
PHYSICAL REVIEW B 107, 195306 (2023)

Highly efficient and indistinguishable single-photon
sources via phonon-decoupled two-color excitation
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Single-photon sources with near-unity efficiency and indistinguishability play a major role in the development
of quantum technologies. However, on-demand excitation of the emitter imposes substantial limitations to the
source performance. Here, we show that coherent two-color pumping allows for population inversion arbitrarily
close to unity in bulk quantum dots thanks to a decoupling effect between the emitter and its phonon bath. Driving
a micropillar single-photon source with this scheme, we calculate very high photon emission into the cavity mode
(0.95 photons per pulse) together with excellent indistinguishability (0.975) in a realistic configuration, thereby
removing the limitations imposed by the excitation scheme on single-photon source engineering.
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I. INTRODUCTION

Photonic quantum technologies [1,2], such as quantum
computers, simulators, and networks, rely on multiphoton
interference to process information [3–5] and therefore on
the availability of efficient sources of indistinguishable single
photons [6]. For a single-photon source (SPS) with photon
output N and degree of indistinguishability I, the rate of
successful n-photon interference scales as (NI )n [7]. Thus,
for scalable quantum information processing, the source’s
figure of merit NI must be increased as close as possible
to 1.

The most successful SPS is currently based on cavity-
coupled semiconductor quantum dots (QDs) [8–10], which
are, however, strongly affected by the vibrational environ-
ment. Previous theoretical work demonstrates a trade-off
between N and I induced by phonon scattering, and indi-
cates a pathway towards optimal performance using the cavity
effect [11]. By carefully engineering the cavity, simulations
predict values of NI in the range 0.95–0.98 once the emitter
is initialized in the excited state [7,12]. This calls for an ex-
citation scheme that prepares the desired initial state with the
highest possible fidelity and is compatible with the require-
ment NI → 1. In this paper, we show that the performance
of a SPS driven with two-color excitation schemes [13–16]
matches the one calculated for an initially excited source,
thereby demonstrating that the excitation scheme is no longer
a limitation.

Initial experiments on SPSs relied on p-shell pump-
ing [8,17], whereby a laser pulse excites the QD into a higher
energy state, which subsequently decays to the exciton level.
Owing to the shorter wavelength of the pump with respect
to the outgoing single photons, the laser is then removed via
spectral filtering. However, indistinguishability obtained un-
der p-shell excitation is significantly reduced by the time-jitter

*lucav@dtu.dk

effect [18]. Electrical triggering, which has been explored
as an alternative to optical pumping [19,20], suffers from a
similar mechanism [21]. Resonant excitation with short laser
pulses set a new milestone, enabling two-photon interference
visibility �0.99 [8,22]. A resonant scheme, however, requires
cross-polarization filtering to distinguish the outgoing single
photons from the pump. This, in turn, suppresses the number
of available photons by at least a factor 2, so that NI can
never exceed 0.5.

A trade-off between these two competing effects is offered
by near-resonant phonon-assisted excitation, where N = 0.50
has been demonstrated in experiments at the expense of a
lower I = 0.91 [23]. Still, exciton preparation is limited to
0.85–0.90 fidelity both in experiments and in theory [23–25],
posing a fundamental limitation towards further increasing
the performance. A promising strategy involving stimulated
emission from the biexciton level [26–28] has generated sin-
gle photons with I = 0.93 and in-fiber efficiency of 0.51 [27]
in experiments. However, increasing the figures of merit to-
wards unity demands a detailed understanding of the role of
phonons during the excitation process [29,30], and an exci-
tation scheme which is compatible with an arbitrary increase
towards unity of NI has not been demonstrated so far.

A dichromatic (or two-color) protocol makes use of
two laser pulses detuned from the QD emission frequency
[Fig. 1(a)]. He et al. initially proposed to use a symmetric
“red-and-blue” configuration (i.e., with one pulse on the blue
side and one on the red side of the spectrum with respect to
the emitter [13]), and Koong et al. subsequently demonstrated
partial population of the exciton level by acting on the relative
pulse amplitudes [14]. This effect is, however, significantly
hindered by phonon scattering, with a population inversion
∼0.6 predicted theoretically in Ref. [14]. Here, on the other
hand, we access a phonon-decoupled regime where phonon
effects are removed from the excitation process [31,32] and
arbitrarily high population inversion is within reach for bulk
QDs. As a specific example, we demonstrate that a micropillar
SPS driven with our scheme can generate up to 0.95 photons
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(a)

(b)

FIG. 1. Sketch of two-color excitation schemes in the frequency
domain relative to the QD emission line. (a) “Red-and-blue” dichro-
matic excitation. (b) SUPER scheme.

per pulse into the collection optics with even better indistin-
guishability than the one obtained under resonant excitation.

An alternative two-color strategy named SUPER
scheme [15,16,33–35] makes use of two laser pulses on
the red side of the spectrum [Fig. 1(b)]. This has resulted in
an estimated population inversion ranging from 0.67 [33] to
0.97 [16] in experiments, but insufficient indistinguishability
to date [33]. As we show in the following, the SUPER
scheme is also compatible with an increase of NI towards 1,
provided that the phonon-decoupled regime is attained [30].

The paper is organized as follows. In Sec. II we study the
population inversion of a bulk quantum dot under two-color
excitation. We consider both the “red-and-blue” and the SU-
PER scheme, and we show the influence of phonon coupling
on the performance of both schemes. Then, in Sec. III we
calculate the photon output and the indistinguishability of a
state-of-the-art SPS driven with two-color excitation, and we
compare with the artificial case of an initially excited emitter.
In Sec. IV we draw our conclusions. Four Appendixes are de-
voted to technical details and to the validation of our methods.

II. POPULATION INVERSION OF A BULK QUANTUM DOT

A. Red-and-blue dichromatic scheme

We begin by considering the dichromatic pumping dynam-
ics of a QD in bulk in the absence of phonon coupling. We
thus take a two-level system—ground state |G〉, excited state
|X 〉—which is coupled to two laser pulses centered at angular
frequency ω j , j ∈ {1, 2}. They have Gaussian shape in the
time domain, namely,

� j (t ) = � j

tp
√

π
e−(t/tp)2

, (1)

where � j = ∫ +∞
−∞ dt � j (t ) is the pulse area, and tp is the pulse

temporal width (identical for both pulses, for simplicity). In
a reference frame rotating at the exciton frequency ωX , and
making use of the rotating wave approximation, the system

(a) (b)

(c) (d)

FIG. 2. Exciton population in the absence of phonon coupling
after the pulse as a function of �b and �r , and for η = 1 (a), η = 3
(b), η = 4 (c), and η = 6 (d).

Hamiltonian reads

HS (t ) = h̄

2
[�1(t )e−iδ1t + �2(t )e−iδ2t ]σ † + H.c., (2)

where σ † = |X 〉〈G| is the QD raising operator, and δ j =
ω j − ωX is the frequency detuning from the exciton. The
time evolution of the density operator ρS (t ) is readily
obtained by solving the von Neumann equation ρ̇S (t ) =
− i

h̄ [HS (t ), ρS (t )], with the QD initialized in the ground state
at t = t0. For the moment, we neglect the QD spontaneous
emission and any source of decoherence to illustrate the
physics of the pumping mechanism.

First, let us focus on the red-and-blue configuration dis-
cussed in Refs. [13,14] with symmetric detuning δ1 = −δ2 =
δ. In the following discussion, we will use the notation 1 ≡ b
and 2 ≡ r to identify the first and the second pulse with
the blue and the red side of the spectrum, respectively. To
assess the pumping efficiency, we consider as a figure of
merit the exited state population PX (t ) = Tr[σ †σρS (t )] at a
time t after the pulse is gone (specifically, we use t = 3tp).
In the ideal scenario where any source of decoherence and
dissipation is neglected, PX can take a maximum value of
PX = 1, corresponding to perfect population inversion. When
the system dynamics is unitary and governed by Eq. (2),
one can show that PX after the laser pulse is determined by
f (�b,�r, η = tpδ), i.e., it depends on the product η = tpδ and
not on tp and δ separately (see Appendix A). We explore such
a functional dependence in Fig. 2. At η = 1 [Fig. 2(a)] we
observe a periodic pattern that is reminiscent of Rabi oscil-
lations, especially along the diagonal �b = �r . Indeed, the
symmetric dichromatic driving with �b(t ) = �r (t ) = �(t )
has a simple analytical solution PX = sin2(ξ ), where ξ =∫ +∞
−∞ dt �(t ) cos(δt ) is the spectral component of the dichro-

matic laser pulse at the exciton frequency [14]. This shows
that the oscillations along the diagonal are due to direct reso-
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nant coupling to the QD, which gives rise to the typical Rabi
physics.

The spectral component of the driving laser at the exci-
ton frequency, which scales as e−η2/4, is smaller at larger η.
Here, richer physics is observed in the exciton population.
Rabi oscillations along the diagonal become progressively
slower—one full oscillation is visible in Fig. 2(b), while al-
most no oscillations are observed in Figs. 2(c) and 2(d). At
the same time, new bright spots exhibiting PX = 1 emerge at
�b 
= �r , which are not due to direct resonant excitation [14].
Their distance from the origin increases with η and is linked
to the total power provided by the laser pulse, which scales as
∼(�2

b + �2
r )/tp. Therefore, a trade-off between larger values

of η—ensuring low spectral overlap of the laser with the
exciton frequency—and lower values to minimize the power is
necessary. We use η = 6 in the following, for which the laser
spectral component at ωX is e−62/4 ≈ 1 × 10−4 relatively to
its peak value.

We analyze now the performance of the dichromatic
driving at η = tpδ = 6 in the presence of phonon-induced
dissipation, focusing on the case of GaAs as host material.
The QD couples to a phonon environment, represented by
HE = ∑

k h̄νkb†
kbk , through the interaction Hamiltonian

HI =
∑

k

h̄gk (b†
k + bk )|X 〉〈X |. (3)

The environment is characterized by a phonon spectral den-
sity Jph(ω) = ∑

k |gk|2δ(ω − νk ) ≈ αω3e−ω2/ω2
c . For a QD in

GaAs we use the coupling strength α = 0.03 ps2, and the fre-
quency cutoff ωc = 2.2 THz [36,37]. The effect of the phonon
bath is, among other things, to shift the exciton frequency to
ωX − D, with (see, e.g., Ref. [36])

D =
∫ +∞

0
dω

Jph(ω)

ω
=

√
π

4
αω3

c . (4)

It is convenient to move into a frame rotating at frequency
ωX − D, where the system Hamiltonian reads

HS (t ) = −h̄D|X 〉〈X |

+ h̄

2

∑
j=1,2

[� j (t )e−iδ j tσ † + � j (t )e+iδ j tσ ], (5)

with δ j = ω j − ωX + D the frequency detuning of each pulse
with respect to the renormalized exciton frequency. The dy-
namics in the absence of phonon coupling is readily obtained
by setting α = 0 (and thus D = 0).

To obtain ρS (t ), we adopt a master equation formalism
within the weak-coupling approximation [36], whose imple-
mentation is detailed in Appendix B. The reduced density
operator is determined by solving

d

dt
ρS (t ) = − i

h̄
[HS (t ), ρS (t )] + K[ρS (t )], (6)

where the extra term K accounts for environment-induced
effects. Due to the intrinsic asymmetry between phonon
absorption and emission at low temperature, PX is now a
function of tp and δ separately. The behavior of PX for tp = 6
ps and δ = 1 THz (corresponding to h̄δ ≈ 0.65 meV) is re-
ported in Fig. 3(a), where the features described in Fig. 2(d)

(a) (b)

(c) (d)

(e)

FIG. 3. (a)–(d) Exciton population after the pulse as a function of
�b and �r , for fixed η = tpδ = 6 and δ = 1 THz (a), δ = 2 THz (b),
δ = 3 THz (c), and δ = 6 THz (d). Here, phonon-induced effects are
considered. (e) PX (t ) for tp = 6 ps, δ = 1 THz, �b = 2.12π , �r =
6.96π (red), tp = 1 ps, δ = 6 THz, �b = 1.80π , and �r = 6.96π

(purple).

are significantly hindered by phonon scattering. For an exci-
tation pulse predominantly on the blue side (i.e., �b > �r),
we observe a rather broad area revealing PX ≈ 0.8, which
is attributed to phonon-assisted processes [23–25]. On the
other hand, the red side (�b < �r) shows an isolated peak
similarly to the case without phonon coupling, but with a
significantly smaller maximum value. We find PX = 0.661 at
(�b,�r ) = (2.12π, 6.96π ), which is in qualitative agreement
with Ref. [14], where a similar detuning was used.

Moving to larger detuning (while simultaneously keep-
ing η = tpδ fixed), phonon scattering becomes progressively
less detrimental. In Figs. 3(b)–3(d), the dichromatic features
gradually emerge from the background, with Fig. 3(d) being
almost identical to the corresponding calculation in the ab-
sence of phonons [Fig. 2(d)]. Indeed, at δ = 6 THz (h̄δ ≈
3.95 meV) we find a maximum PX = 0.987 at (�b,�r ) =
(1.80π, 6.96π ). One can further increase PX arbitrarily close
to 1 by increasing the detuning beyond δ = 6 THz at con-
stant η = tpδ. For instance, we find PX = 0.999 at (tp, δ) =
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(0.2 ps, 30 THz) (see Appendix C). However, a configuration
with such ultrashort pulses and large detuning has practical
challenges, and we will limit the discussion to the range
tp ∈ [1, 6] ps.

We interpret this result in terms of an effective phonon de-
coupling occurring at larger δ and shorter tp, which is known
to play a role in the reappearance of Rabi oscillations at large
pump power and in the adiabatic rapid passage [29,31,32,38].
The population inversion is the result of a fast oscillat-
ing dynamics illustrated in Fig. 3(e), where we plot PX (t )
for the two configurations marked with a star in Figs. 3(a)
and 3(d). We observe that the excited state population os-
cillates on a timescale which is shorter than tp. However,
phonon relaxation occurs on a timescale of ∼1–5 ps [36,39].
For (tp, δ) = (6 ps, 1 THz) (red), the dynamics is sufficiently
slow to allow for phonon-mediated relaxation events, and
PX remains well below 1 after the dichromatic pulse. For
(tp, δ) = (1 ps, 6 THz) (purple), on the other hand, such os-
cillations occur on a timescale that is much shorter than the
phonon dynamics. Phonons cannot follow the QD dynam-
ics instantaneously and are effectively decoupled from the
emitter, resulting in very little dissipation effect and much
higher population inversion (a phenomenon that also occurs
for resonant excitation [40]). Temperature has almost no in-
fluence on the exciton preparation, further confirming the
decoupling effect (see Appendix C). At the same time, the
phonon spectral density is mostly contained within a range of
2–3 THz. When moving to δ = 6 THz, the detuning becomes
larger than the maximum phonon frequency and no states are
available for phonon emission or absorption. This explains
why phonon-assisted events [which are particularly evident
in the bottom-right region of Fig. 3(a)] are no longer allowed
at larger detuning. Note that the value δ = 6 THz stays well
below the p shell of Stranski-Kranstanov grown dots. For
instance, in Ref. [17] the p shell is 53.7 THz above the exciton
level in our units, so that the blue pulse will not excite higher
confined states. Similarly, biexciton preparation via the two-
photon resonance occurs roughly 1 THz below the exciton
line [27] and will not interfere with our optimal scheme. It
should be noted, however, that QDs of different type and
size may present a different phonon spectral density [41] or
different p-shell energy [42].

The ability to capture the decoupling effect numerically
is crucial. We have used here the weak-coupling model due
to its straightforward formulation and ease of implementa-
tion; however, more advanced methods are available in the
literature [43,44]. In Appendix D, we have thus tested the
weak-coupling model against the numerically exact TEMPO
method [43,45], obtaining excellent agreement. The polaron
master equation [11,37], on the other hand, overestimates the
detrimental effect of phonons on the exciton preparation by
roughly 5% at short tp.

B. SUPER scheme

In the SUPER scheme, both laser pulses are spectrally po-
sitioned to the red side of the emitter (i.e., δ2 < δ1 < 0) [15].
In the absence of phonons, the population inversion PX is de-
termined by a function f of four parameters f (�1,�2, η, R),
with η = tpδ1 and R = δ2/δ1 (see Appendix A). As frequently

(a) (b)

(c) (d)

FIG. 4. Exciton population obtained under the SUPER scheme
as a function of R = δ2/δ1 and �2, for fixed η = tpδ1 = −6. We use
�1 = 4π (a), �1 = 6π (b), �1 = 7π (c), and �1 = 8π (d). Here,
the phonon coupling is not included in the calculation.

done in the literature [15,16,33,34], one can fix the parameters
pertaining to the first pulse (time duration, detuning, ampli-
tude) and explore the functional dependence with respect to
the second pulse. We perform this analysis in Fig. 4, where
we fix the value η = tpδ1 = −6 and use different values of
the first-pulse amplitude �1 in each panel. We observe that a
threshold amplitude is required in order to reach full popula-
tion inversion, i.e., we obtain PX = 1 only for �1 � 8π [panel
(d)]. Two maxima are observed at values �1 = 8π,�2 =
7.2π, η = −6, R = 3.495 (red cross) and �1 = 8π,�2 =
14.0π, η = −6, R = 4.125 (purple cross). Up to this point,
any combination of tp, δ1, and δ2 generating the same values
of η and R leads to perfect population inversion.

However, this symmetry is broken by the phonon coupling.
In Fig. 5 we compare the two cases (tp, δ1) = (6 ps,−1 THz)
and (tp, δ1) = (1 ps,−6 THz) [panels (a) and (b), respec-
tively] in the presence of phonon coupling at fixed �1 = 8π .
A significant quantitative difference is found. For the same
values of �2 and R, we now obtain PX = 0.653 (red cross) and
0.795 (purple cross) for longer pulses [panel (a)] compared to
PX = 0.989 (red cross) and 0.985 (purple cross) for shorter
pulses [panel (b)]. This is explained again in terms of phonon
decoupling. The former configuration is relatively slow com-
pared to the phonon relaxation time and uses a frequency
detuning smaller than the phonon spectral density, while the
latter uses sufficiently short pulses and large detuning to effec-
tively avoid phonon scattering. As before, these figures can be
pushed arbitrarily close to 1 by decreasing tp and increasing δ1

and δ2 by identical factors; for instance, we obtain PX = 0.997
at tp = 0.5 ps.

We note that phonon scattering can possibly explain some
observation reported by Boos et al. in Ref. [33]. There, a
population inversion of PX ≈ 0.66 is estimated experimentally
for �1 = 8π , �2 = 8.8π , tp = 8.49 ps, δ1 = −1.064 THz,
and δ2 = −3.115 THz in our units (corresponding to η =
−9.02 and R = 3.31), whereas a near-unity PX is expected
in the absence of phonon coupling. In Figs. 6(a) and 6(b) we
report the dynamics both in the absence and in the presence
of phonon coupling for such a configuration, obtaining final
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(a)

(b)

FIG. 5. Exciton population obtained under the SUPER scheme
as a function of δ2 and �2, for fixed η = tpδ1 = −6 and �1 = 8π ,
and with the inclusion of phonon coupling. We use tp = 6 ps (a) and
tp = 1 ps (b), with δ1 = η/tp determined accordingly.

values of PX = 0.954 and PX = 0.574, respectively. This
shows qualitatively that the imperfect population inversion
reported in Ref. [33] is partly due to phonon coupling. Indeed,
the pulse duration tp = 8.49 ps is rather long compared to the
phonon relaxation time, and the pulse detunings δ1 and δ2 are
well within the phonon spectral density. Better performance
could be obtained by reducing tp while correspondingly in-
creasing δ1 and δ2. For instance, we obtain PX = 0.789 by
halving tp at constant η and R [Fig. 6(c)], and PX = 0.935
when tp is reduced by a factor 5 [Fig. 6(d)].

III. SINGLE-PHOTON SOURCE FIGURES OF MERIT:
PHOTON OUTPUT AND INDISTINGUISHABILITY

We now characterize a state-of-the-art SPS driven with the
two-color scheme in terms of photon output N and indistin-
guishability I, and compare to the case of resonant pumping.
State-of-the-art SPSs rely on the cavity effect to funnel the
emission into the zero-phonon line and direct the outgoing
photons towards the collection optics. We thus introduce a
single-mode cavity with annihilation operator a, which is as-
sumed to be on resonance with the QD emission. In the frame
rotating at frequency ωX − D, the system Hamiltonian is now

HS (t ) = −h̄D|X 〉〈X | + h̄g(a†σ + aσ †)

+
{

h̄

2
[�1(t )e−iδ1t + �2(t )e−iδ2t ]σ † + H.c.

}
(7)

with g the QD-cavity coupling strength. We also add three
Lindblad terms [46] to the master equation, which account
for photon leakage out of the cavity at a rate κ , spontaneous
decay of the QD into noncavity (background) modes at a rate
�b, and pure dephasing at a rate γd induced by charge and

(a) (b)

(c) (d)

FIG. 6. (a) Evolution of the exciton population in time for �1 =
8π , �2 = 8.8π , tp = 8.49 ps, δ1 = −1.064 THz, and δ2 = −3.115
THz, and no phonon coupling. (b)–(d) Same calculation in the pres-
ence of phonon coupling, with tp = 8.49 ps (b), tp = 4.25 ps (c), and
tp = 4.25 ps (d). In (b)–(d) the values of δ1 and δ2 are adjusted to
keep η = tpδ1 = −9.02 and R = δ2/δ1 = 3.31 fixed. The dashed line
marks the performance in the absence of phonons.

nuclear spin fluctuations in the vicinity of the emitter. The
master equation now reads

d

dt
ρS = − i

h̄
[HS (t ), ρS ] + K[ρS ]

+ κLa[ρS ] + �bLσ [ρS ] + γdLσ †σ [ρS ] (8)

with LA[ρ] = AρA† − 1
2 {A†A, ρ}. We consider a micropillar

device formed by sandwiching the QD between two stacks
of distributed Bragg reflector mirrors, whose performance has
been optimized in previous work [12,47]. Parameters for the
microscopic modeling (g, κ , and �b) are extracted from optical
simulations of the electromagnetic environment [12]. We use
g = 0.041 THz, κ = 0.46 THz, �b = 0.45 × 10−3 THz, and
the dephasing rate is set at γd = 0.13 × 10−3 THz.

The number N of single photons successfully reaching the
collection optics is calculated as

N = γcollκ

∫ +∞

t0

dt〈a†(t )a(t )〉, (9)

where γcoll is the fraction of photons emitted from the cavity
that are successfully collected. We use γcoll = 1 for the two-
color schemes and γcoll = 0.5 for resonant excitation, due to
the need for cross-polarization filtering. The indistinguisha-
bility of the emitted photons is determined as

I = 1 −
∫

dt
∫

ds
[
G(2)

pop(t, s) + g(2)(t, s) − |g(1)(t, s)|2]∫
dt

∫
ds

[
2G(2)

pop(t, s) − |〈a(t + s)〉〈a†(t )〉|2]
(10)
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with G(2)
pop(t, s) = 〈a†(t )a(t )〉〈a†(t + s)a(t + s)〉, g(2)(t, s) =

〈a†(t )a†(t + s)a(t + s)a(t )〉, and g(1)(t, s) = 〈a†(t )a(t + s)〉
as detailed in Refs. [25,48]. For later convenience, we also
calculate the single-photon purity P as [15,25,35]

P = 1 −
∫

dt
∫

ds g(2)(t, s)∫
dt

∫
ds G(2)

pop(t, s)
, (11)

which measures the probability of multiphoton emission. Cor-
relation functions are evaluated using the quantum regression
theorem [46], which may overestimate the effect of phonon
coupling [49,50]. One can thus interpret our result as a lower
bound to I.

Losses and decoherence may occur both during the ex-
citon preparation phase and during the emission phase. In
the latter, some photons will be lost into background modes
if �b 
= 0, resulting in a coupling efficiency to the cavity
mode β < 1. This sets an upper bound N � N (UB) = β for
the case of pure single-photon emission [51]. Similarly, I is
deteriorated both by temporal indeterminacy in the excited
state preparation via the time-jitter effect [18], and by phonon
scattering and noise-induced dephasing during the emission
phase. To calculate the maximum performance that can be
attained with such a cavity design, we artificially initialize the
system in the state |ψ (t0)〉 = |X 〉 as done in Ref. [11]. We
obtain N (UB) = 0.966 and I (UB) = 0.975. These hard limits,
which can be understood in terms of the Franck-Condon factor
as explained in Ref. [11], are defined by dissipation and deco-
herence occurring after excitation, and not by imperfections
in the excitation.

In Figs. 7(a) and 7(b), we show the values N (UB) and I (UB)

calculated for an initially excited exciton with a yellow line.
The values N and I calculated starting from |ψ (t0)〉 = |G〉
and in the presence of the pumping laser will necessarily obey
N � N (UB) and I � I (UB), and we highlight this accessible
region with a yellow shade. We then plot N and I for the
red-and-blue and the SUPER two-color drives at constant η

and R and different values of tp, and a resonant π pulse of the
same duration. For each data point, the two-color detunings
δ1, δ2 are chosen as δ1 = −δ2 = 6/tp for the red-and-blue
dichromatic scheme, and δ1 = −6/tp and δ2 = 3.49δ1 for the
SUPER scheme.

As expected, the best N is obtained for shorter pulses,
where the performance is almost at the same level as the one
calculated in the absence of phonons. Interestingly, all data
points for two-color excitation are well above the 0.5 limit for
resonant excitation, which is set by the need for polarization
filtering. In particular, the value increases from N = 0.642
(0.628) at tp = 6 ps to N = 0.953 (0.954) at tp = 1 ps for
the red-and-blue (SUPER) two-color excitation. Importantly,
the deviation 1 − N is not a fundamental limitation of our
scheme. Losses through spontaneous emission into back-
ground modes are calculated as Nb = �b

∫ +∞
t0

dt〈σ †(t )σ (t )〉,
which yields Nb = 0.034 at tp = 1 ps for the two-color
schemes. An additional loss 1 − PX is caused by imperfect
exciton preparation as obtained previously for a bulk QD
in the absence of any emission mechanism, and we indeed
observe that N + Nb + (1 − PX ) = 1. Note, however, that
losses due to population inversion can be made arbitrar-
ily small by resorting to shorter pulses, while background

(a)

(b)

(c)

FIG. 7. Figures of merit N , I, and P as a function of tp for a
two-color and a resonant π pulse of the same duration. The frequency
detunings are determined as δ1 = −δ2 = 6/tp for the red-and-blue
dichromatic scheme, δ1 = −6/tp and δ2 = 3.49δ1 for the SUPER
scheme, and δ = 0 for the resonant pulse. The upper bounds N (UB),
I (UB), and P (UB) are also reported, and the regions below such bounds
are marked with a shade.

emission is unrelated to the pumping mechanism, and can be
controlled using photonic engineering [7].

Turning to the indistinguishability I, we observe very high
values I � 0.99 for two-color schemes in the absence of
phonon coupling [dashed curves in Fig. 7(b)], with a slight
decrease for longer pulses. The reason for this is attributed to
possible reexcitation of the QD which becomes more likely
for slow pulses, with a detrimental effect on two-photon in-
terference visibility. This is confirmed by the single-photon
purity P shown in Fig. 7(c). Here, a value P < 1 indicates the
occurrence of multiphoton emission, while P (UB) = 1 is the
upper bound corresponding to perfect antibunching, which is
obtained with an initially excited emitter. As mentioned, when
the effect of phonon coupling is taken into account (solid
curves in Fig. 7) the indistinguishability remains below the
value calculated in the absence of phonons due to decoherence
in the emission dynamics [11]. Nevertheless, we obtain an
excellent performance for any choice of parameters, with I
ranging from 0.966 at tp = 6 ps up to 0.975 at tp = 1 ps—
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the latter corresponding exactly to the upper bound due to
unavoidable phonon scattering during emission, as defined
by the Franck-Condon factor [11]. It is noteworthy that the
indistinguishability obtained under two-color schemes is bet-
ter than that under resonant excitation for any value of tp,
with all schemes converging towards I (UB) at short tp. This is
again a consequence of the single-photon purity P . As was
recently explained in Ref. [35], two-color pumping is less
likely to induce reexcitation of the QD than a resonant scheme
due to its strongly off-resonant nature. Indeed, in Fig. 7(c)
we always obtain P � 0.990 using two-color schemes, with
P � 0.999 for tp � 3 ps. On the other hand, purity under
resonant excitation ranges between P = 0.974 (at tp = 6 ps)
and P = 0.998 (at tp = 1 ps).

IV. CONCLUSIONS

In conclusion, we have discussed the role of phonon cou-
pling on the performance of a two-color pumping scheme such
as the red-and-blue dichromatic excitation and the SUPER
scheme. We have shown that a necessary condition in order to
exploit the full potential of two-color excitation is to enter the
regime of phonon decoupling, where the exciton population
oscillates on a timescale which is faster than the phonon re-
laxation time and the pulse detunings are beyond the range of
phonon spectral density. Finally, our calculations demonstrate
that two-color pumping schemes can push the performance of

state-of-the-art SPSs towards NI = 1, in accordance with the
requirements for scalable quantum technologies. Our results
establish two-color excitation as a fundamental tool for SPS
engineering, and illustrate the importance of pulse-shaping
devices such as spatial light modulators [16].
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APPENDIX A: FUNCTIONAL DEPENDENCE OF PX

Here we show that, for the case with no phonon coupling
(α = 0), the exciton population PX (t1) after the laser pulse is
a function of a limited set of parameters. In the absence of
phonons and any spontaneous decay, the dynamics is unitary
and determined by PX (t1) = |〈X |U (t1, t0)|G〉|2 with

U (t1, t0) = T exp

[
− i

h̄

∫ t1

t0

du HS (u)

]
. (A1)

With a simple change of variable, this reads

U (t1, t0) = T exp

[
− i

2
√

π

∫ t1/tp

t0/tp

ds e−s2
(�1e−itpδ1s + �2e−itpδ2s)σ † + H.c.

]
. (A2)

Since e−s2 ≈ 0 for large |s|, one can safely extend the integration to ±∞ provided that t0 and t1 are chosen suitably; in practice,
it is sufficient to take t0/tp � −3 and t1/tp � +3. With the definitions η = tpδ1 and R = δ2/δ1 one has

U (t1, t0) = T exp

[
− i

2
√

π

∫ +∞

−∞
ds e−s2

(�1e−iηs + �2e−iRηs)σ † + H.c.

]
, (A3)

which indeed shows that PX (t1) = f (�1,�2, η, R). To ob-
tain a symmetric red-and-blue configuration we set R = −1,
thereby reducing the free parameters to three.

APPENDIX B: METHODS

1. Weak-coupling master equation

We resort to the weak-coupling master equation to calcu-
late the QD dynamics in the presence of phonon coupling [36].
The master equation for the density operator ρ(t ) reads

d

dt
ρ(t ) = − i

h̄
[HS (t ), ρ(t )] + K(t )[ρ(t )], (B1)

where the phonon dissipation is given by

K(t )[ρ(t )] =
∫ +∞

0
dsC(s)

[
X̂ (t − s, t )ρ(t ), X

] + H.c.

(B2)
with X = σ †σ , X̂ (t − s, t ) = U †(t − s, t )XU (t − s, t ), and

U (t − s, t ) = T exp

[
− i

h̄

∫ t−s

t
du HS (u)

]
. (B3)

The environment correlation function reads

C(s) =
∫ +∞

0
dω Jph(ω)

[
coth

(
h̄ω

2κBT

)
cos(ωs) − i sin(ωs)

]
(B4)

with T the temperature, which is set at T = 4 K throughout
this work.

The dynamics is obtained by solving the master equa-
tion via a fourth-order Runge-Kutta algorithm, with initial
condition ρ(t0) = |G〉〈G|. We set t0 = −3tp to make sure that
� j (t � t0) ≈ 0. A second Runge-Kutta algorithm is used to
calculate U (t − s, t ) in Eq. (B3) by solving

d

ds
U (t − s, t ) = i

h̄
HS (t − s)U (t − s, t ) (B5)

at fixed t as a function of s, with initial condition
U (t − s, t )|s=0 = I (I being the identity). Finally, two-time
correlation functions necessary for the indistinguishability
calculation are evaluated using the quantum regression the-
orem [46].
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2. Polaron theory

In the polaron theory, which is presented here for compar-
ison, the Hamiltonian is diagonalized by applying the polaron
transformation. This removes the QD-phonon interaction term
[Eq. (3)] by applying a unitary displacement to the phonon
modes [36]. The system dynamics is then obtained by solving
the polaron master equation,

d

dt
ρ(t ) = − i

h̄
[HS (t ), ρ(t )] + Kpol(t )[ρ(t )]. (B6)

The system Hamiltonian, in a frame rotating at frequency
ωX − D, is

HS (t ) = h̄

2
B

∑
j=1,2

[� j (t )e−iδ j tσ † + � j (t )e+iδ j tσ ]. (B7)

Here the quantity B = exp[− 1
2φ(0)] is a phonon-induced

renormalization of the laser-pulse amplitude, where φ(s) is
the phonon correlation function:

φ(s) =
∫ +∞

0
dω

Jph(ω)

ω2

×
[

coth

(
h̄ω

2κBT

)
cos(ωs) − i sin(ωs)

]
. (B8)

Note that the polaron transformation automatically pro-
duces the frequency shift ωX → ωX − D, which is thus not
explicitly included in Eq. (B7).

The second term in Eq. (B6) is the polaron dissipator,

Kpol[ρ(t )] = 1

h̄2

∫ +∞

0
ds

×
∑
i=x,y

Cii(s)[Âi(t − s, t )ρ(t ), Ai(t )] + H.c.

(B9)

Here, the time-dependent operators Ai(t ) are given by

Ax(t ) = h̄

2
B

∑
j=1,2

[� j (t )e−iδ j tσ † + � j (t )e+iδ j tσ ], (B10)

Ay(t ) = i
h̄

2
B

∑
j=1,2

[� j (t )e−iδ j tσ † − � j (t )e+iδ j tσ ], (B11)

and Âi(t − s, t ) = U †(t − s, t )Ai(t − s)U (t − s, t ), with
U (t − s, t ) as in Eq. (B3). The environment correlation
functions are

Cxx(s) = B2{cosh[φ(s)] − 1}, (B12)

Cyy(s) = B2 sinh[φ(s)]. (B13)

Again, we use a fourth-order Runge-Kutta algorithm to solve
the polaron master equation, with initial condition ρ(t0 =
−3tp) = |G〉〈G|.

APPENDIX C: EFFECT OF THE TEMPERATURE

In this Appendix, we show additional evidence for the
phonon-decoupling effect by analyzing the exciton population
PX after the red-and-blue dichromatic pulse as a function of
the temperature. We consider three different configurations,
all of them with constant tpδ = 6:

FIG. 8. Exciton population after a slow (red), fast (purple), and
ultrafast (green) pulse as a function of the temperature. See text for
details.

(1) slow pulse [red star in Fig. 2(a) of the main text]:
(tp, δ) = (6 ps, 1 THz), (�b,�r ) = (2.12π, 6.96π ).

(2) fast pulse [purple star in Fig. 2(d) of the main text]:
(tp, δ) = (1 ps, 6 THz), (�b,�r ) = (1.80π, 6.96π ).

(3) ultrafast pulse (not shown in the main text): (tp, δ) =
(0.2 ps, 30 THz), (�b,�r ) = (1.80π, 6.96π ).

As reported in Fig. 8, the performance of the slow pulse
falls significantly with increasing temperature, as expected
(from 0.675 at T = 1 K to 0.484 at T = 20 K). This is due to

(a)

(b)

FIG. 9. Comparison of the time evolution PX (t ) predicted by the
weak-coupling master equation, the polaron master equation, and the
TEMPO algorithm after a slow [panel (a)] and a fast [panel (b)] pulse.
See text for details, and colored markers in Figs. 3(a) and 3(d) of the
main text.
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phonon scattering becoming more and more relevant at higher
temperature, which results in a smaller population inversion.

On the other hand, temperature has little influence on the
fast pulse, with a mere 2% decrease in PX between T = 1 K
and T = 20 K (from 0.988 to 0.968). We attribute this fact to
the decoupling mechanism, which quenches the detrimental
effect of phonons even at relatively high temperature.

An ultrafast pulse with tp goes even deeper into the de-
coupling regime, as shown by the green curve in Fig. 8.
Here, PX stays constant at 0.999 for the entire range T ∈
(1 K, 20 K). This last configuration is unpractical for
applications, but is presented here to demonstrate the phonon
decoupling.

APPENDIX D: COMPARISON OF DIFFERENT METHODS

Predictions of the weak-coupling theory are compared here
with results obtained from the polaron master equation and
the more advanced TEMPO method [43,45]. The latter offers
the benefit of being numerically exact at the cost of a larger
numerical burden and coding complexity. As such, it is a valu-
able tool to explore new physics in a non-Markovian regime,
or to assess the performance of approximate methods such
as the weak-coupling and polaron theories. Here, TEMPO

calculations are performed using the open source PYTHON

package OQUPY [45].
Figures 9(a) and 9(b) show the excited state population

PX (t ) predicted by the three methods after the slow and fast
red-and-blue pulse, respectively (see the previous Appendix).
The weak-coupling prediction is in perfect quantitative agree-
ment with the TEMPO calculation, both for slower and for
faster driving. This certifies that the weak-coupling mas-
ter equation is indeed sufficient to accurately describe the
pumping dynamics even in the presence of fast oscillations,
provided that the phonon coupling is not too strong and the
temperature is sufficiently low. On the other hand, we observe
a deviation of the polaron results from the other two lines.
For the case of fast driving [tp = 1 ps, Fig. 9(b)], we obtain
P(pol)

X = 0.941, in contrast with PX = 0.987 obtained from the
weak-coupling and TEMPO calculations. Thus, while being
in qualitative agreement with the other two methods, the po-
laron underestimates the final probability by a factor ∼5%,
which is a significant difference in the quest for a QD exci-
tation scheme with near-unity efficiency. The reason is that
the polaron theory overestimates phonon-induced dissipation
when the exciton population oscillates too fast, i.e., on a
timescale that is shorter than the phonon relaxation time—a
very relevant case in this work.
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