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Gravitational response of topological quantum states of matter
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Identifying novel topological properties of topological quantum states of matter, such as exemplified by the
quantized Hall conductance, is a valuable step towards realizing materials with attractive topological attributes
that guarantee their imperviousness to realistic imperfections, disorder, and environmental disturbances. Is the
gravitational coupling coefficient of topological quantum states of matter a promising candidate? Substantially
building on well established results for quantum Hall states, using disclinations as tools for controlled creation
of pristine spatial curvature free of undesirable artifacts such as would interfere with the electronic motion of
interest, herein we report that a large class of lattice topological states of matter exhibits gravitational response,
i.e., charge response to intrinsic spatial curvature. This phenomenon is characterized by a topologically quantized
coupling constant. Remarkably, the charge-gravity relationship remains linear in the curvature, up to the
maximum curvature achievable on the lattice, demonstrating an absence of higher order nonlinear response. Our
findings facilitate articulating the physical principles underlying the topological quantization of the gravitational
coupling constant, in analogy with the insights offered by the Chern number description of the quantized Hall
conductance.
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I. INTRODUCTION

Fundamental aspects of the interplay between spacetime
and geometry have been of long-standing interest in multi-
ple contexts in physics; for instance, Einstein’s equation in
general relativity encodes one such relation, while the inter-
play between nematics and real-space curvature is a rich and
frontier area of soft matter research [1–6]. Exotic topological
quantum states of matter, of which quantum Hall states are
paradigmatic, offer a rich playground for exploring universal
responses of quantum geometry to external perturbations. The
central question of interest here is: Are there universal aspects
to how quantum states of matter respond to real-space cur-
vature, i.e., gravitational perturbations? Moreover, are there
transcendent insights equally applicable to gravitational re-
sponses of topological quantum and classical states of matter?

Some valuable clues are provided by the well known Wen
and Zee results for continuum quantum Hall states subjected
to small and gently varying spatial curvature [8], wherein the
linear response coefficient characterizing local charge density
response to Gaussian curvature is quantized. More recently,
the result has been generalized to quantum Hall states on a
lattice subjected to singular curvatures [9]. However, unlike
the celebrated example of the quantized Hall conductance, the
quest to establish a Chern-number-like conceptual framework
for this (gravitational) coefficient in terms of topological prop-
erties of the electronic wave function has proved elusive. Here,
we advance the goal of elucidating the quantum topological
basis for quantization of charge response to spatial geometry
by establishing the phenomenology, existence, and unifying
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relations characterizing quantized curvature-charge response
in a large class of two-dimensional lattice topological phases.

We consider gapped two-dimensional topological phases
with rotational symmetry (but which do not require rotational
symmetry to be defined), e.g., a Chern insulator on a lattice
with rotational symmetry. Their gravitational response can be
exposed by their behavior at disclinations since, in the pres-
ence of appropriate rotational symmetry, disclinations act as
locations with well-defined integrated intrinsic Gaussian cur-
vature equal to the Frank angle of the disclination [9] (Fig. 1).
Disclinations with the same Frank angle, i.e., the same net
intrinsic Gaussian curvature, can have significant differences,
such as possessing different extrinsic Gaussian curvatures de-
pending on how they are allowed to relax [10], or belonging
to differing classes [7] based on, e.g., dislocation parity. Yet,
we demonstrate in this paper that given a gapped topological
phase on a lattice, constructed from Chern insulators, the
charge accumulated at any disclination is a function solely of
the net intrinsic Gaussian curvature of the disclination, valid
for all allowed angular momenta for molecular orbitals once
contributions from Chern flow and localized bound charges
are removed via a process of taking an appropriate fractional
part. We show that this numerically/experimentally obtained
fractional charge vs intrinsic Gaussian curvature data can be
described using a novel relation, Eq. (5), and used to recover
a quantized topological response constant, the “gravitational
coupling constant,” characterizing the topological phase under
investigation.

II. WEN-ZEE GRAVITATIONAL RESPONSE

Using Chern-Simons quantum field theories in curved
space, small real-space deformations were previously shown
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(a) (b)

FIG. 1. Disclinations as instantiations of spatial curvature. Dis-
tinct instantiations of threefold disclinations on a square lattice with
the same intrinsic Gaussian curvature, centered at (a) a plaquette
center and (b) a lattice site. The disclination induces geometric
curvature: All three curved arrows in (a), which are geodesics, i.e.,
“straight lines” locally at all natural coordinate systems along their
paths, start out parallel; however, geodesics traversing the disclina-
tion on opposite sides stop being parallel, in violation of Euclid’s
fifth postulate and a hallmark of curved space, intersecting further on
with an angle of π/2. This angle is the (dimensionless) integrated
curvature of the disclination, also its Frank angle, and is quantized
due to the rotational symmetry of the lattice. The two disclinations
differ by a row of atoms (dislocation), indicated by the blue sites in
(a) and the dashed line in (b). Topological electronic states at such
distinct classes of disclinations display differing electronic phenom-
ena in general [7], yet we find that they obey the same topological
gravitational physics. We also find such universality in the presence
of varying extrinsic curvatures, generated by differing strain fields
(Fig. 3).

to elicit a local “gravitational” response in continuum
quantum Hall states on smooth curved manifolds [8]:

δρ(x) = ρ(x) − ρ0 = −e
κ

2π
KG(x). (1)

In the preceding equation, δρ(x) is the excess charge density
and KG(x) is the local Gaussian curvature. The dimen-
sionless linear response coefficient, κ , is the gravitational
coupling constant (GCC). This general prediction has since
been shown to be valid for the specific case of continuum
isotropic quadratically dispersing integer quantum Hall states
on smooth manifolds [11]. Integrating Eq. (1) over a closed
manifold and using the Gauss-Bonnet theorem:

Ne − νNφ = 2κ (1 − g), (2)

where g is the genus of the manifold, an integer; Ne is the
total number of electrons, an integer; Nφ is the number of flux
quanta piercing the surface, also an integer due to magnetic
monopole charge quantization [12]; and ν is the Hall conduc-
tance of the quantum Hall state in units of the conductance
quantum, a rational fraction. Substituting g = 1 in Eq. (2),
2κ ≡ νS is the excess charge on a sphere, when compared
with flat space with the same area. S is termed the “shift” of
the quantum Hall state [8,13]. A remarkable insight follows:
since Eq. (2) is a linear relationship in κ involving integers and
a rational fraction, the GCC has to be a rational fraction. Thus,
a significant physical consequence is that κ cannot change
continuously and is quantized in continuum quantum Hall
states [8].

Using the fundamental physical principles of the discrete-
ness of charge and gauge invariance, one can provide a
succinct argument for the quantization of the Hall conduc-
tance, the celebrated eponymous characteristic of quantum
Hall states. Crucially, these insights facilitated the prediction
of quantization of Hall conductance in all gapped insulators
[14–16]. In contrast, the phenomenology of gravitational re-
sponse has yet to be generalized to a broader class of materials
than just the continuum quantum Hall states. A valuable step
in the direction was provided by our previous formulation of
the problem for quantum Hall states on lattices [9]. Substan-
tially building on extant results, herein we broadly formulate
the phenomenology of gravitational response for lattice topo-
logical quantum states. We then prove the quantization of
the GCC and demonstrate its existence, i.e., show that it
has nontrivial nonzero values in specific cases. We term this
general quantized gravitational response as the “topological
gravitational response” (TGR).

III. WEN-ZEE-LIKE RESPONSE ON THE LATTICE

In the context of lattice states of matter, disclinations
provide a natural route to introducing spatial curvature and
characterizing the gravitational response [9]. The Gaussian
curvature of the disclination is localized at the disclination
core and thus singular. The total instrinsic curvature of a
disclination, characterized by the extent to which Euclid’s
fifth postulate is violated as elucidated in Fig. 1, is equal
to the Frank angle, quantized in the presence of local rota-
tional symmetry. Previously we showed that singular spatial
curvature induced at a lattice disclination can be leveraged
to characterize the gravitational response of quantum Hall
states on the lattice [9]. This approach [9,17–20] allows clear
separation of the desired curvature-induced phenomena from
spurious causes, such as arising from defects and disorder
inadvertently introduced in constructs of slowly varying small
curvature on the lattice, which attempt a literal actualization
of the continuum picture [8]. For quantum Hall states on
crystalline lattices, we reported that each Landau level loses
(an integer number of) states bound to such a disclination [9].

We can succinctly summarize gravitational response for
lattice quantum Hall states [9] using a modified version of
Eq. (1), which captures the gravitational response in both
continuum and lattice quantum Hall states:

frac(−Q/e∗) = frac
( κ

2π

e

e∗ KT

)
, (3)

wherein Q is the excess charge accumulated at the discli-
nation; κ is the GCC; KT is the total integrated Gaussian
curvature, simply equal to the Frank angle of the disclina-
tion; and frac(x) = x − �x� is the fractional part of x. e∗ is
the elementary unit by which charge can be locally modified
in the material under consideration. For continuum quantum
Hall states, e∗ is simply equal to the elementary quasiparticle
charge (for instance, e∗ = e for integer quantum Hall states
and e∗ = e/3 for the ν = 1/3 Laughlin state).

Building on this formulation, here we provide the general
results for topological gravitational response, in turn, first for
all lattice insulators, and next, for Chern and related insu-
lators. Consider three elementary charges associated with a
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specific gapped phase on the lattice: the electric charge, −e;
the quasiparticle charge, qpe; and the charge per lattice site,
qse. qp and qs are expected to be rational fractions. The excess
charge at a disclination is universal modulo integer multiples
of qpe and qse, since these are charges associated with bound
states and vacancies, respectively. Thus, if e∗ = qe is the
greatest fractional charge such that qpe and qse are integer
multiples of e∗, then the excess charge at a disclination is
determined modulo an integer multiple of e∗. Assuming local
response, we associate an excess charge Qv with disclina-
tion type v. Now, considering all possible closed manifolds
formed by the lattice with well-separated disclinations, for
each closed manifold the total electronic charge is

Ne =
∑

v

nvQvq + Npqp + Nsqs + QB, (4)

wherein nv is the number of disclinations of type v, Np,s

are integers, and QB is the net charge from all flat regions
in units of e. QB is given by the number of sites times qse
for topological bands. (For the specific case of quantum Hall
states, QB = νNφ .) Thus, all terms other than the Qv’s are
known to be integers or rational fractions. Since there are
infinite such equations, corresponding to realizations of all
allowed manifolds, we have thus established that Qv’s are also
rational fractions. If Qv (modulo e∗) is linearly related to the
integrated curvature of the disclination in units of 2π , i.e., a
rational fraction, then the slope κ , i.e., the GCC, must thus
also be a rational fraction. Thus we arrive at the remarkable
conclusion that the GCC, if nonzero, must be quantized, and
is a characteristic property of the gapped topological phase.

IV. TOPOLOGICAL GRAVITATIONAL RESPONSE

We now formulate TGR in two-dimensional band insula-
tors with n-fold rotation symmetry, Rn, by generalizing the
construction of Hamiltonians at disclinations [21–25] (see
Fig. 2; details in [26]). The unitary operation, U , which
denotes the action of rotation Rn on the internal Hilbert space
at each lattice site, is obtained up to an overall phase eiη by
requiring that Rn commute with the family of Hamiltonians
representing the insulator phase. Since (Rn)n is fixed by the
boson/fermion/anyon nature of the Hilbert space [27], η must
be equal to 2πk/n with k = 0, 1 . . . , (n − 1). For “layered”
phases, e.g., composed of independent Chern insulator bands,
multiple η’s exist. Since an m-fold disclination is composed
of m elementary lattice wedges and eiη can be viewed as a
Peierls phase acquired every time an electron hops from one
wedge to the other, there is a fictitious out-of-plane magnetic
flux of −mη/(2π ) quanta (with an unknowable offset), as-
sociated with the disclination. Thus, adiabatically changing
η from an allowed value η1 to another η2 will lead to an
inflow of charge −Ce per flux quantum at the disclination, i.e.,
mCe(η2 − η1)/(2π ) in total. Note that during this adiabatic
process rotational symmetry is broken because of disallowed
values of η; however, the gapped topological phase remains
intact since, as assumed, its integrity does not depend on the
presence of rotational symmetry.

Incorporating this physics and setting η = 2πk/n, the phe-
nomenon of TGR in lattice topological systems with n-fold
rotational symmetry and Chern number C is given by the

(a) (b)

FIG. 2. General prescription for constructing Hamiltonians at
disclinations. A threefold disclination on a square lattice (a) shown
using conventional view and (b) shown as arising from the flat space
lattice by replacing the last plaquette with bonds. Using rotation
invariance of the Hamiltonian in flat space, we can deduce unitary
transformation U corresponding to elementary rotation up to an
overall phase, η. Using this unitary transformation (blue arrows), the
flat space Hamiltonian on the first plaquette can be used to construct
a Hamiltonian on any other plaquette in the presence of disclination
(bonds related by rotation are indicated). Final set of bonds sewing
the final plaquette to the first [long bonds in (b)] are constructed from
bonds connecting the second and first plaquettes. Details in [26].

following expression for the fractional charge accumulated at
an m-fold disclination:

frac(−Qm/e∗) = frac

{( e

e∗
)[

κ
(

1 − m

n

)
− mCk

n

]}

= frac
[
κ̃ − (κ̃ + C̃k)

m

n

]
, (5)

wherein κ̃ = (e/e∗)κ and C̃ = (e/e∗)C. When C �= 0, one
must take into account the fact that a given topological phase
can be labeled by any integer value of k (noting that the choice
of η = 0 is arbitrary and depends on the gauge for U ). For
simplicity, in what follows we will assume that e/e∗ (and
therefore, C̃) is an integer, which holds for typical scenarios.

Owing to the relating of the fractional parts of the quan-
tities on both sides of Eq. (5), the value of κ̃ can only be
reported modulo the greatest common divisor of n and C̃ (in
which we define a divisor to be a number arrived at via divi-
sion by a natural number). κ is deduced from κ̃ by dividing by
e/e∗. The remarkable result thus obtained is that the value of
κ̃ calculated as prescribed is universal. In other words, given a
topological model, the quasiparticle charge and behavior un-
der 2π rotation (i.e., whether bosonic/fermionic/anyonic), κ̃

is the same for all classes of disclinations, independent of the
details of how the disclination core is patched up, independent
of local disorder, and also independent of long-range strain
arising from the specific extrinsic curvature effects related to
how the disclination is embedded in space (see Fig. 3; for
details, see [26]).

To demonstrate the existence of such nontrivial topologi-
cal gravitational response, we have numerically evaluated the
GCCs for some well-known examples of topological band
insulators such as Chern insulators and time-reversal-invariant
topological insulators. The results are summarized in Table I.
We checked fractional charges at disclinations with between
one and approximately ten wedges, centered at different
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(a) (b)

FIG. 3. Disclinations with same intrinsic (Gaussian) and differ-
ing extrinsic curvatures. A threefold disclination on a square lattice,
with the same intrinsic geometry as those shown in Fig. 1, can be
affected in distinct ways by strain. For example, laying it flat, (a), or
letting it relax into a conical geometry, (b), results in different strain
profiles and corresponding variation in the strengths of electronic
hopping amplitudes (represented above by varying bond opacities).
Electronic motion is thus affected by this “extrinsic” geometry [10].
However, when the insulating energy gap is preserved, the total ac-
cumulated fractional charge depends only on the Gaussian curvature
and is the same for both strain cases shown here, equal to that
obtained for the strain-agnostic case sketched in Fig. 1(a). For details,
see [26].

symmetry points belonging to different classes [7] and with
different allowed values of the overall phase factor, eiη. For
each model, our numerical results for all such disclinations
agree with the general theory presented with Eq. (5), yielding
the GCC values in Table I. Details are provided in [26].

Briefly, our procedure for extracting the GCC from numer-
ical data is exemplified in the following context: consider the
C = −1 phase of the Qi-Wu-Zhang (QWZ) model [28] on
the n = 4-fold symmetric square lattice. U = eiηdiag(1,−i),
acting on the two-dimensional internal Hilbert space of each
lattice site, represents the unitary transformation correspond-
ing to clockwise rotation by π/4. The overall phase, η, is
a multiple of π/4, assuming U 4 = 1. e∗/e is equal to 1.
On the square lattice, there are two nonequivalent centers of
fourfold rotational symmetry: the lattice site and the plaquette
center (Fig. 1). Figure 4 shows our numerical evaluation of

TABLE I. Tabulation of numerically calculated GCCs for
specific topological band insulators, establishing universal phe-
nomenology of the TGR. All quantities are defined in the context
of Eq. (5) in the main text. See accompanying text for import of
these values. The models, defined in detail in [26], are adopted
from the following references: QWZ/QWZ2 [28], Sticlet [29,30],
Alase-Feder [31], Haldane [16], and Kane-Mele [32,33].

Model n e∗/e C C̃ κ̃ κ

QWZ 4 1 ± 1 ± 1 1/2 mod 1 1/2 mod 1
QWZ 2 4 1 2 2 0 mod 2 0 mod 2
Sticlet 6 1 ± 2 ± 2 0 mod 2 0 mod 2
Alase-Feder 6 1 ± 3 ± 3 3/2 mod 3 3/2 mod 3
Haldane 6 1/2 ± 1 ± 2 1 mod 2 1/2 mod 1
Kane-Mele 6 1 ± 2a ± 2a 0 mod 2 0 mod 2

aFor the Kane-Mele model, a topological insulator constructed from
two elementary time-reversed copies of Chern insulators, we use the
sum of absolute values of their Chern numbers.

(a) (b)

FIG. 4. Calculating the GCC. Fractional charges calculated in
the C = −1 phase of the QWZ model at m-fold disclinations on a
square lattice, centered at (a) the plaquette center and (b) at a lattice
site. Different keys refer to allowed values of the phase ambiguity η.
Dashed lines are fits using Eq. (5), yielding κ = 1/2, 5/2 for (a) and
(b), respectively. The GCC can only be reported modulo the greatest
common factor of n = 4 and C = −1, which is 1. Thus, the universal
value of the GCC is κ = 1/2 mod (1) for this topological phase.

the fractional charge accumulated at these two families of
disclinations, for different values of η. The universal value of
the GCC is κ = 1/2 mod (1). (This result is also consistent
with the TGR at disclinations centered on the bond centers;
not shown for brevity.)

V. DISCUSSION

An unexpected relation is revealed by our results in
Table I: the GCC is 1/2 (equivalently, −1/2) times the Chern
number, modulo the greatest common divisor of the Chern
number and n (the lattice has n-fold rotation symmetry). Our
observation is consistent with many long-established results in
the continuum (n = ∞). Continuum Landau levels, indexed
as k = 1, 2, . . ., exhibit GCC values κ = k − 1/2 [8]. The k
dependence can be explained using the cyclotron orbit angu-
lar momentum Lk = kh̄ [34,35], which implies ηn = −2πk.
Since each Landau level has a Hall conductance correspond-
ing to C = 1, the GCC for the family of Landau levels is
equivalent to κ = 1/2 mod (1) in agreement with the known
pattern above. Remarkably, model Laughlin states are also
characterized by κ = 1/2 [8]. This value is consistent with
the GCC vs Chern number pattern noted previously if we
interpret the Laughlin state as a single filled Landau level
of composite fermions [35] (with e∗ = νe). We note that the
GCC is doubled (and becomes equivalent to 0) for time-
reversal-invariant topological insulators formed from pairing
time-reversed Chern insulators, for which the right-hand side
of Eq. (5) becomes effectively proportional to m, i.e., one sim-
ply observes that there is a fixed charge “per wedge” [24,25].

We have used disclinations that, due to the presence of
rotational symmetry, allow controlled creation of pristine
spatial curvature free of undesirable interference effects on
electronic motion, to distill the universal phenomenon of
topological gravitational response, viz., the charge response
to intrinsic spatial Gaussian curvature. This physics is now
ready for incorporation in other scenarios where gravitational
response acts in conjunction with other effects. A notable
example is the physics of anomalous viscosity in continuum
Hall states, where the anomalous viscosity [36–38], propor-
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tional to the Wen-Zee gravitational constant in the presence of
continuous rotation symmetry [39], shows up in current and
charge responses to nonuniform electric fields in conjunction
with other causes such as the Hall effect and effects arising
from the electrodynamics of continuous media [40–42]. What
happens to this physics in lattice systems [43] as consid-
ered herein? These questions may serve as promising starting
points for future inquiry.

We conclude by drawing attention to an intriguing point:
our results demonstrate the linear relationship between
charge and net curvature, without observable deviations
from linearity. What are the implications of the absence of
nonlinear terms in the response? Exploring the consequences
is a promising future avenue of research. Another exciting
line of inquiry is to establish whether aspects of the universal
response to gravitational perturbations reported here can be
further generalized to apply to analogous soft matter systems
such as in [1]. Finally, there is the exciting possibility of

explicating general connections between topological quantum
field theories in the presence of gravity and the well-defined
analytically tractable quantum lattice models studied in this
work.
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