 while already 140
states are captures for R = 21. Another way to understand this
scaling is to note that only energies with ε � M/2 are well
approximated. Approaching the insulator bulk gap M, the sur-
face state velocity gets renormalized, leading to varying step
heights. The number of states with ε < M/2 is approximately
given by ñ = (MR/2h̄vD)2 and thus grows quadratically with
R. In particular, we have the estimate ñ = 30 (for R = 11) and
ñ ≈ 110 (for R = 21) which serves as a good upper bound
on the number of states for which our approach works, see
Fig. 6(b). We also observe that for d � 9 the simulation error
is dominated by the discretization error of the order O(1/R)
and the time-reversal symmetry breaking of the LCM was
exponentially small.

We visualize the wave functions by plotting the proba-
bility density for one state each from the state spaces of
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FIG. 7. (a) and (b) show the probability density of one of the
two ground states for R = 20. (a) Cross-sectional view of the lattice
result at z = 0. The discrete probability density ρ3d is approximately
isotropic along the circle of radius R and rapidly decays along the
surface normal. (b) The marginal surface probability-density ρ2d

from the viewpoint of the positive z direction, after interpolation
of the lattice result and integration along the radial direction. The
ground state is isotropic on the surface of the sphere. (c)–(f) are
analogous to (a) and (b) for one of the first excited states from two
different viewpoints: positive z direction in (c) and (d), negative y
direction in (e) and (f). In the first excited sector, the probability
density has a node along [111], due to the cubic lattice breaking
rotational symmetry. This state corresponds to the maximal angular
momentum of 3

2 along [111].

the ground and first excited level in Fig. 7. The probability
density ρ = |ψ |2 of one of the two ground states is depicted
in panels (a) and (b). We observe from the cross-sectional
view (a) that for the ring thickness d = 9 and a mass profile
with w = 1 the state is well localized at R = 20 within our
simulated shell. This enables us to calculate the approximate
simulation result for the two-dimensional surface probability
density ρ2d(θ, φ). To achieve this, we interpolate the discrete
density ρ3d(xq, yq, zq) of the three-dimensional eigenstate to
obtain a continuous density ρ3d(r, θ, φ). We integrate over the
radial direction to determine the surface probability-density
ρ2d(θ, φ) = ∫

dr r2ρ3d(r, θ, φ). The result for the ground
state is shown in panel (b). It can be seen that the density
is spherically symmetric, as expected from the j = 1

2 sector

[36]. For the first excited state (c)–(f), we find the probability
distribution to have a node along [111]. This agrees with theo-
retical predictions for the j = 3

2 sector [36]. The quantization
axis [111] is fixed by the lattice which breaks the spherical
symmetry of the system.

This concludes the discussion of the simulation for the
Dirac sphere, where we have proven that with the shell model
and local gapping terms the spectrum and probability density
of the states at low energy are efficiently computed.

V. CONCLUSION

We have introduced a lattice model to simulate an iso-
lated Dirac cone in two dimensions. The method gives a
conventional tight-binding model that can be easily used with
existing packages such as KWANT. The method is efficient
as it scales like a two-dimensional problem. Furthermore, it
is independent of geometry, allowing the simulation of the
spin connection on a curved manifold. At the core of it are
(efficient) gapping mechanisms for additional surfaces based
on either doubling of the degrees of freedom (e.g., supercon-
ductivity) or local symmetry breaking terms (e.g., magnetic
fields). We have tested the method for two setups: a proximi-
tized disk and the Dirac sphere. For both systems, we showed
good agreement for the spectra and probability distribution of
the low-energy states close to charge neutrality with analytical
predictions. This gives confidence that, in future work, the
method can be transferred to systems where no analytical
solutions are known. As an example, the superconductor-
topological insulator heterostructure discussed in Sec. III can
be extended to study platforms for Majorana qubits, where a
superconducting flux quantum is threaded orthogonal to the
surface through the unproximitized region. The Dirac sphere
in turn is extendable to study free fermions on arbitrary two-
dimensional geometries.
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APPENDIX: ANALYTICAL CALCULATION
OF THE PROXIMITY COUPLED DISK

In this section, we present the calculation of the analytic
results for the spectra and wave functions of the Hamiltonian
(7). We introduce polar coordinates (r, φ) relative to the center
of the bare TI region and make use of the angular symmetry
of the system. For the unproximitized region r < R, the eigen-
value equation is solved at energies εα with quantum numbers
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α = (m, n) by the ansatz

ψα (r, φ) = Nαeimφ

⎛
⎜⎜⎜⎜⎝

i e−iφ/2Jm− 1
2
[r(εα + μ)/h̄vD]

− eiφ/2Jm+ 1
2
[r(εα + μ)/h̄vD]

icα e−iφ/2Jm− 1
2
[r(εα − μ)/h̄vD]

cα eiφ/2Jm+ 1
2
[r(εα − μ)/h̄vD]

⎞
⎟⎟⎟⎟⎠.

(A1)
It is obtained analogously to the procedures detailed in
Refs. [23,25,26] for the case of no flux quantum. Here, Nα is a
normalization factor, m [n] are the half-integer [integer] angu-
lar [radial] quantum numbers and J are Bessel functions of the
first kind. The values of cα and εα are fixed by continuation of
the wave function into the proximitized region r � R. Since
we are evaluating the low-energy modes of the system, we
can send � → ∞ and turn the effect of the superconducting
region into a boundary condition at r = R that captures the full
Andreev reflection. For convenience, we redefine the energies
to be measured in units of h̄vD/R, removing extra constants.
The boundary condition then leads to the equations

Jm− 1
2
(εα − μ)Jm− 1

2
(εα + μ)

= Jm+ 1
2
(εα − μ)Jm+ 1

2
(εα + μ) (A2)

and

cα =
Jm+ 1

2
(εα + μ)

Jm− 1
2
(εα − μ)

, (A3)

fixing the energies and particle-hole reflection coeffi-
cients, respectively. To test the results of the simula-
tion, we solve (A2) approximately for three parameter
regimes.

1. Small chemical potential

In the limit εα � μ, we expand the Bessel function of
index β for small arguments up to quadratic order. The zeroth
order solution ε (0)

α follows straightforwardly from Eq. (A2)
for μ = 0, where the implicit expression simplifies to locat-
ing zeros of Bessel functions and their derivative. Expanding
Eq. (A2) to second order leads to

εα = ε (0)
α + fα

(
ε (0)
α

)
μ2, (A4)

with the prefactor

fα (x) = 1

2

Jm+ 1
2
(x)J ′′

m+ 1
2
(x) − [

J ′
m+ 1

2
(x)

]2 − Jm− 1
2
(x)J ′′

m− 1
2
(x) + [

J ′
m− 1

2
(x)

]2

Jm− 1
2
(x)J ′

m− 1
2

(x) − Jm+ 1
2
(x)J ′

m+ 1
2

(x)
. (A5)

2. Intermediate chemical potential

For values εα ≈ μ, we can expand the Bessel functions
with the argument εα + μ around 2μ. For the argument εα −
μ, we make use of the approximation

Jβ (z) ≈ 1

�(β + 1)

( z

2

)β

, (A6)

which is valid for |z| 	 √
β + 1 [40]. The next finite order

in the expansion increases by z2, making it irrelevant for the
linearization considered in this subsection. Inserting Eq. (A6)
into Eq. (A2) and evaluating the remaining Bessel functions
in lowest order at 2μ∗ yields for each state characterized by α

the crossover point with εα (μ∗) = μ∗ as zero of a respective
Bessel function. Expanding to linear order around 2μ∗ in the
Bessel functions with argument εα + μ we find a linear decay

εα = − m

m + 1
(μ − μ∗) + μ∗, (A7)

the slope of which depends on the angular quantum number
m. An implicit dependence on the radial quantum number is
given by μ∗.

3. Large chemical potential

In the case of large chemical potential εα 	 μ, the Dirac
physics connected to the Dirac cone is not very important. To
obtain analytical results in this regime, we expand the Bessel

functions for large arguments (|z| � |β2 − 1
4 |) [40] with

Jβ (z) ≈
√

2

πz

[
cos

(
z − π

2
β − π

4

)

− 4β2 − 1

8z
sin

(
z − π

2
β − π

4

)]
. (A8)

To lowest order, the approximation to (A2) yields

ε (∞)
α = π

2

(
n + 1

2

)
, (A9)

where n ∈ Z0. Thus, in the limit μ → ∞, the spectrum be-
comes independent of the angular quantum number m.

The angular momentum only enters the next order correc-
tion

εα = ε (∞)
α + (−1)n m

2μ
sin (2μ − πm), (A10)

that we obtain by including the first two oscillatory terms from
Eq. (A8). Thus the angular quantum number enters as a phase
shift in the oscillatory correction. In Sec. III of the main text,
the analytic expressions in Eqs. (A4), (A7), and (A10) are
compared to the simulation results.
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