
PHYSICAL REVIEW B 107, 195404 (2023)

Non-Lifshitz invariants corrections to Dzyaloshinskii-Moriya interaction energy
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We study the continuum limit of two-dimensional chiral magnets in which Dzyaloshinskii-Moriya interaction
(DMI) is due to the interplay between a smooth magnetic texture and spin-orbit coupling. The resulting free-
energy density of the system contains linear terms in the spatial gradient of the magnetic texture, which mark an
instability of the system towards the formation of nontrivial magnetic orders such as skyrmions or chiral domain
walls. We perform a microscopic analysis of DMI tensors responsible for this contribution to free energy based
on a Berry phase formulation in the mixed space of momentum and position, and reveal that they exhibit non-
Lifshitz invariants features. In particular, a perturbation theory shows in the case of Rashba spin-orbit interactions
the presence of non-Lifshitz invariants to third order in the small spin-orbit interaction and fourth order in the
small exchange coupling. The higher-order terms may even lead to an enhancement of DMI interaction at strong
spin-orbit coupling due to divergences in the density of states at the bottom of the conduction band. Finally, we
also study the DMI free energy generated from Rashba spin-orbit interaction in different symmetry groups.
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I. INTRODUCTION

Chiral symmetry-breaking in magnetic materials re-
sults in an antisymmetric exchange coupling called the
Dzyaloshinskii-Moriya interaction (DMI) [1–3], which tends
to cant neighboring spins such that noncollinear magnetic
orders are favored in the system [4–6]. As a consequence
of DMI, nontrivial magnetic structures such as chiral domain
walls [7–9] and skyrmions [10–14] become stable. The latter
are excitations in the form of magnetization vortices, which
are topologically robust, and have been the subject of in-
tense research in recent years [15–18]. The controlled creation
and annihilation of skyrmions with spin-polarized currents
[19,20], gate voltages [21,22], or lasers [23] feeds the driving
goal to realize energy-efficient spintronic devices operating at
room temperature for memory storage [24–27].

A promising platform for probing such physics is in ef-
fectively two-dimensional systems where interfacial DMI
develops [28]. In thin ferromagnetic films or in multilayers
with alternating magnetic and nonmagnetic layers, the inver-
sion symmetry is broken at the interfaces and thus a strong
spin-orbit coupling (SOC) is generated. In a long wavelength
approach, the magnetic texture below the Curie temperature
is described by the continuous magnetic density vector m(r)
of unit amplitude, with position r in the plane of the magnetic
layer (x, y). The effect of SOC is to generate in the free energy
linear terms in the texture gradient, which are characteristic
for the DMI. The micromagnetic DMI free energy follows
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from

�1 =
∑

α∈{x,y,z}
j∈{x,y}

w jα
∂mα

∂r j
. (1)

The most common approach [2] is to consider that energies
w jα are linear in magnetization m,

�1 � 1

2
Dαβ, j (mα∂r j mβ − mβ∂r j mα ), (2)

which amounts to take into account only the well-known
Lifshitz invariant (LI) contribution to �1 (see Appendix B 1).
The microscopic analytical calculation of DMI tensor Dαβ, j in
the continuum limit was only recently performed for the first
time in topological insulators [29,30] and a two-dimensional
(2D) Rashba thin film [31]. Notably, these were preceded
by different approaches where DMI was explained in the
vein of Ruderman-Kittel-Kasuya-Yosida theory as due to spin
interactions mediated by conduction electrons [32,33]. An
analysis of effects beyond the Lifshitz invariant correction
was performed in Ref. [34] in order to get a more general
description of DMI in chiral magnets, and it has established
that such corrections can be consequential. It was soon shown
that indeed there are cases as in tetrahedral magnets where
the conventional LI contribution vanishes by symmetry while
the remaining non-LI contributions lead to a noncollinear
magnetic structure [35,36].

In this paper, we revisit the issue of non-Lifshitz invariants
contribution to DMI from a different point of view, in which
DMI is due to Berry curvature in phase space. Our approach
assumes that the magnetization m varies slowly in space on
the scale of interatomic distance. Thus, the effect of m on the
periodic Bloch wave functions is considered perturbatively.
In this sense, the Bloch wave vectors depend on position
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through m, |n, k, m(r)〉. In such cases it is natural to consider
an approach based on a generalized Berry phase in the space
defined by position and momentum [37]. Indeed, it was shown
that the dynamics of electrons in the thin layer is determined
by the Berry curvature in the phase space [38,39].

Here we analyze the generic case of two-band systems
with crossings near the Γ point. In such cases it is analyti-
cally tractable to obtain the form of DMI tensors. These are
determined from the corresponding DMI energy �1, which
follows from an expansion of the total grand-canonical ther-
modynamic free energy � in texture gradients. This generates
a contribution that is proportional to the Berry curvature in
phase space [38]. The expansion in gradient is also further
refined with additional expansions in SOC or exchange ampli-
tude. This allowed us to determine the order at which non-LI
contributions might become relevant.

As an application, the present study focuses on Rashba
SOC, which occurs naturally in effective 2D systems due to
the large variation in the electrostatic potential normal to the
layer. Usually the structure of the LI and non-LI invariants
may be determined by symmetry analysis [2,4,34]. Here we
perform instead a microscopic analysis where such the struc-
ture is emergent from effective two-band Hamiltonians. Such
models are based on the specific form of the Bloch bands at
the Γ point, as constrained by symmetries of the magnetic
point groups. The form of Rashba SOC to cubic order in
momentum was classified for 2D materials in Refs. [40,41],
and constitutes for us a starting point in determining micro-
scopically the DMI.

Our analysis reveals in the Berry curvature formulation of
the problem, that the DMI free energy decomposes into two
distinct parts �1 = �

(0)
1 + �

(1)
1 . Usually only the first part

has been a subject of investigation. The second contribution,
�

(1)
1 , is higher order in SOC, but nonetheless it is of the same

order in the magnetization m, and also enters to the same
order in the exchange coupling strength. For example, the
second contribution in its lowest order in SOC is responsible
for symmetric DMI tensors, which are usually discarded in
the bulk, but may generate some nontrivial edge spin texture
[42]. The term �

(1)
1 contains also antisymmetric DMI tensors,

which renormalize the �
(0)
1 contribution, and additionally, we

show that they can lead to divergences in the free energy since
they contain Fermi surface contributions, which diverge at low
temperature due to singularities in the density of states. All
our investigations are made concrete in the study of effective
models with Rashba SOC in different symmetry groups.

The article is organized as follows. Section II introduces
the class of two-band Hamiltonian models in which DMI
develops. The section also reviews the generic structure of the
energy density �1 that is linear in a smooth spatial gradient
of the magnetization, using a Berry phase formulation in the
mixed space of momentum and position. Section III devel-
ops a perturbation theory, which uncovers the non-Lifshitz
invariants corrections to �1. The section expresses the form
of generalized DMI tensors, and develops further expansions
in the small and large SOC limit, relative to the exchange
energy. Section IV particularizes the analysis to the case of
Rashba SOC in the C∞v group. Section V looks briefly at the
DMI contribution from Rashba SOC in different symmetry

groups. Appendix B details several of the points in the main
paper such as: a determination of DMI constants for the con-
ventional Rashba SOC in C∞v group, an analysis of group D3

where the SOC exhibits an out-of-plane component, a table
with LI and �1 in all 10 2D groups obtained in the limit of
small SOC, etc. Section VI summarizes the main points in the
paper.

II. PHASE SPACE BERRY CURVATURE FORMULATION
OF SPIN-ORBIT-INDUCED FREE-ENERGY TERMS,
LINEAR IN SPATIAL MAGNETIZATION GRADIENT

This section briefly recalls the derivation of the correction
�1 to free-energy density that is linear in the gradient of the
magnetic texture. Starting from generic two-band Hamilto-
nian models, it is shown that the correction �1 writes as an
average over occupied states of the momentum and position-
dependent skyrmion-like density of a vector field h(k, r) that
combines the spin-orbit coupling and the exchange coupling
to the magnetic texture. Complementary to previous works,
we show that this skyrmion density entails two distinct con-
tributions that appear at different order in spin-orbit coupling,
but nonetheless both contributing to same order in the magne-
tization m and exchange coupling.

A. Model Hamiltonian

In the following, we focus on generic two-band Hamilto-
nian models of the form

H (k, r) = ξ (k)σ0 + h(k, r) · σ,

h(k, r) = 	soγ (k) + 	sd m(r), (3)

with σ the vector of Pauli matrices, and σ0 the identity matrix.
The first term is the energy dispersion of electrons in the
absence of spin-orbit coupling, which is an even function
of momentum ξ (−k) = ξ (k). The second contribution is a
momentum- and position-dependent vector field h(k, r) that
combines the spin-orbit coupling (SOC) and the exchange
coupling to the magnetic texture. The SOC is described by an
antisymmetric spin-orbit vector γ (−k) = −γ (k) and a cou-
pling strength 	so. The magnetic exchange is characterized
by a coupling strength 	sd = Jsd S, with S, the magnitude of
spins in the magnetic layer, and Jsd , the exchange coupling.
The magnetic texture is modeled by a (unit length) vector
m(r), which varies smoothly in space. As it appears below, the
coupling strengths 	so and 	sd are useful parameters to keep
track of the order in a perturbation theory in weak spin-orbit
or weak exchange coupling limits.

B. Free-energy density

The free-energy density is obtained from the local density
of states ρ(ε, r),

�(r) =
∫

dερ(ε, r)g(ε), (4)

with g(ε) the primitive of the Fermi-Dirac distribution func-
tion f (ε) = g′(ε), f (ε) = 1/(1 + eβ(ε−μ) ). The local density
of states is expressed using the Green’s functions in a Wigner
representation, in the mixed center-of-mass space coordinate
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r and relative momentum k. Assuming that the Green’s func-
tions vary slowly in space, it is advantageous to expand them
in spatial gradients of the magnetization ∇rm. This translates
in a gradient expansion of the density of states ρ = ρ0 + ρ1 +
. . . , with the subscript denoting the order of the gradient (see
Refs. [31,38,39,43] and Appendix A for details).

The effective density of states to linear order in the magne-
tization gradient reads

ρ(ε, r) = 〈(
1−B j j

s,k

)
δ
(
ε − εs,k − s · hB j j

s,k

)〉
(5)

with the shorthand notation

〈. . .〉 ≡
∑
s=±

∫
dd k

(2π )d
. . . , (6)

and where summation over repeated indices j is assumed.
In Eq. (5), εs,k is the semiclassical energy spectrum of the
Hamiltonian in Eq. (3),

εs,k(r) = ξ (k) + s · h(k, r),

h(k, r) =
√

	2
sd + 	2

soγ
2 + 2	so	sdγ · m, (7)

with s = ±, the band index, and h ≡ |h|. Lastly,

Bi j
s,k(r) = −s

1

2

h · (∂ri h × ∂k j h)

|h|3 , (8)

denotes the element (i j) of the intraband phase space Berry
curvature tensor.

The expression (5) illustrates two qualitatively distinct ef-
fects resulting from the gradient corrections. On the one hand,
there is a momentum-position dependent shift of the band
spectrum, and, on the other hand, there is also a modification
of the spectral weight [38]. To linear order in the gradi-
ent, both effects are proportional to the phase-space Berry
curvature Eq. (8). Using this effective density of states, the
free-energy density is decomposed as � = �0 + �1, with a
zero-order contribution describing the uniform state, �0(r) =∫

dερ0(ε)g(ε), and a contribution �1(r), linear in the gradient
of m, which reads

�1(r) =
〈

h · (∂r j h × ∂k j h)

2
Fs,k

〉
, (9)

with

Fs,k(r) = sg(εs,k) − h f (εs,k )

h3
. (10)

Using the explicit expression of h from Eq. (3), it follows
that the correction to free-energy density �1 has two distinct
contributions

�1 = �
(0)
1 + �

(1)
1 , (11)

with

�
(0)
1 (r) = 	so	

2
sd

2
〈∂k j γ · (m × ∂r j m)Fs,k〉,

�
(1)
1 (r) = 	2

so	sd

2
〈∂r j m · (∂k j γ × γ )Fs,k〉. (12)

These contributions �
(0,1)
1 (r) have a structure similar to the

one in Eq. (1) and as detailed in the next section, both generate

Lifshitz invariant and non-Lifshitz invariant contributions to
the DMI interaction.

At this point, a few remarks are in order. The possibility
to express the linear gradient corrections in Eqs. (5) and (9)
solely in terms of the intraband phase-space Berry curvature
is specific to two-band models. Likewise, the possibility to
express the phase-space Berry curvature directly in terms of
a phase-space skyrmion-like density of the vector field h(k, r)
is also specific to two-band models. However, Eqs. (5) and
(9) are valid for any two-band model (in any dimension) of
the form given by Eq. (3). Importantly, the expression (9) and
(12) contain full nonperturbative dependencies in the coupling
strengths 	so and 	sd and also full nonlinear dependencies
in the magnetization vector m(r) since all these parameters
appear implicitly in h and Fs,k.

III. GENERAL EXPANSION OF NON-LIFSHITZ
INVARIANT CONTRIBUTIONS

In the following, the free-energy density contributions
�

(0,1)
1 are expressed as Ginzburg-Landau-like expansions in m

when considering 	so	sdγ · m/λ2 as a small parameter, with

λ =
√

	2
sd + 	2

soγ
2. (13)

Generically, the free-energy densities are expanded as

�
(i)
1 =

∞∑
n=0

�
(i)
1,n, (14)

with

�
(i)
1,n = D(i)

αβμ1...μ2n, j (mα∂r j mβ )mμ1 · · · mμ2n , (15)

where D(i) are DMI tensors of odd rank. The lowest-order
term n = 0 is quadratic in m and yields the Lifshitz invari-
ant contributions D(i)

αβ, j of the DMI tensor. The higher-order
terms n > 0 yield the non-Lifshitz-invariant contributions
D(i)

αβμ1...μ2n, j of the DMI tensor. Since in higher-order contri-
butions there is no requirement of antisymmetry in indices
μ1, . . . μ2n, these should be considered generalized DMI en-
ergies and tensors.

More quantitatively (see Appendix B 2 for details), the
expansion of eigenenergies leads to an expansion of Fs,k. Note
that since γ is antisymmetric in k, only the symmetric part of
Fs,k in k contributes to �

(0)
1 , and only the antisymmetric part

of Fs,k contributes to �
(1)
1 ,

�
(0)
1 =

∞∑
n=0

	2n+1
so 	2n+2

sd

2
〈∂k j γ · (m × ∂r j m)(γ · m)2n

× F (2n)
s,k (λ)〉, (16)

�
(1)
1 =

∞∑
n=0

	2n+3
so 	2n+2

sd

2
〈∂r j m · (∂k j γ × γ )(γ · m)2n+1

× F (2n+1)
s,k (λ)〉,
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where the coefficients F (n)
s,k are even in k, and are determined

iteratively

F (0)
s,k (λ) = Fs,k

∣∣∣∣
γ·m=0

, F (n)
s,k (λ) = 1

nλ

∂F (n−1)
s,k (λ)

∂λ
, (17)

for n > 0. The use of argument λ in previous expressions
implies that all dependence on energy εs,k simplifies to one
on ε

(0)
s,k = ξ + sλ.

The Eqs. (15) and (16) readily yield the general form of
DMI tensors

D(0)
αβμ1...μ2n, j = 1

2	2n+1
so 	2n+2

sd εαβδ〈(∂k j γδ )γμ1 · · · γμ2n

× F (2n)
s,k (λ)〉, (18)

D(1)
αβμ1...μ2n, j = 1

2	2n+3
so 	2n+2

sd ενβδ〈γαγν (∂k j γδ )

× γμ1 · · · γμ2nF (2n+1)
s,k (λ)〉, (19)

with εαβδ , the Levi-Civita symbol.
The usual Lifshitz invariants contribution to the energy is

contained in �
(i)
1,0, and the related DMI tensors are D(i)

αβ, j .
The expansion beyond the first order is responsible for non-
Lifshitz invariants. Note that even to first order, there is a
marked difference between the two tensors. The first tensor
D(0)

αβ, j is antisymmetric in α and β indices, while there is no

such constraint on D(1)
αβ, j . The symmetric part of the latter

tensor is usually neglected since it multiplies a total deriva-
tive ∂r j (mαmβ ), and vanishes when integrating over the entire
sample. It was shown, however, that it has physical effects in
generating specific magnetic textures at the sample boundary
[42]. Since we treat here the case of an infinite system, we
consider only the antisymmetric part.

It is particularly revealing to truncate the free-energy den-
sity expansion to the first term where non-LI contributions are
present. This is done either in the limit of small spin-orbit cou-
pling, or small exchange coupling. From Eqs. (18) and (19), it
follows that at weak SOC the free energy is approximated

�1 = �
(0)
1,0 + �

(1)
1,0 + �

(0)
1,1 + O

(
	5

so/	
5
sd

)
,

� (
D(0)

αβ, j + D(1)
αβ, j + D(0)

αβμ1μ2, jmμ1 mμ2

)
mα∂r j mβ. (20)

Similarly, in the case of weak exchange coupling (or large
SOC) 	so 
 	sd ,

�1 =�
(0)
1,0 + �

(1)
1,0 + �

(0)
1,1 + �

(1)
1,1 + O

(
	6

sd/	
6
so

)
,

�
∑
i=0,1

(
D(i)

αβ, j + D(i)
αβμ1μ2, jmμ1 mμ2

)
mα∂r j mβ. (21)

Note that the power counting in the two expansions is differ-
ent. At small SOC, the linear order in 	so is contained in �

(0)
1,0

alone. This contribution to free energy and all conventional LI
invariants are therefore determined exactly in this limit from
the analysis of �

(0)
1,0. In the Appendix B 5 we have microscop-

ically obtained the LI invariants in all 10 two-dimensional
point groups by considering the symmetry-allowed spin-orbit
coupling to cubic order in momentum. In contrast, in the
limit of large SOC or small exchange, both tensors D(0,1)

αβ, j

already contribute at the lowest order 	2
sd , such that both �

(0)
1,0

and �
(1)
1,0 are needed. Finally, the explicit expression of F (n)

s,k

coefficients (17) up to n = 4, necessary to give the dominant
non-Lifshitz invariants in both limit cases of Eqs. (20) and
(21) are given in Appendix B 2.

IV. APPLICATION TO RASHBA SPIN-ORBIT COUPLING

The general theory from above is instantiated now in the
important case of Rashba spin-orbit interactions. The simplest
case is that of the C∞v group with a rotationally symmetric
Rashba coupling 	soγ = αR(−ky, kx, 0) for electrons with a
parabolic spectrum,

H =
(

h̄2k2

2m
− μ

)
σ0 + αR(k × σ )z + 	sd m · σ, (22)

with αR, the amplitude of Rashba SOC.

A. Small SOC expansion

The limit of weak spin-orbit coupling relative to the ex-
change coupling 	sd is relevant in experiment and is the
focus of the following. To obtain the first non-LI invariant
contribution to free-energy density it is necessary to expand
�1 to cubic order in αR as shown in Eq. (20). That requires
determining the tensors D(0)

αβ, j , D(1)
αβ, j , and D(0)

αβμ1μ2, j (see Ap-
pendix B 3 for details about the DMI tensors involved beyond
the weak SOC approximation).

Using the rotational symmetry of the Rashba SOC allows
one to readily show that all nonzero tensor elements of D(0)

αβ, j
are equal in amplitude, such that there is a single DMI con-
stant characterizing the free-energy density

�
(0)
1,0 = D(0)

0 Ljz, j, (23)

with the DMI constant D(0)
0 = D(0)

xz,x,

D(0)
0 = −αR	2

sd

4π

∑
s

∫
dkk

λ3
(sg0,s − λ f0,s), (24)

and Lifshitz invariant

Lαβ, j = mα∂r j mβ − mβ∂r j mα. (25)

To first order in αR, λ = 	sd in Eq. (13), recovering the result
in Ref. [31]. The functions f0,s ≡ f (ε(0)

s,k ) and g0,s ≡ g(ε(0)
s,k )

are the Fermi-Dirac function and its primitive, respectively,
evaluated in the zeroth-order approximation for the band en-
ergies ε

(0)
s,k = ξ + sλ.

The tensors D(1)
αβ, j , and D(0)

αβμ1μ2, j are analyzed similarly,

yielding the free-energy contributions �
(1)
1,0 and �

(0)
1,1, respec-

tively. Since, again, in each tensor, the components are equal
in amplitude, it is possible to factor out a single DMI constant
in the free energies,

�
(1)
1,0 = D(1)

0 Ljz, j, �
(0)
1,1 = D(0)

1

(
1 − m2

z

)
Ljz, j . (26)

The constant D(1)
0 = D(1)

xz,x/2 is obtained by extracting out the

antisymmetric contribution in D(1)
αβ, j . To cubic order in αR

reads

D(1)
0 = −α3

R	2
sd

16π

∑
s

∫
dkk3F (1)

s,k (	sd ). (27)
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(a) (b) (c)

(d) (e) (f)

FIG. 1. The DMI constants D(0)
0 , D(1)

0 , and D(0)
1 in units of kR	sd/8π as a function of chemical potential in the limit of small spin-orbit

coupling. [(a),(c),(e)] show the three DMI constants at different ER and kBT = 0.01	sd , with the red line represents denoting the zeroth-order
approximation where the DMI constants are linear in αR. [(b),(d),(f)] present the same DMI constants’ behavior at different temperatures and
at fixed ER = 0.2	sd [kB = 1].

Finally, the DMI constant D(0)
1 = D(0)

xzxx,x from D(0)
αβμ1μ2, j has

the expression to O(α3
R),

D(0)
1 = −α3

R	4
sd

8π

∑
s

∫
dkk3F (2)

s,k (	sd ). (28)

Therefore, the free-energy density �1 in this approximation is
determined by all the three contributions,

�1 � [
D(0)

0 + D(1)
0 + (

1 − m2
z

)
D(0)

1

]
Ljz, j . (29)

Already, to cubic order in αR there are now non-LI invariants
in the free energy m2

z L jz, j . The additional dependence on m2
z

is a property due to the rotational symmetry of the problem
and was already predicted [34].

Using natural momentum and energy scales characterizing
the Rashba SOC,

kR = mαR

h̄2 and ER = mα2
R

2h̄2 , (30)

respectively, yields simple analytical formulas for the con-
stants in the zero-temperature approximation to O(α3

R),

D(0)
0 � kR	sd

8π

(
1 − 2ERμ

	2
sd

)(
1 − μ2

	2
sd

)
�

(
1 − μ2

	2
sd

)
,

D(1)
0 � − kRERμ

8π	sd

(
1 − μ2

	2
sd

)
�

(
1 − μ2

	2
sd

)
,

D(0)
1 � 3kRERμ

4π	sd

(
1 − 5μ2

3	2
sd

)
�

(
1 − μ2

	2
sd

)
, (31)

with � the Heaviside function. The results for D(0)
0 from

Ref. [31] are recovered by eliminating the cubic dependence
on SOC by formally setting ER to 0. In the zero-temperature
limit it follows that the DMI energy is nonvanishing only
when the Fermi surface determined by μ is inside the ex-
change gap. In this case there is a single circular Fermi surface
at k � √

2m(	sd + μ)/h̄. Outside the exchange gap μ > 	sd ,

there are always two Fermi surfaces, with equal contribution
and opposite sign, canceling in the sum over the bands.

The behavior of DMI constants for different relative
strengths ER/	sd and at different temperatures are shown
in Fig. 1. The zero-temperature approximation recovers
the numerical behavior at low temperature and weak SOC
ER/	sd � 1. At weak SOC the constant D(0)

0 is symmetric
in μ, while D(1)

0 and D(0)
1 , antisymmetric around the middle

of exchange gap μ/	sd = 0. Such symmetry is quickly lost
at larger SOC and generally the constants have a higher value
near the bottom of the gap, as explained below. Larger correc-
tions in αR also lead to increasing the number of zeros in the
free energy in their respective contribution at μ = 0.

With decreasing temperature and increasing ER/	sd , the
constants develop divergences at the bottom of the band. This
is visible in Figs. 1(b), 1(c), 1(e), and 1(f) and it is due to
the presence of derivatives of the Fermi-Dirac distribution in
coefficients F (1)

s,k and F (2)
s,k (B12). This effect cannot be cap-

tured analytically in the weak SOC expansion since αR enters
only as an overall prefactor, and the effective energy bands are
determined by 	sd alone. The divergence is, however, readily
understood when considering αR nonperturbatively.

B. Large SOC expansion

It is telling to analyze this effect quantitatively in the oppo-
site limit ER/	sd 
 1, although the effect is visible beyond
this limit. At large SOC, the two energy parabolas h̄2k2/2m
for spin up and down are shifted, creating a degenerate man-
ifold of momentum states with zero group velocity at k � kR

at the bottom of the lower band μ � −ER. Since the density
of states is effectively one dimensional (1D) there, the total
density of states will exhibit the usual inverse square-root
energy singularity [Fig. 2(a)].

More quantitatively, at zero temperature and in the limit of
ER 
 	sd , the leading approximation involves both D(0)

0 and
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(a) (b) (c)

FIG. 2. (a) Density of states at small 	sd (large SOC, ER/	sd > 1) presents divergences at the bottom of the lowest band. Comparison
between numerics (solid line) at kBT/	sd = 0.1 [kB = 1] and zero-temperature analytic approximation (dashed line) for (b) D(0)

0 and (c) D(1)
0

DMI constants in the Rashba C∞v case in units of kR	sd/8π .

D(1)
0 to O(	2

sd ),

D(0)
0 + D(1)

0 � kR	2
sd

16πER

×
{

(1 + μ

ER
)

1
2 + (1 + μ

ER
)−

1
2 , μ ∈ (−ER,−	sd ),

1 − μ

	sd
, μ ∈ (−	sd ,	sd ).

(32)

At μ = −	sd , the two asymptotic expressions match to
leading order in 	sd/ER. More importantly, near the band
minimum at μ � −ER, the constant D(1)

0 displays the typ-
ical 1D singularity in the density of states D(1)

0 ∼ (1 +
μ/ER)−1/2 ∼ 1/

√
ε, where ε is the energy calculated from

−ER. The analytical results are corroborated with the nu-
merical calculation of DMI constants presented in Figs. 2(a)
and 2(c), where the typical divergences in the 1D density of
states are accompanied by the divergence in D(1)

0 . Similar re-
sults are expected for higher-order terms in the expansion that
contribute to order 	4

sd such as D(0)
1 [see Figs. 1(c) and 1(f)]

since they contain a stronger divergence generated by Fermi-
surface terms such as f ′′(ε) that occur in F (3)

s,k in Eqs. (B12).
The above considerations explain the divergences devel-

oping in DMI constants of higher order in αR (see details
in Appendix B 3). This effect could be used as an exploit
to single out non-LI contributions, with the provision that it
would be seen only in the low-temperature regime, at strong
SOC, with a chemical potential finely tuned near the lower
band bottom.

V. RASHBA SPIN-ORBIT COUPLING IN DIFFERENT
SYMMETRY GROUPS

In order to analyze microscopically the DMI free energy
in all 10 two-dimensional point groups, we consider effective
SOC derived to cubic order in momentum in Ref. [41]. No-
tably, in such cases, the rotational symmetry of C∞v may be
lost, and the SOC vector may develop out-of-plane compo-
nents. The latter is true in point groups where a π rotation
around z axis is not a group element: C1, C3, D1, and D3. In
the remaining six groups, symmetry under a π rotation and
antisymmetry of γz, imposes γz = 0. Consequently, in these
groups there is a drastic reduction in the number of linearly

independent components of the DMI tensors. Namely, from
Eqs. (18) and (19), it follows that in the generalized DMI
energy mz enters only once, and the generalized DMI tensors
are reduced to D(0,1)

izl1...l2n, j , with Latin indices in the (x, y) plane.
Let us briefly analyze the example of group D3 in Γ4 bands

where the SOC vector develops an out-of-plane component,

	soγ = (− α1ky, α1kx, α2ky
(
3k2

x − k2
y

))
. (33)

The SOC in this group is relevant for topological surface states
of Bi2Te3 and Bi2Se3 [44,45], BiTeI [46], hole gases in quasi-
2D semiconductors [47], (001) surface states of oxide SrTiO3

[48], etc.
Note that the spin-orbit vector is identical in the x and y

components to the case explored in the previous section, and
therefore one expects to recover some of the same structure of
DMI tensors from C∞v case. However, there is an additional
cubic dependence on momentum in the z component of the
SOC vector. The analysis in Appendix B 4 shows that to first
order in a perturbation theory �

(0)
1,0 + �

(1)
1,0 there is no con-

tribution from the cubic term, and the expected LI invariant
follows, i.e., Ljz, j generated by γx and γy. The effect of cubic
Rashba term γz is visible only at the level of non-LI invariants
present in the material. To cubic order in the SOC, there are
now two non-LI invariants generated in the free-energy expan-
sion. One is identical to the previous C∞v case, and represents
a quartic interaction of spins of the form m2

z L jz, j . Additionally,
there is a new invariant that involves only in-plane interactions
between the spins,

2mxmyLyx,x + (
m2

x − m2
y

)
Lyx,y. (34)

This non-LI is proportional (up to total derivatives that vanish
in the bulk) to the invariant mx(m2

x − 3m2
y )∂imi that was ana-

lyzed in detail in Ref. [49] for the group D3h. The difference
being that in our case this contribution to generalized DMI
energy appears alongside the conventional LIs and the non-LI
m2

z L jz, j .
The cubic terms in momentum in the SOC, such as those

in γz for D3, are not reflected at the level of LI invariants, and
generally may only contribute to higher-orders in the perturba-
tion theory, to non-LI invariants. To the fifth order in SOC, our
calculations show that these terms only contribute to non-LI
invariants only when the linear contribution in SOC coupling
is present. For the above case, that means the generalized DMI
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TABLE I. Lifshitz invariants for all the two-dimensional groups obtained to linear order in SOC as contained in the free-energy density
�

(0)
1,0. The parameters αi are real and βi are complex, k± = kx ± iky. The spin-orbit interaction 	soγ · σ is determined by the vector 	soγ as

derived in Ref. [41] (here modulo an eventual overall sign change).

Group Γ 	soγ �
(0)
1,0

C1 Γ2 (α1kx + α2ky, α3kx + α4ky, α5kx + α6ky ) I1Lyz,x + I2Lyz,y + I3Lzx,x + I4Lzx,y

+ I5Lxy,x + I6Lxy,y

C2 Γ3,4 (α1kx + α2ky, α3kx + α4ky, 0) I1Lyz,x + I2Lyz,y + I3Lzx,x + I4Lzx,y

C3 Γ4,5 (α1kx + α2ky, −α2kx + α1ky, β1k3
+ + β∗

1 k3
−) I1(Lyz,x + Lzx,y ) + I2(Lxz,x + Lyz,y )

Γ6 (β1k3
+ + β∗

1 k3
−, β2k3

+ + β∗
2 k3

−, β3k3
+ + β∗

3 k3
−) 0

C4 Γ5,6,7,8 (α1kx + α2ky, −α2kx + α1ky, 0) I1(Lyz,x + Lzx,y ) + I2(Lxz,x + Lyz,y )
C6 Γ7,8,9,10 (α1kx + α2ky, −α2kx + α1ky, 0) I1(Lyz,x + Lzx,y ) + I2(Lxz,x + Lyz,y )

Γ11,12 (β1k3
+ + β∗

1 k3
−, β2k3

+ + β∗
2 k3

−, 0) 0
D1 Γ3,4 (α1ky, α2kx, α3ky ) I1Lyz,y + I2Lzx,x + I3Lxy,y

D2 Γ5 (α1ky, α2kx, 0) I1Lyz,y + I2Lzx,x

D3 Γ4 (− α1ky, α1kx, −iα2(k3
+ − k3

−)) I1(Lzx,x + Lzy,y )
Γ5,6 (iα1(k3

+ − k3
−), α2(k3

+ + k3
−), iα3(k3

+ − k3
−)) 0

D4 Γ6,7 (α1ky, −α1kx, 0) I1(Lxz,x + Lyz,y )
D6 Γ7,8 (α1ky, −α1kx, 0) I1(Lxz,x + Lyz,y )

Γ9 (iα1(k3
+ − k3

−), α2(k3
+ + k3

−), 0) 0

energy will contain to this order only terms of type αn
1α

m
2

with n > 0, (where α1 is the strength of the Rashba coupling
linear in momentum). Conversely, the Rashba coupling in Γ5

and Γ6 bands in D3 group has no linear terms in momentum
(see. Table I), and yields no contribution to DMI energy to the
lowest orders in spin-orbit coupling strength.

As a byproduct of the present theory, we also determine
the conventional LI invariants, which follow in a first-order
perturbation theory in weak SOC. A table of microscopically
calculated DMI constants and LI-invariants in all symmetry
groups is shown in Table I in Appendix B 5, and recovers
the conventional invariants obtained in a standard symmetry
analysis [4,50].

VI. CONCLUSIONS

In this article, we investigated generic two-dimensional,
two-band continuum models where Dzyaloshinskii-Moriya
interaction is generated in the interplay between spin-orbit
coupling and a magnetic texture. The DMI micromagnetic
free energy, proportional to the first derivative in the gradient
of a smooth magnetic texture, was analyzed in detailed to
reveal its structure beyond the Lifshitz invariants corrections.
A second expansion in weak SOC or weak exchange coupling
allows to pinpoint the exact order at which non-Lifshitz in-
variants are manifest, namely to third order in small SOC and
fourth order in small exchange coupling. The calculation of
DMI tensors was performed in these limits explicitly for the
case of rotation-symmetric C∞v Rashba spin-orbit coupling.
A signature of higher-order terms is revealed in divergences
in the generalized DMI energy due to singularities in the
electronic bands. In the case of Rashba interactions this occurs
due to the effective one-dimensional density of states near
the bottom of the band at larger spin-orbit coupling, which
generates an inverse square-root singularity in energy. Thus, a
signature of non-Lifshitz invariants might be visible in mea-
surements of the DMI constants, provided a strong SOC, a
low-temperature regime kBT � 	sd , with chemical potential
tuned near the bottom of the band.

We have also shown how effective models for spin-orbit
coupling in different point groups may be used to determine
microscopically the generalized DMI energy. The lower sym-
metry of the Rashba vector compared to the continuum model
with rotational symmetry induces new non-Lifshitz invariants.
This approach is checked also by deducing the conventional
LI invariants when taking only the first order in a weak SOC
expansion.

A nontrivial extension to the present paper is the investiga-
tion of multiband effects in systems hosting skyrmions. The
free energy linear in the gradient of the magnetization is still
expressed as a function of the Berry phase [38], but a simple
decomposition as in Eq. (11) is not readily available. Another
open venue is the analysis of free-energy contributions that
depend on higher-order gradients of the magnetization, which
play a role in the stabilization of the skyrmion textures.

ACKNOWLEDGMENTS

The authors thank A. Thiaville for enlightening discus-
sions on the topic. This work is supported by “Investisse-
ments d’Avenir” LabEx (Grant No. ANR-10-LABX-0039-
PALM). D.S. also acknowledges financial support from
the Romanian National Authority for Scientific Research
and Innovation, UEFISCDI through the contract ERANET-
QUANTERA QuCos 120/16.09.2019, and through Core
Program 27N/03.01.2023, Project No. PN 23 24 01 04.

APPENDIX A: GRADIENT EXPANSION

In this Appendix, we detail the gradient expansion lead-
ing to the density of states approximation to linear order in
the gradients from Eq. (5). The calculation follows the lines
drawn in Ref. [38] and is included to render the paper self-
contained.

For an inhomogeneous system, the local density of states
is obtained as ρ(ε, r) = − 1

π
ImTr[G(ε, r, r)] where G(ε, r, r′)

is the (retarded) Green’s functions, with the symbol Tr cor-
responding to the trace over all internal degrees of freedom
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(spin/orbitals). The Wigner representation of the Green’s
function is then defined as

G(ε, k, r) =
∫

dr′e−ik·r′G
(

ε, r + r′

2
, r − r′

2

)
, (A1)

with r playing the role of the center-of-mass position and
k the relative momentum. The local density of states then
rewrites ρ(ε, r) = − 1

π
Im

∫
dd k

(2π )d Tr[G(ε, k, r)]. As explained
in Ref. [38] the Wigner Green’s function G(ε, r, k) is obtained
from the Moyal product identity

G−1
0 (ε, k, r)e

i
2 (

←−∇ r·−→∇ k−←−∇ k·−→∇ r )G(ε, k, r) = 1, (A2)

where G−1
0 (ε, k, r) = ε − H (k, r) with H (k, r) the Hamilto-

nian matrix [e.g., as given in Eq. (3)]. Expanding the Moyal
identity to first order in gradients, and writing G = G0 + G1,
we obtain

G−1
0 G1 + i

2

(∇rG
−1
0 · ∇kG0 − ∇kG−1

0 · ∇rG0

) = 0, (A3)

where we use the identity G−1
0 G0 = 1. Then the first correc-

tion G1 reads as

G1 = i

2

∑
j

G0[Hrj G0, Hkj G0], (A4)

with Hrj = ∂r j H , Hkj = ∂k j H and where we used the identity
∂r j G0 = G0Hrj G0.

From now on, we focus on two-band models Hamiltonian
of the form H (k, r) = ξ (k)σ0 + h(k, r) · σ as given in Eq. (3).
For this model, the zeroth-order Green’s function writes as

G0(ε, r, k) =
∑
s=±

Ps

ε − εs + iη
, with

εs(k, r) = ξ + sh, Ps = 1

2

(
1 + s

h
h

· σ

)
, and h ≡ |h|.

(A5)

For brevity, the infinitesimal imaginary energy shift η > 0 is
neglected in the notation, but always implied in the follow-
ing. Correspondingly, the zeroth-order local density of states
reads ρ0(ε, r) = ∫

dd k
(2π )d

∑
s δ(ε − εs) where we use the iden-

tity − 1
π

Im 1
ε−εs

≡ δ(ε − εs). Considering now the first-order
gradient correction, it is convenient to define g1 = Tr[G1],
which reads

g1(ε, k, r) =
∑
s, j

B j j
s,k

[
s · h

(ε − εs)2
− 1

ε − εs

]
, (A6)

with Bi j
s,k = − s

2

h·(hri ×hk j )

h3 the (i j) elements of the phase space
Berry curvature tensor. Then the first-order gradient correc-
tion follows as

ρ1(ε, r) = −
∫

dd k
(2π )d

∑
s, j

B j j
s,k[s · hδ′(ε − εs) + δ(ε − εs)],

(A7)
where δ′(ε − εs) = ∂εδ(ε − εs). It is then straightforward to
verify that the local density expression ρ(ε, r), as given in
Eq. (5), verifies ρ = ρ0 + ρ1 when expanded to first order in
gradient corrections.

APPENDIX B: DETAILED DMI CONSTANT
DETERMINATION IN RASHBA MODELS

1. Notation

The convention used in the article is that Greek letters
denote indices that can take values in {x, y, z}, while Roman
ones, only in the two-dimensional plane {x, y} of the layer.
Einstein notation, where repeated indices are summed over,
is also employed throughout the paper. Spatial derivatives are
denoted as ∂r j and act in the 2D plane of the material.

The conventional generalized DMI tensor notation is re-
lated the one used in this paper as follows:

D(i)
α jβμ1...μ2n

≡ D(i)
αβμ1...μ2n, j (B1)

where the j index is separated out since it corresponds in
the free energy �1 to a spatial derivative ∂x or ∂y of the
magnetization m.

The free energy is expressed conveniently with the aid of
LI invariants,

Lαβ, j = mα∂r j mβ − mβ∂r j mα. (B2)

Such invariants are also denoted in the literature as L( j)
αβ .

2. Free-energy expansion in two-dimensional, two-band models
with spin-orbit interactions

Here we present in more detail the model and the expansion
of the free-energy density from Secs. II and III. To improve
readability, some equations in the main text are restated.

The continuum model from the main text in Eq. (3),

H = ξ (k)σ0 + h · σ, h = 	soγ (k) + 	sd m(r), (B3)

with local energy eigenvalues

εs,k(r) = ξ + s
√

	2
sd + 	2

soγ
2 + 2	so	sdγ · m(r). (B4)

The correction to the first contribution to the gradient expan-
sion in the free-energy density �1 uses an expansion of energy
eigenstates

εs,k = ξ + sλ
√

1 + η, λ =
√

	2
sd + 	2

soγ
2,

η = 2	so	sd

λ2
γ · m, (B5)

with η the small parameter. This procedure generates in the
free-energy density a Ginzburg-Landau expansion in the mag-
netization m.

The free-energy density in Eq. (12) are

�
(0)
1 (r) = 	so	

2
sd

2
〈∂k j γ · (m × ∂r j m)Fs,k〉,

�
(1)
1 (r) = 	2

so	sd

2
〈∂r j m · (∂k j γ × γ )Fs,k〉. (B6)

The functions Fs,k and implicitly the free-energy density �1

are expanded in powers of magnetization field

Fs,k =
∞∑

n=0

F (n)
s,k (λ)	n

so	
n
sd (γ · m)n, �

(i)
1 =

∞∑
n=0

�
(i)
1,n. (B7)

The spin-orbit vector γ is antisymmetric in k, while the ex-
pansion coefficients F are symmetric in k. Therefore, only
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the symmetric in k part of Fs,k contributes to �
(0)
1 , and only

the antisymmetric part of Fs,k, to �
(1)
1 , such that the following

simplified expressions follow. Each order in the expansion is
related to the rank of a corresponding generalized DMI tensor
D in the following way:

�
(i)
1,n = D(i)

αβμ1...μ2n, j (mα∂r j mβ )mμ1 · · · mμ2n , (B8)

with generalized DMI tensors

D(0)
αβμ1...μ2n, j = 1

2	2n+1
so 	2n+2

sd εαβδ〈(∂k j γδ )γμ1 · · ·
× γμ2nF (2n)

s,k (λ)〉, (B9)

D(1)
αβμ1...μ2n, j = 1

2	2n+3
so 	2n+2

sd ενβδ〈γαγν (∂k j γδ )γμ1 · · ·
× γμ2nF (2n+1)

s,k (λ)〉. (B10)

In calculations, it is profitable to perform a decomposition
of the tensors in symmetric and antisymmetric parts, thus
revealing a reduction in the number of linearly independent
components,

D(0)
αβμ1...μ2n, j = D(0)

[αβ](μ1...μ2n ), j,

D(1)
αβμ1...μ2n, j = D(1)

[αβ](μ1...μ2n ), j + D(1)
(αβ )(μ1...μ2n ), j . (B11)

Here [. . . ] and (. . . ) denote antisymmetric and symmetric
tensor in those indices, respectively. Further reductions are ap-
parent only by considering specific point groups under which
DMI tensors transform.

For practical purposes the free-energy density may be
analyzed analytically in the weak SOC or weak exchange
coupling limits to identify the leading non-LI contributions.
This leads to the truncated expansions in the 	so � 	sd limit,

�1 = �
(0)
1,0 + �

(1)
1,0 + �

(0)
1,1 + O

(
	5

so/	
5
sd

)
� (

D(0)
αβ, j + D(1)

αβ, j + D(0)
αβμ1μ2, jmμ1 mμ2

)
mα∂r j mβ,

or 	so 
 	sd limit,

�1 = �
(0)
1,0 + �

(1)
1,0 + �

(0)
1,1 + �

(1)
1,1 + O

(
	6

sd/	
6
so

)
�

∑
i=0,1

(
D(i)

αβ, j + D(i)
αβμ1μ2, jmμ1 mμ2

)
mα∂r j mβ.

Computing the first terms in the free-energy density ex-
pansions above [or Eqs. (20) and (21) in the main text] to
obtain the non-LI invariants requires the first four coefficients
determined from Eq. (17),

F (0)
s,k (λ) = 1

λ3
(sg0,s − λ f0,s),

F (1)
s,k (λ) = 1

λ5

( − 3sg0,s + 3λ f0,s − sλ2 f ′
0,s

)
,

F (2)
s,k (λ) = 1

2λ7

(
15sg0,s − 15λ f0,s + 6sλ2 f ′

0,s − λ3 f ′′
0,s

)
,

F (3)
s,k (λ) = 1

6λ9

( − 105sg0,s + 105λ f0,s − 45sλ2 f ′
0,s

+ 10λ3 f ′′
0,s − sλ4 f ′′′

0,s

)
. (B12)

The primes denote derivatives with respect to the energy
argument of the Fermi-Dirac functions. Also, g0,s ≡ g(ε(0)

s,k ),

f0,s ≡ f (ε(0)
s,k ), and derivatives are evaluated at ε

(0)
s,k = ξ + sλ

at vanishing γ · m. Higher-order coefficients F contain deriva-
tives of the Fermi-Dirac distribution function, which capture
mainly Fermi surface contribution to the DMI tensor ele-
ments. Although such terms are small in a perturbation theory
in either small SOC or small exchange, they can yield di-
vergences in the free energy at small temperature when the
density of states diverges such as for flat bands, van Hove
singularities etc.

3. Group C∞v

This subsection details the calculation of generalized DMI
tensors and constants in the Rashba model from Eq. (22) in
group C∞v . The spin-orbit coupling vector in this group is
given by

	soγ = αR(−ky, kx, 0), (B13)

and it is identical to the spin-orbit coupling in D4: Γ6 and Γ7,
and D6: Γ7 and Γ8. The γ expression determines the DMI ten-
sor elements when using Eq. (18). We derive in the following
the general form of the first four DMI tensors, which capture
the dominant contribution to non-LI invariants. Later in the
subsection we perform a perturbation theory in either weak
SOC or weak exchange coupling to get explicit forms for the
DMI constants.

The DMI tensor in �
(0)
1,0 is sparse with only four nonzero

elements, which are equal in amplitude,

D(0)
jz, j = −D(0)

z j, j = −αR	2
sd

2

〈
F (0)

s,k (λ)
〉
. (B14)

In these tensor elements the repeated indices are not summed.
This convention also applies below and in the next sec-
tions whenever discussing a given DMI tensor element.
Factoring out one of the elements determines the DMI con-
stant

�
(0)
1,0 = D(0)

0 (mj∂r j mz − mz∂r j m j ) = D(0)
0 Ljz, j (B15)

with D(0)
0 = D(0)

xz,x or, explicitly

D(0)
0 = −αR	2

sd

4π

∑
s

∫
dkkF (0)

s,k (λ). (B16)

The next contribution is from the three-rank tensor D(1)
αβ, j .

The nontrivial tensor elements are

D(1)
xz,x = −α3

R	2
sd

2

〈
k2

yF
(1)
s,k (λ)

〉
, D(1)

yz,y = −α3
R	2

sd

2

〈
k2

xF
(1)
s,k (λ)

〉
,

D(1)
xz,y = D(1)

yz,x = α3
R	2

sd

2

〈
kxkyF (1)

s,k (λ)
〉
. (B17)

The last two elements vanish by using the spherical sym-
metry of the problem in the integrals over momentum in 〈. . . 〉,
and the remaining tensor elements read

D(1)
xz,x = D(1)

yz,y = −α3
R	2

sd

4

〈
k2F (1)

s,k (λ)
〉
, k2 = k2

x + k2
y .

(B18)

The symmetric part of the tensor integrates to zero over the
bulk as it multiplies a total derivative ∂r j (mjmz ). Therefore,
the nonvanishing part of the free-energy density has only the
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antisymmetric part

�
(1)
1,0 = D(1)

0 Ljz, j, D(1)
0 = D(1)

xz,x/2, (B19)

with explicit DMI constant

D(1)
0 = −α3

R	2
sd

16π

∑
s

∫
dkk3F (1)

s,k (λ). (B20)

The DMI tensor in �
(0)
1,1 has eight nonvanishing tensor

components,

D(0)
jzii, j = −D(0)

z jii, j = −α3
R	4

sd

4

〈
k2F (2)

s,k (λ)
〉
. (B21)

Therefore, the free-energy correction reads

�
(0)
1,1 = D(0)

1 (mx∂xmz − mz∂xmx )
(
m2

x + m2
y

) + (x ↔ y)

= D(0)
1

(
1 − m2

z

)
Ljz, j, (B22)

using m2 = 1 in the second equality, with DMI constant
D(0)

1 = D(0)
xzxx,x, or

D(0)
1 = −α3

R	4
sd

8π

∑
s

∫
dkk3F (2)

s,k (λ). (B23)

The final generalized DMI tensor considered here has 16
nonvanishing components (not explicit here), leading to a
free-energy density contribution,

�
(1)
1,1 = 2D(1)

1

(
1 − m2

z

)
(mx∂xmz + my∂ymz ). (B24)

The free-energy density, after eliminating total derivatives
∂r j (mjmz ) and ∂r j (mjm3

z ), also reads

�
(1)
1,1 = D(1)

1

(
1 − m2

z

2

)
Ljz, j, (B25)

which presents the same m2
z correction to Lifshitz invariants.

The DMI constant reads

D(1)
1 = −3α5

R	4
sd

64π

∑
s

∫
dkk5F (3)

s,k (λ). (B26)

In the following we introduce the characteristic Rashba
momentum and energy scales

kR = mαR

h̄2 , ER = mα2
R

2h̄2 , (B27)

and perform a perturbation theory either in the small or large
SOC limit.

a. Small SOC

We consider now the expansion in αR/	sd as in Eq. (20). In
Fig. 1 we have shown the exact behavior of the DMI constants
by numerical integration over bands and momentum, includ-
ing the limit of small SOC. Analytically, we also compute
the DMI constants in the zero temperature limit, to the lowest
orders in αR.

To O(α3
R), the zero-temperature DMI constants read as

follows:

D(0)
0 � kR	sd

8π

(
1 − 2ERμ

	2
sd

)(
1 − μ2

	2
sd

)
�

(
1 − μ2

	2
sd

)
,

(B28)

D(1)
0 � − kRERμ

8π	sd

(
1 − μ2

	2
sd

)
�

(
1 − μ2

	2
sd

)
, (B29)

and

D(0)
1 � 3kRERμ

4π	sd

(
1 − 5μ2

3	2
sd

)
�

(
1 − μ2

	2
sd

)
, (B30)

with Heaviside step function �. To obtain D(1)
0 it was neces-

sary to expand F (0)
s,k (λ) from Eq. (B16) to α3

R, hence the term
proportional to αRER. Note that to linear order in αR, only
D(1)

0 survives by formally setting in the expression ER = 0,
such that it reproduces the results in Ref. [31]. The zero-
temperature results are obtained by performing the sums
and integrals in Eqs. (B16), (B20), and (B26) using Fermi-
Dirac formulas at zero temperature g(ε) = (ε − μ)�(μ − ε),
f (ε) = �(μ − ε), and f ′(ε) = −δ(μ − ε).

b. Large SOC

In the limit of ER 
 	sd we obtain from Eq. (B16) the
leading zero-temperature approximation to D(0)

0 ,

D(0)
0 � kR	2

sd

8πER
×

{
2
√

1 + μ/ER, μ ∈ (−ER,−	sd ),
1 − μ/	sd , μ ∈ (−	sd ,	sd ).

(B31)

To same order in 	sd there is the additional contribution from D(1)
0 from Eq. (B20),

D(1)
0 = kR	2

sd

16πER
×

{−3(1 + μ/ER)1/2 + (1 + μ/ER)−1/2, μ ∈ (−ER,−	sd ),

μ/	sd − 1, μ ∈ (−	sd ,	sd ).
(B32)

Therefore, the DMI constant at large SOC (small exchange
coupling) D(0)

0 + D(1)
0 is the one in Eq. (32). The D(1)

0 constant
has a divergence at the bottom of the band in the limit of small
exchange coupling (or large SOC) due to the Fermi surface
contribution to the free-energy density. This is a consequence
of the large density of states that develops at the bottom of

the band, where the minimum occurs on a circle of constant
energy at k = kR, such that the density of states there has a
characteristic divergence of a 1D model. The DMI constant
has a similar divergence near the band minimum at μ � −ER,

D(1)
0 ∼ (1 + μ/ER)−1/2 ∼ 1/

√
ε, (B33)
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where ε is the energy calculated from −ER. Such effects start
to be visible at low temperature even at ER < 	sd in Figs. 1(b)
and 1(e), and more so at ER > 	sd , where the divergences
in the DOS are accompanied by the divergence in D(1)

0 , re-
spectively in Figs. 2(a) and 2(c). This situation becomes more
visible for higher terms in the expansion that contribute to or-
der 	4

sd such as D(0)
1 [see Figs. 1(c) and 1(f)] since they contain

a stronger divergence generated by Fermi-surface terms such
as f ′′(ε) that occur in F (3)

s,k in Eqs. (17).

4. Group D3

There are cases where the SOC vector develops nonzero
out-of-plane components where one could expect qualitatively
different results. This occurs for groups where rotation sym-
metry by π is absent: C1,3 and D1,3. This subsection details
the calculation of generalized DMI tensors and constants in
the Rashba model from Sec. V in group D3 for Γ4 bands. In
this case, the spin-orbit vector reads

	soγ = (− α1ky, α1kx, α2ky
(
3k2

x − k2
y

))
, (B34)

where for convenience α2 is defined as half of α2 from Ta-
ble I. The cubic term breaks the rotational symmetry of the
spectrum.

In the following, we will analyze the first terms, �
(i)
1,0 and

�
(i)
1,1, in the Ginzburg-Landau expansion in magnetization m

without assuming either relative small SOC, or small ex-
change coupling. At the end of the section, the small SOC will
be treated in more detail since it allows analytical resolution
for the DMI constants.

The nonvanishing components of D(0)
αβ, j tensor read

D(0)
jz, j = −D(0)

z j, j = −α1	
2
sd

2

〈
F (0)

s,k (λ)
〉
,

D(0)
xy,x = −D(0)

yx,x = 6α2	
2
sd

2

〈
kxkyF (0)

s,k (λ)
〉
,

D(0)
xy,y = −D(0)

yx,y = 3α2	
2
sd

2

〈(
k2

x − k2
y

)
F (0)

s,k (λ)
〉
, (B35)

with

λ =
√

	2
sd + α2

1k2 + α2
2k2

y

(
3k2

x − k2
y

)2
. (B36)

The last two equations in (B35) vanish by symmetry and
therefore the free-energy contribution reads

�
(0)
1,0 = −α1	

2
sd

2

∑
s

∫
d2k
4π2

F (0)
s,k (λ)Ljz, j . (B37)

It exhibits the usual LI structure (see Table I).
There are eight components of the D(1)

αβ, j tensor that do not
vanish under the constraint D3 group imposes on the angular
integral,

D(1)
iz,i = −α3

1	
2
sd

2

〈
k2

ī F
(1)
s,k (λ)

〉
, D(1)

xx,x = α2
1α2	

2
sd

2

〈
k2

y

(
3k2

x + k2
y

)
F (1)

s,k (λ)
〉
, D(1)

xy,y = −α2
1α2	

2
sd

〈
k4

yF
(1)
s,k (λ)

〉
,

D(1)
yy,x = −3α2

1α2	
2
sd

〈
k2

x k2
yF

(1)
s,k (λ)

〉
, D(1)

yx,y = 3α2
1α2	

2
sd

2

〈
k2

x

(
k2

y − k2
x

)
F (1)

s,k (λ)
〉
, (B38)

D(1)
zx,x = α1α

2
2	

2
sd

2

〈
k2

y (k4
y − 9k4

x )F (1)
s,k (λ)

〉
, D(1)

zy,y = α1α
2
2	

2
sd

〈
k4

y

(
3k2

x − k2
y

)
F (1)

s,k (λ)
〉
.

Due to the lack of rotation symmetry it is not immediate to
resolve these integrals as was the case in C∞v . Using polar
coordinates and adding the contribution from all tensors as in
Eq. (15) yields the energy density,

�
(1)
1,0 = − 	2

sd

2

∫
dkk

4π2

[
α3

1k2

2
(mx∂xmz + my∂ymz )r (1)

0 (k)

+ 3α2
1α2k4

4
(my∂xmy − mx∂xmx + my∂ymx + mx∂ymy)

× r (1)
0 (k) + α1α

2
2k6

2
(mz∂xmx + mz∂ymy)r (1)

1 (k)

]
,

(B39)

where the angular integral acts inside functions r (1)
0,1. These are

generally defined for following use,

r (m)
n (k) =

∑
s

∫ 2π

0
dθ sin(3θ )2nF (m)

s,k (λ). (B40)

The second term O(α2
1α2) vanishes since it contains only

total derivatives over products of magnetization components.
Then after factoring out the symmetric part of the rest of the

components, which integrates to zero in the bulk, one obtains

�
(1)
1,0 = D(1)

0 Ljz, j,

D(1)
0 = −α1	

2
sd

32π2

∫
dkk3

[
α2

1r (1)
0 (k) − k4α2

2r (1)
1 (k)

]
. (B41)

Thus, the usual LI invariant is indeed recovered to this order
and a unique DMI constant is defined.

Higher-order tensors are expected to yield the non-LI con-
tributions. There are 28 nonvanishing components to tensors
D(0)

αβμ1μ2, j . Adding the respective energy contribution from
each of them yields

�
(0)
1,1 = 	4

sd

2

∫ ∞

0

dkk

4π2

[
− α3

1k2

2

(
1 − m2

z

)
r (2)

0 (k)Ljz, j

+ 3α2
1α2k4

4
r (2)

0 (k)
[
2mxmyLyx,x + (

m2
x − m2

y

)
Lyx,y

]
+ 3α1α

2
2k6

2

(
1 − 8

3
m2

z

)
r (2)

1 (k)Ljz, j

]
, (B42)

with the functions r (2)
0,1 defined as in Eq. (B40). At this order,

it is practical to define three DMI constants to quantitatively
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describe the free energy,

�
(0)
1,1 = D(0)

1a

(
1 − m2

z

)
Ljz, j + D(0)

1b

[
2mxmyLyx,x

+ (
m2

x − m2
y

)
Lyx,y

] + D(0)
1c

[(
1 − 8

3
m2

z

)
Ljz, j

]
.

(B43)

Finally, there are 80 nonzero components to D(1)
αβμ1μ2, j .

Adding the contributions from each one yields the free energy

�
(1)
1,1 = 	4

sd

2

∫
dkk

(2π )2

{
− 3α5

1k4

16
r (3)

0

(
1 − m2

z

2

)
Ljz, j

+ 9α4
1a2k6

16

(
r (3)

0 −r (3)
1

)[
2mxmyLyx,x+

(
m2

x−m2
y

)
Lyx,y

]
+ 15α3

1α
2
2k8

16
r (3)

1

(
1 − 5

2
m2

z

)
Ljz, j

− 9α2
1α

3
2k10

8
r (3)

1

[
2mxmyLyx,x + (

m2
x − m2

y

)
Lyx,y

]
+ 3α1α

4
2k12

8
r (3)

2 (k)m2
z L jz, j

}
. (B44)

The non-LI invariants that are present in the free-energy ex-
pansion to higher order are characterized by qualitatively new
invariants of the type 2mxmyLyx,x + (m2

x − m2
y )Lyx,y. These are

identical to the non-LI invariant in the D3h group analyzed in
Ref. [49]. Modulo total derivatives, which vanish in the bulk,
they are related as

mx
(
m2

x − 3m2
y

) = − 3
4

(
2mxmyLyx,x + (

m2
x − m2

y

)
Lyx,y

)
.

(B45)

a. Small SOC

Several simplifications are possible in the small SOC limit,
where the rotation symmetry breaking SOC distortion to
the energy spectrum is treated perturbatively. The first-order
corrections require knowledge of tensors D(0)

αβ, j , D(1)
αβ, j , and

D(0)
αβμ1μ2, j . In the small SOC limit, at each order one recovers

in the integral the rotational symmetry such that the expres-
sion for DMI constants is further simplified.

Computed to cubic order in spin-orbit coupling, the nonva-
nishing components are from (B35)

D(0)
iz,i � − α1	

2
sd

2

∑
s

∫
dkk

2π

[
F (0)

s,k (	sd )

+ k2

2

(
α2

1 + α2
2k4

2

)
F (1)

s,k (	sd )

]
. (B46)

This exhibits the same structure as in the C∞v case. Defining
D(0)

0 = D(0)
xz,x, the free-energy density reads

�
(0)
1,0 = D(0)

0 Ljz, j . (B47)

Thus working to linear order in SOC yields the conventional
LI invariant characterizing the D3 (or C3v) point group in 2D
(e.g., see Ref. [4]).

The contribution from D(1)
αβ, j also simplifies since to cubic

order in SOC F (1)
s,k (λ) = F (1)

s,k (	sd ) and the angular integral is

trivial. Therefore, it readily follows from Eq. (B41) that

�
(1)
1,0 = D(1)

0 Ljz, j,

D(1)
0 = −α1	

2
sd

16π

∑
s

∫
dkk3

(
α2

1 − α2
2k4

2

)
F (1)

s,k (	sd ),

(B48)

which renormalizes the previous term (B47).
Finally, the last term to cubic order in SOC is the contri-

bution from D(0)
αβμ1μ2, j . From Eq. (B42) it follows directly that

the three DMI constants are determined after performing the
angular integral in r (2)

n functions,

D(0)
1a = −α3

1	
4
sd

8π

∑
s

∫
dkk3F (2)

s,k (	sd ),

D(0)
1b = 3α2

1α2	
4
sd

16π

∑
s

∫
dkk5F (2)

s,k (	sd ),

D(0)
1c = 3α1α

2
2	

4
sd

16π

∑
s

∫
dkk7F (2)

s,k (	sd ). (B49)

In the zero-temperature approximation the DMI constants
reveal that there is a nonvanishing contribution due to cubic
terms in momentum. Since both D(0)

0 and D(1)
0 contribute to

the conventional LI, we add them to yield D(+)
0 = D(0)

0 + D(1)
0 ,

D(+)
0 = − α1	

2
sd

4π

∑
s

∫
dkk

[
F (0)

s,k (	sd )

+ k2

4

(
3α2

1 + α2
2k4

2

)
F (1)

s,k (	sd )

]
, (B50)

where the k6 term contributes at zero-temperature above the
gap,

D(+)
0 =

[
α1	sd m

8π h̄2

(
1 − μ2

	2
sd

)
− 3α3

1

16π

μ

	sd

(
m

h̄2

)2(
1 − μ2

	2
sd

)

+ α1α
2
2

80π

(
m

h̄2

)4(
1 + μ

	sd

)3(
8 − 9

μ

	sd
+ 3

μ2

	2
sd

)]

× �

(
1 − μ2

	2
sd

)
+ α1α

2
2	

2
sd

5π

(
m

h̄2

)4

�(μ − 	sd ).

(B51)

Finally, from Eqs. (B49) we obtain

D(0)
1a = 3α3

1μ

16π	sd

(
m

h̄2

)2(
1 − 5μ2

3	2
sd

)
�

(
1 − μ2

	2
sd

)
,

D(0)
1b = 3α2

1α2	sd

32π

(
m

h̄2

)3(
1 − μ2

	2
sd

)(
1 − 5μ2

	2
sd

)

�

(
1 − μ2

	2
sd

)
,

D(0)
1c = 9α1α

2
2μ	sd

16π

(
m

h̄2

)4(
1 − μ2

	2
sd

)2

�

(
1 − μ2

	2
sd

)
.

(B52)
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The SOC in Γ5 and Γ6 bands in point group D3 reads (see
Table I)

	soγ = (iα1(k3
+ − k3

−), α2(k3
+ + k3

−), iα3(k3
+ − k3

−)), (B53)

with k± = kx ± iky. Working at small SOC, the integrals are
expanded term by term, and we find zero contribution to
O(α5

i ).

5. DMI constants for LI invariants in all 2D symmetry groups

Here we determine the DMI constants for LIs obtained
in the approximation of relatively weak SOC 	so � 	sd ,
extracted from �

(0)
1,0. The results are presented in Table I for

all symmetry groups. Generically we see that cubic terms in
momentum are irrelevant to first order in spin-orbit coupling.
This readily yields the DMI constants determined by a single
integral,

Ii = αi	
2
sd

4π

∑
s

∫
dkkF (0)

s,k (	sd ). (B54)

In the zero-temperature limit it reads

Ii = −αim	sd

8π h̄2

(
1 − μ2

	2
sd

)
�

(
1 − μ2

	2
sd

)
. (B55)

The Ii coefficients are formally the same (up the value of αi)
with the one analyzed in detail the C∞v case, i.e., D(0)

0 from
Eq. (B16).

6. Gapped Dirac model

An important limit with application to topological materi-
als is that of a Dirac model with Rashba spin-orbit interactions

and gapped by the exchange coupling. The Hamiltonian for a
C∞v model reads

H = −μσ0 + αR(k × σ)z + 	sd m(r) · σ. (B56)

In this case, the first DMI constants are computed exactly to
all orders at zero temperature.

The first DMI coefficient from Eq. (B16) in the zero-
temperature limit is

D(0)
0 =

⎧⎨
⎩

−	sd μ

4παR
, μ ∈ (−	sd ,	sd ),

− 	2
sd

4παR
sign(μ), μ /∈ (−	sd ,	sd ).

(B57)

Note that the zero-order perturbation theory in small spin-
orbit coupling would be divergent due to flat bands for the
zero-order energy at ±	sd . Nevertheless, summation of all
orders gives a dispersion to the bands, which returns a finite
DMI constant.

To the same order in magnetic texture, D(2)
0 from Eq. (B20)

is half the amplitude of D(1)
0 , such that the total contribution

reads

D(1)
0 = − 1

2 D(0)
0 , D(0)

0 + D(1)
0 = 1

2 D(0)
0 . (B58)

The first non-Lifshitz invariant, in the zero temperature ap-
proximation, is nonzero only in the gap and the related DMI
constant from Eq. (B23) reads

D(0)
1 = −μ	sd

8παR
�

(
1 − μ2/	2

sd

)
. (B59)

The remaining contribution to O(m4) reads from Eq. (B23)

D(1)
1 = − 1

2 D(0)
1 . (B60)
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