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Full counting statistics in a Majorana single-charge transistor
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We study full counting statistics of electron transport through a Majorana single-charge transistor. At low bias
voltage, transport is dominated by the so-called Josephson-Majorana cycle, a sequence of normal and anomalous
single-charge and Josephson tunneling. Factorial cumulants characterizing the full counting statistics elucidate
the correlated nature of the charge transfers in this cycle. Moreover, we predict a topological transition in the
full counting statistics from a perfect Poissonian transfer of Cooper pairs to a correlated switching between two
distinct fermion parity states with increasing Josephson coupling.
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I. INTRODUCTION

Majorana bound states are exotic, charge-neutral quasipar-
ticle excitations in superconductors with a nontrivial topology
[1,2]. In recent years, they have attracted significant atten-
tion in the field of condensed matter physics due to their
potential use in quantum computers [3]. Being non-Abelian
anyons, they fulfill braiding statistics [4] as well as fusion
rules [5] which makes them interesting candidates for topo-
logical quantum computing [6,7].

A famous model system that allows for the existence
of Majorana bound states is the Kitaev chain [8], a one-
dimensional topological superconducting wire. There, the two
Majorana bound states at the ends of the wire comprise a
single nonlocal fermion level at zero energy that is robust
against local disturbances, a phenomenon called topological
protection. These zero-energy quasiparticles give rise to inter-
esting transport properties, such as electron teleportation [9],
a zero-bias peak [10], a 4π -Josephson effect [11], or the parity
blockade [12]. Furthermore, the combination of multiple Ma-
jorana states [13] as well as the effect of the Majorana states
on the charge dynamics in current-biased Josephson junctions
[14] have been considered. Essential features of Majorana
states are already contained in interacting double quantum
dots [15,16].

In this work, we study electron transport through a Ma-
jorana single-charge transistor. The device consists of a
topological superconducting island (TSI)—which hosts Ma-
jorana quasiparticles as well as Cooper pairs—contacted by
one normal (N) and one superconducting lead (S); see Fig. 1.
Both normal and anomalous single-charge tunneling between
island and normal lead is facilitated by the Majorana bound
state, while the Josephson coupling between island and su-
perconductor allows for the transfer of two charges in the
form of a Cooper pair. The Coulomb interaction on the island
strongly influences the electric current [17–19]. At low bias
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voltage, transport is dominated by the so-called Josephson-
Majorana cycle [18], a sequence of normal and anomalous
single-charge and Josephson tunneling. In the present paper,
we go beyond the analysis of the average electron current.
We, rather, study the full counting statistics of all tunneling
events as well as the distribution of waiting times between
two charge-transfer events [20]. To enable a time-resolved
measurement of the individual tunneling events, we propose
to insert a small metallic island (MI) between the transistor
and the normal lead, which can then be read out in real time
by an electrostatically coupled charge detector (CD) such as a
single-electron transistor [21,22].

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the Majorana single-charge transistor.
Then, in Sec. III, we use a real-time diagrammatic technique
to study the nonequilibrium charge dynamics, in particular
the Josephson-Majorana cycle, which involves the Majorana
bound states and Cooper pairs. In Sec. IV, we analyze the
full counting statistics of electron tunneling. We identify
the highly correlated nature of the charge transfers within the
Josephson-Majorana cycle. Furthermore, we predict a topo-
logical transition in the full counting statistics. Finally, in
Sec. V, we conclude our findings.

II. SYSTEM

The degrees of freedom of the TSI forming the central
island of the transistor are the Majorana quasiparticles and
the Cooper pairs. The Majorana bound states residing at the
left and right end are described by operators γ̂i = γ̂

†
i with i =

L, R that fulfill the anticommutation relations {γ̂i, γ̂ j} = δi j ;
i.e., the Majorana quasiparticles are their own antiparticles
and they are neither bosons nor fermions. The Cooper pairs
residing in the TSI are described by the number operator N̂
or, equivalently, its canonically conjugated partner, the phase
operator ϕ̂. They fulfill the canonical commutation relation
[N̂, e±iϕ̂] = ±e±iϕ̂ , such that e±iϕ̂ changes the number of
Cooper pairs on the TSI by ±1. We model the Majorana
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FIG. 1. The Majorana single-charge transistor consists of a topo-
logical superconducting island (TSI) which can host Majorana bound
states (γ̂L,R) and Cooper pairs. It is tunnel coupled (�) to a normal
(N) and Josephson coupled (EJ) to a superconducting lead (S). A
bias voltage V is applied between them, and a gate voltage Vg tunes
the electrostatic potential of the island. To access the full counting
statistics of single-charge tunneling, a metallic island (MI) is defined
and read out using a charge detector (CD).

single-charge transistor by the Hamiltonian

H = HC + HJ + HN + HT, (1)

which contains four parts. The first one,

HC = EC(2N̂ + d̂†d̂ − ng)2, (2)

accounts for the Coulomb interaction of all charges on the
TSI, which is assumed to be large due to the mesoscopic scale
of the island. Here, EC defines the energy scale of the charging
energy. The total charge that enters this expression is given
by twice the number of Cooper pairs, a nonlocal electron (if
present) residing in the zero-energy level comprised by the
two Majorana bound states, and the gate charge ng that can be
tuned by the gate voltage Vg. The annihilation operator for the
nonlocal electron state can be expressed as

d̂ = 1√
2

e−i ϕ̂

2 (γ̂L + iγ̂R). (3)

The associated number operator n̂ = d̂†d̂ can conveniently be
used to define the charge eigenstates |N, n〉 of the island with
N being the number of Cooper pairs and n = 0, 1 denoting the
occupation of the zero-energy level [9,23,24]. For the rest of
the paper, we choose ng = 2N + 1 for some arbitrarily chosen
number N of Cooper pairs, such that the ground state is |N, 1〉
and the first two excited states, |N, 0〉 and |N + 1, 0〉, are
energetically degenerate; see Fig. 2. This is the situation in
which the Josephson-Majorana cycle occurs [18].

The second term of the Hamiltonian,

HJ = −EJ cos(ϕ̂ − ϕS), (4)

describes the Josephson coupling of the TSI to a bulk su-
perconducting lead at zero electrochemical potential, μS = 0.
It allows for a coherent exchange of Cooper pairs, |N, n〉 ↔
|N ± 1, n〉; see Fig. 2. Here, EJ is the coupling energy and
ϕS is the phase of the bulk superconductor. While the phase

FIG. 2. Relevant charge states |N, n〉 of the Majorana single-
charge transistor. Solid lines indicate regular tunneling events and
dashed lines anomalous ones that are present for bias voltages around
nV = 1, for which the Josephson-Majorana cycle appears as shown.
Green lines indicate the coherent transfer of Cooper pairs. For bias
voltages around nV = 0, the direction of the arrow between |N, 1〉
and |N + 1, 0〉 (marked by the triangle) changes, while for bias volt-
ages around nV = 2, the direction of the arrow between |N + 1, 0〉
and |N + 1, 1〉 (marked by the square) is reversed.

of the superconducting lead is fixed, both the phase (ϕ̂) and
Cooper pair number (N̂) of the TSI fluctuate. Moreover, we
assume the superconducting gap � to be sufficiently large
such that the involvement of Bogoliubov quasiparticles—so
called quasiparticle poisoning [25–27]—can be neglected. A
coupling from the superconductor to the Majorana mode can
be safely ignored [24].

The third term of the Hamiltonian models a normal con-
ducting lead of noninteracting electrons, HN = ∑

k εk ĉ†
k ĉk ,

with a Fermi-Dirac occupation 〈ĉ†
k ĉk〉 = f (εk − μN), deter-

mined by the energy εk and the electrochemical potential
μN = eV . Here, the bias voltage V between normal and su-
perconducting lead enters.

Finally, tunneling between the normal lead and the TSI is
given by the fourth term of the Hamiltonian. It can be written
in the form [18,28]

HT =
∑

k

tk (d̂† − eiϕ̂ d̂ )ĉk + H.c., (5)

which couples electrons in the lead ĉk to the right Majorana
quasiparticle eiϕ̂/2γ̂R ∼ (d̂† − eiϕ̂ d̂ ) with tunneling amplitude
tk , which we assume to be the same for all lead states, tk = t .
It is important to note that there are two qualitatively dif-
ferent terms contributing to tunneling. In addition to normal
tunneling (∼d̂†ĉk) which simply transfers an electron from
the lead to the nonlocal electron state (or vice versa), there
is also anomalous tunneling (∼eiϕ̂ d̂ ĉk) where a Cooper pair is
formed via the annihilation of an electron in the lead and the
nonlocal electron of the island (or vice versa).

We remark that if Bogoliubov quasiparticles were in-
volved, we would have to take additional tunneling events
coupling even- and odd-parity states into account. Further-
more, we emphasize that in the system we study, only one of
two Majorana quasiparticles is involved. As a consequence,
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the nonlocal character of the Majorana bound state is not
directly probed in the proposed transport geometry. Therefore,
our results are not suited to distinguish a Majorana bound state
from an accidental zero-energy Andreev bound state [29,30].

In order to monitor in time the single-charge tunneling
events, the normal lead is supposed to be separated into a
metallic island MI with finite charging energy and a macro-
scopic normal conductor N. Then, the charge state of the MI
can be measured by a capacitively coupled charge detector
CD; see Fig. 1. For a sufficiently large bias voltage the current
through the MI is unidirectional, and one can uniquely distin-
guish tunneling between TSI and MI from tunneling between
MI and N.

To take the separation of the normal lead into MI and N into
account, we simply interpret HN as the Hamiltonian for the
MI and neglect any voltage drop between MI and N (which is
justified if the coupling between TSI and MI is much weaker
than between MI and N).

III. ELECTRONIC TRANSPORT

To drive a current through the island, a bias voltage μN −
μS = eV is applied between the normal and superconducting
lead. For convenience, we introduce the dimensionless bias
voltage nV = eV/(2EC). In order to describe the nonequi-
librium dynamics, we employ the real-time diagrammatic
technique [31,32] which is a systematic perturbation ex-
pansion in the tunnel coupling strength � = 2π |t |2D(εF )/h̄,
where D(εF ) is the density of states at the Fermi energy εF

in the metallic reservoir. Formally, we obtain in leading-order
perturbation theory (justified for � � kBT ) with the Markov
approximation the generalized master equation for the re-
duced density matrix [33]

ρ̇ = Lρ = − i

h̄
[HC + HJ, ρ] + Wρ, (6)

where L is the full Liouvillian. The superoperator W de-
scribes generalized tunneling rates of the form (for details see
Appendix A)

�±(�E ) = �

2
[ f±(�E − μN) + iR(�E − μN)], (7)

where �E are the excitation energies of the system. Here,
the real part given by the Fermi-Dirac function f+(x) = f (x)
and f−(x) = 1 − f (x) describes the relaxation dynamics and
the imaginary part πR(x) = Re[ψ ( 1

2 + i x
2πkBT )] − ln( Wc

2πkBT )
given by the digamma function ψ (x) [34] modifies the coher-
ent dynamics of the system. The cutoff parameter Wc � kBT
is used for regularization but drops out exactly for all quanti-
ties shown in the figures. Note that Eq. (6) is equivalent to the
Redfield equation [35].

To solve the master equation, we have to truncate the
infinite Hilbert space to a relevant and finite subspace. For
this purpose, we choose as a basis the three odd-parity states
|N − 1, 1〉, |N, 1〉, |N + 1, 1〉 as well as the two even-parity
states |N, 0〉, |N + 1, 0〉; see Fig. 2. Hence, we cut off all
higher-energy states, which is justified if the normal metal
can neither thermally (kBT ) nor via the bias voltage (nV )
excite them. This leads us to the following hierarchy of energy

scales,

� � kBT � EC � �, (8)

as well as the restriction for the bias voltage,

|nV | � 5
2 . (9)

Furthermore, to exclude a coherent transition to higher-energy
states via the Josephson coupling, we additionally assume

EJ � EC, (10)

but we do not specify the relative size of EJ to �. In fact,
we will later see that the system behaves qualitatively differ-
ently in the regimes EJ � � and EJ � �, respectively. For
the above specified hierarchy of energy scales, where we can
truncate the Hilbert space to a five-dimensional subspace (cf.
Fig. 2), the eigenstates of HC + HJ are given by

|�1〉 = cos θ |N, 1〉 + sin θ√
2

(|N − 1, 1〉 + |N + 1, 1〉),

|�2〉 = − sin θ |N, 1〉 + cos θ√
2

(|N − 1, 1〉 + |N + 1, 1〉),

|�3〉 = 1√
2

(|N, 0〉 + |N + 1, 0〉),

|�4〉 = 1√
2

(|N, 0〉 − |N + 1, 0〉),

|�5〉 = 1√
2

(|N − 1, 1〉 − |N + 1, 1〉), (11)

with the mixing angle defined by cos2 θ = 1
2+

√
2EC√

8E2
C+E2

J

. The

corresponding eigenenergies are

E1,2 = 2EC ∓
√

8E2
C + E2

J√
2

,

E3,4 = EC ∓ EJ

2
,

E5 = 4EC, (12)

where |�1〉 is the ground state.
The net electron current can be determined via

〈I〉 = e tr[(J+ − J−)ρst], (13)

where the jump operators J+ and J− describe all tunneling
events where an electron enters and leaves the TSI via the
normal metal, respectively (for details see Appendix A). The
stationary state is defined by Lρst = 0. In Fig. 3(a), the current
〈I〉 through the device is shown as a function of the bias
voltage nV and the Josephson coupling EJ. We can identify
different transport regimes.

(i) For |nV | � 1/2, we are in the Coulomb blockade regime
(green) where only the ground state |N, 1〉 is occupied. As a
consequence, transport is blocked.

(ii) For intermediate bias voltages 1/2 � |nV | � 3/2, there
are now three states accessible, namely |N, 1〉, |N, 0〉, and
|N + 1, 0〉. In this regime, the transport is possible via the
Josephson-Majorana cycle [18] which for nV > 0 (red) cor-
responds to a cyclic repetition of a normal tunneling event,
|N, 0〉 → |N, 1〉, an anomalous tunneling event, |N, 1〉 →
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N+1, 1N−1, 1

N, 0

N, 1

N+1, 0

ΓΓ

EJ

N, 0

N, 1

N+1, 0

Γ Γ

EJ

(a)

(b)

N, 1

FIG. 3. (a) Current 〈I〉 through the single-charge transistor as a
function of the Josephson coupling EJ and the bias voltage nV . For
1/2 � |nV | � 3/2, the relevant transport mechanism, the Josephson-
Majorana cycle, is indicated. In the green regions, the transport is
blocked and the system is stuck in a single state. In (b), we choose
the specific values EJ = 0.2kBT (green) and EJ = 20kBT (blue) for
the Josephson coupling. The remaining parameters are � = 0.1 kBT
and EC = 100kBT .

|N + 1, 0〉, and the coherent transfer of a Cooper pair |N +
1, 0〉 → |N, 0〉. For nV < 0 (blue) the direction of the cycle is
reversed; see the insets of Fig. 3(a).

(iii) Finally, for larger bias voltage 3/2 � |nV | � 5/2 all
five states considered in this paper are accessible. Typi-
cally, the increase of number of accessible states opens new
transport channels and, therefore, enhances the current. This
happens also here in the case of a large Josephson coupling.
For small Josephson coupling, however, the opposite effect
occurs: transport becomes blocked. The reason is that the sys-
tem becomes coherently trapped in the dark state |N + 1, 1〉
for nV > 0 and |N − 1, 1〉 for nV < 0. The only possible es-
cape from this dark state is to enter the ground state |N, 1〉 via
an exchange of a Cooper pair. However, this coherent process
is suppressed due to an energy difference ∼4EC of the states.

For regimes (ii) and (iii), we are able to provide approx-
imate analytical expressions for the current by using the
approximate eigenstates of Eq. (11) with θ = 0. For nV = 1,
regime (ii), we obtain

〈I〉 = 2e�

3 + (
�
EJ

)2 , (14)

where we neglected renormalization R(x) → 0 and replaced
the Fermi function by the Heaviside function, f (x) = (−x).

We observe that the current via the Josephson-Majorana cycle
is independent of the charging energy EC and, therefore, not
affected by Coulomb blockade.

For nV = 2, regime (iii), we similarly find

〈I〉 = 4e�

5 + 64
(

�EC

E2
J

)2 + 2
(

�
EJ

)2 . (15)

Now, the current does depend on the charging energy EC. In
fact, we can identify a criterion for a blocked current

� � E2
J

EC
: 〈I〉 ≈ 4

5
e�, (16)

� � E2
J

EC
: 〈I〉 ≈ e�

16

(
E2

J

�EC

)2

. (17)

In the former case, the current is increased as compared to
nV = 1, while in the latter case it is algebraically suppressed
by Coulomb repulsion EC. For illustration, in Fig. 3(b), we
show the current in both cases as a function of the bias voltage

nV . For � � E2
J

EC
(blue), we get the expected result, where the

current increases stepwise with nV as soon as the number
of excitation energies in the bias window increases. In con-

trast, for � � E2
J

EC
(green), we observe a negative differential

conductance because the current decreases although the bias
voltage is increased. The algebraic suppression of the current
is a signature of the dark state due to coherent Coulomb
blockade.

IV. REAL-TIME ANALYSIS OF CHARGE TRANSFER

In the following, we study the real-time statistics of single-
charge tunneling from the normal metal into the TSI in
the parameter regime of the Josephson-Majorana cycle, i.e.,
around nV = 1. To access this statistics experimentally, we
propose a setup as shown in Fig. 1, where the normal metal
is divided by a tunneling barrier into a small metallic island
(MI) and a bulk metallic lead (N). Then, the total charge of the
metallic island can be read out using a nearby charge detector
(CD), e.g., a single-electron transistor [21,22]. The resulting
statistics of tunneling events will be analyzed using waiting
times and full counting statistics.

For nV = 1, it is sufficient to consider only the three
states |N, 1〉, |N, 0〉, and |N+1, 0〉. Then, the Liouvillian,
which acts on the density matrix ρ = (ρN,1, ρN,0, ρN+1,0,

ρN,0
N+1,0, ρ

N+1,0
N,0 ), is described by a 5 × 5 matrix. The first three

elements of ρ are populations ρχ = 〈χ |ρ|χ〉 and the last two
elements are coherences ρ

χ

χ ′ = 〈χ |ρ|χ ′〉. Including counting
variables zn and za to count normal and anomalous tunneling
events into the TSI, we find

Lzn,za =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−� zn� 0 0 0

0 −� 0 − iEJ
2

iEJ
2

za� 0 0 iEJ
2 − iEJ

2

0 − iEJ
2

iEJ
2 −�

2 − iω 0

0 iEJ
2 − iEJ

2 0 −�
2 + iω

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

where we replaced the Fermi function by the Heaviside func-
tion, f (x) = (−x), and included renormalization effects in
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FIG. 4. Waiting time distribution between successive anomalous
and normal tunneling events with EJ = 2� (black), EJ = 1� (blue),
and EJ = �/2 (green).

the energy ω which is obtained via

ω ≈�

2

∑
±

±R(∓EC − μN) ± R(∓3EC − μN) ≈ �
ln 15

2π
.

(19)

It originates in those diagrams describing virtual charge fluc-
tuations from |N, 0〉 to |N−1, 1〉 and |N, 1〉 as well as from
|N+1, 0〉 to |N, 1〉 and |N+1, 1〉.

The Liouvillian entering Eq. (6) is obtained by setting
zn = za = 1, i.e., L = L1,1. The jump operators for normal
and anomalous tunneling into the TSI are, then, given by

Jn = ∂znLzn,1, (20)

Ja = ∂zaL1,za , (21)

which add up to the total jump operator J = Jn + Ja for
tunneling into the TSI.

A. Waiting times

One way to characterize the tunneling statistics is the
waiting-time distribution w(τ ), defined as the distribution of
the times τ between successive anomalous and normal tunnel-
ing events, i.e., the time the system dwells in the even-parity
states |N, 0〉 and |N+1, 0〉. For this, we calculate

w(τ ) = tr
[
Jne(L−Jn−Ja )τJaρst

]
tr[Jaρst]

. (22)

In Fig. 4(a), we show the waiting time distribution w(τ )
for three different values of the Josephson coupling EJ. For
EJ = 2� (black), the waiting time distribution shows clear os-
cillations which indicate the coherent transfer of Cooper pairs
back and forth between the system and the superconducting
lead. For EJ = � (blue), the oscillations are less visible. If we
go to even smaller Josephson couplings EJ = �/2 (green), the
oscillations completely disappear and the waiting times be-
come longer. In fact, a bottleneck is created, where the waiting
times depend only on the time required for the transfer of a
Cooper pair into the superconductor. Coherent oscillations do
not occur because a new electron tunnels in from the normal
metal almost immediately.

B. Full counting statistics

For a more complete picture, we study the full counting
statistics of tunneling events. In the following, we no longer
differentiate between normal and anomalous tunneling events
but count both of them on equal footing. This is achieved by
setting z = zn = za, i.e., by using the Liouvillian Lz = Lz,z.
Then, the probability that M tunneling events (either normal
or anomalous tunneling) happen in a time interval of length t
is given by

PM (t ) = 1

M!
∂M

z tr(eLztρst )|z=0. (23)

For each interval length t , there is a distribution PM (t ) of the
number M of counted tunneling events. While for continu-
ous stochastic variables, probability distributions are naturally
characterized by ordinary cumulants, in the case of discrete
stochastic variable, such as the number of tunneling events, it
is more natural to use factorial cumulants. They are conve-
niently derived via

CF,m = ∂m
z S (z, t )|z=1, (24)

with the cumulant-generating function

S (z, t ) = ln tr(eLztρst ). (25)

The first factorial cumulant is the mean value of the number
of single-charge tunneling events, CF,1 = 〈M〉, and the second
one is a particular linear combination of the variance and
the mean value, CF,2 = 〈M2〉 − 〈M〉2 − 〈M〉. It is obvious that
the variance, and thus CF,2, contains extra information of the
distribution in addition to the mean value. In analogy, higher-
order factorial cumulants CF,m with m > 2 reveal more and
more information about the distribution.

Using factorial instead of ordinary cumulants to character-
ize the full counting statistics of the single-charge tunneling
has several advantages. First, they are more natural for dis-
crete stochastic variables [36]. Second, factorial cumulants
avoid the unwanted feature of universal oscillations [37] and,
thus, are useful tools to identify system-specific information.
Third, higher-order (m > 1) factorial cumulants show an in-
trinsic resilience to detection errors such as a finite time
resolution or false noise-induced events [38]. Finally, they are
useful to identify correlations between the tunneling events
[39–43]. If all the tunneling events were uncorrelated and
occurred with the same single-particle tunneling probability,
then the full counting statistics would be described by a
Poisson distribution, and all higher-order factorial cumulants
would vanish. The more general scenario of uncorrelated tun-
neling events with nonidentical tunneling probabilities yields
a Poisson-binomial distribution [44], for which all factorial
cumulants are, in general, nonzero. However, as explicitly
shown in Refs. [40,41], the sign of the factorial cumulants is,
in the case of uncorrelated tunneling, fixed and given by

(−1)m−1CF,m � 0. (26)

This allows us to define quite a strong criterion for the pres-
ence of correlations: whenever Eq. (26) is violated for any
order m, any interval length t , and any set of system param-
eters, then the distribution PM cannot be written as a Poisson
binomial distribution; i.e., the tunneling events are correlated.
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FIG. 5. (a)–(c) First four factorial cumulants as a function of time
for (a) EJ = 0.01�, (b) EJ = �, and (c) EJ = 100�. Cumulants in the
gray shaded area indicate a negative sign of (−1)m−1CF,m and thus
correlations. The charging energy is given by EC = 1000�.

For m = 2, the criterion for the presence of correlation is
equivalent to a super-Poissonian Fano factor

−CF,2 < 0 ⇔ F = 〈M2〉 − 〈M〉2

〈M〉 > 1, (27)

which is a well-established quantity in the study of corre-
lated electron transfer [45–49]. But since Eq. (26) should (for
uncorrelated tunneling) hold for any order m, the factorial
cumulants generalize the criterion F > 1 to a whole family
of criteria to detect correlations.

In Figs. 5(a)–5(c), we show the first four factorial cumu-
lants CF,m as a function of time t for three different values of
the Josephson coupling EJ. A violation of Eq. (27), i.e., the
presence of correlations, is indicated by factorial cumulants
(−1)m−1CF,m entering the gray shaded area. This is the case

for all parameters, which means that the electron transfer
within the Josephson-Majorana cycle is highly correlated.

In Fig. 5(a), we choose the Cooper-pair transfer to be
the bottleneck, EJ � �. We find that the distribution is well
described by the first two factorial cumulants CF,1 and CF,2,
while those of higher order are negligible. The Fano factor
F = 1 + (CF,2/CF,1) changes as a function of the interval
length t from F = 1 at short times, �t � 1, to F = 2 in
the long-time limit, �t � 1. Interpreting the Fano factor as
an effective charge transferred in a Poisson-like process, a
Fano factor of F = 2 indicates that in the long-time limit
the full counting statistics effectively looks like a Poisson
process of Cooper-pair transfers. The fact that it is actually
single-electron tunneling events that are counted is expressed
in the Fano factor F = 1 for short times.

In Fig. 5(b), for EJ = �, we observe a more complex
structure of the factorial cumulants, albeit they still violate
Eq. (27) for the third and fourth factorial cumulant CF,3 and
CF,4. Finally, in Fig. 5(c), for EJ � �, the bottleneck is due to
the (normal and anomalous) single-charge tunneling events.
In this case, we can describe the dynamics by a simple rate
equation (see Appendix B for details)

∂t

(
podd

peven

)
=

(
−� z �

2

z� −�
2

)(
podd

peven

)
, (28)

where podd = ρN,1 and peven = ρN,0 + ρN+1,0. Thus, the parity
switches from even to odd via normal tunneling and from
odd to even via anomalous tunneling. Each switch increases
the electron counter. Thus, although the system is effectively
described by a two-state model, the electron transport is cor-
related. [If only normal or only anomalous tunneling were
counted, the resulting full counting statistics would always
fulfill Eq. (26).]

While the factorial cumulants provide via Eq. (26) an
experimentally accessible tool to detect the presence of corre-
lations, there is, from a purely theoretical point of view, a more
direct way to prove that the single-charge transfers within the
Josephson-Majorana cycle are always correlated, regardless
of the chosen parameters. For this purpose, we study the short-
time limit, �t � 1, in a way similar to that done in Ref. [50].
We expand the generating function according to

eS(z,t ) ≈ 1 + tr(Lzρst )t + 1
2 tr(L2

z ρst )t
2

= 1 + (z − 1)P1(t ) + (z − 1)2P2(t ). (29)

To arrive at the second line, we identify the probabilities

P1(t ) ≈ tr(J ρst )t, (30)

P2(t ) ≈ 1
2 tr(J 2ρst )t

2, (31)

where we used that tr(L . . .) = 0 as well as Lρst = 0. Note
that the probabilities fulfill P1(t ) ∝ t and P2(t ) ∝ t2 for a con-
sistent perturbation expansion. A dynamical Lee-Yang zero
analysis [42,50] reveals that whenever 4P2 > P2

1 is fulfilled,
correlations are present in the statistics. Using Eq. (18), we
find for the Josephson-Majorana cycle

4P2

P2
1

= 3E2
J + �2 + 4ω2

2E2
J

. (32)
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FIG. 6. Topological transitions in the full counting statistics of electron transport indicated by the five nondegenerate eigenvalues λl (z)
evaluated on the unit circle z = eiχ from 0 < χ < π . The eigenvalues are colored red (l = 1), blue (l = 2), orange (l = 3), green (l = 4), and
black (l = 5). Solid lines indicate the primary loop that determines the counting statistics and dashed lines indicate the secondary loops. The
colored dots show the eigenvalues at χ = 0. The parameters are (a) EJ = 0.3�, (b) EJ = 0.4�, (c) EJ = 0.53�, (d) EJ = 0.6�, (e) EJ = 1.2�,
and (f) EJ = 1.5�. The charging energy is given by EC = 1000�.

This fraction is always larger than 1. Hence, we have shown
that correlations are indeed present for all parameters.

C. Topological transition

To better understand the changes in the counting statistics
observed from Figs. 5(a)–5(c), we follow Ref. [51] and study
topological transitions of the full counting statistics in the
long-time limit. For �t � 1, only the eigenvalue λmax(z) of
Lz with the largest real part (or, since the real parts are non-
positive, the smallest magnitude of the real part) determines
the statistics

S (z, t ) ≈ λmax(z)t . (33)

For the calculation of the factorial cumulants, only the deriva-
tives of the cumulant-generating function S (z, t ) with respect
to z at z = 1 are needed. In order to discuss topological tran-
sitions in the full counting statistics, however, we consider
S (z, t ) as a function of z in the entire complex plane. Fur-
thermore, we parametrize the counting variable z via z = eiχ

by the counting field χ and restrict ourselves to real values
of χ , such that z stays on the unit circle in the complex
plane. We remark here in passing that performing derivatives
of S (eiχ , t ) with respect to χ at χ = 0 generates ordinary
cumulants instead of factorial ones. Furthermore, the func-

tional dependence of the cumulant-generating function on χ

beyond χ = 0 can be used to distinguish different transport
mechanisms contributing to the same order of a perturbation
expansion in the coupling strength, such as cotunneling versus
sequential tunneling with renormalized parameters [52]. The
main motivation to parametrize z by χ , however, is that the
spectrum of the Liouvillian Lz, and therefore also S , is peri-
odic as a function of χ . The topological transition which we
want to discuss here is indicated by a change of the periodicity
of the cumulant-generating function [51,53].

In Figs. 6(a)–6(f), the real and imaginary part of the full
spectrum {λl (eiχ )}l=1,...,5 with l = 1, . . . , 5, of the Liouvillian
Lz is shown as a function of the counting field χ . Starting at
χ = 0, where the eigenvalues are indicated by colored dots,
we indicate the change of the spectrum as the counting field
is increased up to χ = π by directed lines. It is interesting
to note that the entirety of the spectrum is periodic with
periodicity π , which also can be easily checked analytically
by using the characteristic polynomial det(λ − Lz )|z=eiχ . The
periodicity of π is associated with the joint transfer of two
charges 2e, in our case the normal and the anomalous tunnel-
ing that occur together within the Josephson-Majorana cycle.

The fact that the spectrum is periodic with π does not nec-
essarily mean that each eigenvalue has the same periodicity.
In contrast, it is possible that two or more eigenvalues are
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exchanged upon χ → χ + π , which is referred to as braiding
[53]. It is easy to identify such a scenario in Figs. 6(a)–6(f).
Braiding occurs whenever the shown loops contain more than
one color, i.e., more than one eigenvalue. For example, in
Fig. 6(e), there is a loop containing four eigenvalues. The
position of the four eigenvalues (red, blue, black, orange)
permutates to (blue, black, orange, red) for χ = π . Only after
a period of 4π , the eigenvalues return to their initial position
after completely winding around each other. The increased
periodicity to 4π could be associated with a fractional charge
[51,54] of e/2.

Now, we can analyze how the topology of the counting
statistics changes from Figs. 6(a)–6(f) as the Josephson cou-
pling EJ is increased. Due to Eq. (33), in the long-time limit
all information is contained in the primary loop (solid line)
that passes through the origin. In Fig. 6(a), for EJ � �, this
primary loop contains only one eigenvalue that indeed returns
to itself after a period of π . This is consistent with the χ

dependence of the eigenvalue

λmax ≈ E2
J

�2 + 4ω2
(e2iχ − 1)�, (34)

which we obtained by an explicit Taylor expansion of the
spectrum in the Josephson coupling EJ. This is the cumulant-
generating function of a perfect Poisson process of Cooper
pairs, where only the first two factorial cumulants are nonzero,

CF,1 = CF,2 = 2E2
J

�2+4ω2 �t , in accordance with Fig. 5(a).
In Fig. 6(b), EJ is slightly increased. While the topology of

the secondary loops (dashed lines) have changed from three
loops to one bigger loop containing four eigenvalues, the
primary loop (solid line) remains qualitatively unchanged. It
still contains only one eigenvalue, and Eq. (34) is still a valid
description of the statistics.

In Figs. 6(c)–6(d), the Josephson coupling is further in-
creased and we get a topological transition when the primary
and secondary loop touch each other. After the transition,
the primary loop contains four eigenvalues, while a new sec-
ondary loop appears in the interior of the primary one. In
Fig. 6(e), merely the shape of the primary loop changes.
In addition, the size of the detached secondary loop shrinks
almost to a point.

Finally, in Fig. 6(f), two secondary loops detach from the
primary one and we are left with two eigenvalues with a
2π periodicity each. In this case, the cumulant-generating
function can asymptotically (for EJ � �) be described by a
square root

λmax ≈ �

4
(−3 +

√
1 + 8e2iχ ). (35)

This cumulant-generating function is consistent with the
switching dynamics between even- and odd-parity states as
described by Eq. (28).

In summary, we find upon increasing the Josephson cou-
pling two topological transitions of the full counting statistics.
First, the periodicity of the relevant eigenvalue changes from
π to 4π and then, later, from 4π to 2π .

Finally, we remark that the notion of topology in this
paper appears twice in mutually unrelated ways. On the
one hand, the Majorana single-charge transistor relies on
the formation of topologically protected Majorana bound

states. On the other hand, the full counting statistics fea-
tures topological transitions related to the periodicity of
the cumulant-generating function as function of the count-
ing field. To avoid confusion, we mention that topological
transitions in the full counting statistics are also present in
topologically trivial systems such as single and double quan-
tum dots [51].

V. CONCLUSIONS

We studied the electron transport through a Majorana
single-charge transistor coupled to a normal and a supercon-
ducting lead. At low bias voltages, the dominant transport
mechanism is the Josephson-Majorana cycle, which may, de-
pending on the parameters, be suppressed via a normal or
coherent Coulomb blockade. To address the correlated nature
of single-charge transfers within the Josephson-Majorana cy-
cle, we calculated the waiting-time distribution and the full
counting statistics in terms of factorial cumulants. Using a
sign criterion for factorial cumulants to indicate correlations,
we could prove that the electron transfer in the Josephson-
Majorana cycle is highly correlated. This may serve as a
motivation trying to experimentally implement a charge de-
tector in order to monitor full time traces of the individual
charge transfers. As we have shown, this opens the possibility
to assess the nature of the underlying transport process in
a way that would not be possible by measuring the average
current only.

Moreover, by means of the spectrum of the Liouvillian and
the winding of its eigenvalues as a function of the counting
field, we identify topological transitions in the full counting
statistics. We found that the stochastic process changes from
a perfect Poisson process of two charges at small Joseph-
son coupling to a dynamic switching between even- and
odd-parity states at large coupling. The study of topological
transitions in the full counting statistics of nanoscale devices
is a rather new research topic. The Majorana single-charge
transistor provides a nice and nontrivial model system for
studying such transitions.
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APPENDIX A: GENERALIZED MASTER EQUATION

The tunneling-induced dynamics is described by the super-
operator W in the Liouville equation Eq. (6) and is defined via

Wρ =
∑

�E ,�E ′,±
�±(�E )(d̂±,�E ρ d̂†

±,�E ′

− d̂†
±,�E ′ d̂±,�E ρ) + H.c., (A1)

where the rate �±(�E ) is given by Eq. (7) and we introduced
the energy-resolved excitations

d̂+,�E =
∑
χ,χ ′

δ�E ,Eχ −Eχ ′ 〈χ |d̂†−eiϕ̂ d̂|χ ′〉|χ〉〈χ ′|, (A2)

d̂−,�E =
∑
χ,χ ′

δ�E ,Eχ ′ −Eχ
〈χ |d̂−e−iϕ̂ d̂†|χ ′〉|χ〉〈χ ′|, (A3)
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where |χ〉 and |χ ′〉 indicate the eigenstates of HC + HJ. Here,
the first and second line describe processes where effectively a
single charge enters (+) and leaves (−) the TSI, respectively.
The corresponding excitation energies are labeled by �E . In
the diagrammatic picture, terms of the form ∼d̂†

±,�E ′ d̂±,�E ρ

and ∼ρ d̂†
±,�E ′ d̂±,�E of Eq. (A1) originate from diagrams act-

ing solely on one branch of the Keldysh contour, while terms
of the form ∼d̂±,�E ρ d̂†

±,�E ′ originate from diagrams con-
necting both branches [33]. Now, we can also define the jump
operators

J±ρ =
∑

�E ,�E ′
[�±(�E ) + �∗

±(�E ′)]d̂±,�E ρ d̂†
±,�E ′ , (A4)

which can be used to calculate the net current using Eq. (13).

APPENDIX B: SECULAR APPROXIMATION

For EJ � �, the dynamics of the Josephson-Majorana cy-
cle (around nV = 1) is well described by the Liouvillian LS

z in
the secular approximation. The latter can be determined from

the full Liouvillian Lz = Lz,z of Eq. (18) via an average in the
interaction picture [33]

LS
z = lim

T →∞
1

2T

∫ T

−T
dt e−L0tLz eL0t , (B1)

where we identified the superoperator L0 = − i
h̄ [HC +

HJ, . . .] describing the von Neumann part of the
time evolution. Switching to the eigenbasis ρz =
(ρ�1 , ρ�3 , ρ�4 , ρ

�3
�4

, ρ
�4
�3

)z [where �1, �3, and �4 indicate the
three relevant eigenstates given in Eq. (11) for θ = 0], we
obtain

LS
z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−� z �
2 z �

2 0 0

z �
2 −�

2 0 0 0

z �
2 0 −�

2 0 0

0 0 0 −�
2 + iEJ 0

0 0 0 0 −�
2 − iEJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

so that the coherences completely decouple from the pop-
ulations. Defining further the probabilities podd = ρ�1 and
peven = ρ�3 + ρ�4 to find an odd- and an even-parity state,
we arrive at the simple rate equation of Eq. (28).
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