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Plasmon-magnon interactions in two-dimensional honeycomb magnets
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Two-dimensional (2D) honeycomb ferromagnets offer the unprecedented opportunity to study interactions
between collective modes that in standard bulk ferromagnets do not cross paths. Indeed, they harbor an optical
spin-wave branch, i.e., a spin wave which disperses weakly near the Brillouin zone center. When doped with
free carriers, they also host the typical gapless plasmonic mode of 2D itinerant electron/hole systems. When
the plasmon branch meets the optical spin-wave branch, energy and momentum matching occurs, paving the
way for interactions between the charge and spin sector. In this paper, we present a microscopic theory of such
plasmon-magnon interactions, which is based on a double random phase approximation. We comment on the
possibility to unveil this physics in recently isolated 2D honeycomb magnets such as Cr,Ge, Tes.
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I. INTRODUCTION

Two-dimensional (2D) materials, first isolated in 2004,
have been investigated for almost two decades [1-4] and
have been the source of truly spectacular discoveries [5,6].
Magnetic 2D materials, in particular, have been recently dis-
covered [7,8] and are currently under very active scrutiny
[9-16]. However, despite these efforts, collective charge (i.e.,
plasmons) and spin excitations (i.e., magnons) in them re-
main relatively unexplored. Although investigations of spin
resonance and magnetic spectroscopy in the presence of an
external magnetic field have been recently carried out [17,18],
it is extremely difficult to investigate spin-wave excitations
in 2D magnetic samples by conventional momentum-resolved
probes like neutron scattering.

Finding unconventional ways of probing spin waves in
atomically thin magnetic crystals is therefore of fundamental
importance. The idea behind this paper is extremely sim-
ple. If spin waves would couple to excitations in the charge
channel, e.g., plasmons, one could access them—although
indirectly—by probing charge excitations via established ex-
perimental tools such as electron energy-loss spectroscopy
(EELS) [19-22] and scattering near-field optical spectroscopy
(SNOM) [23-27].

Studies of the interaction between electrons and spin
waves in magnetic conductors were carried out many decades
ago [28-35]. However, the interaction between plasmon and
magnon excitations received very little attention. The reason
is obvious. In three-dimensional (3D) conductors, the plasmon
energy scale (1-20eV) is much larger than the typical energy
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scale of magnons (10-100 meV) [36,37]. Early calculations
by Baskaran and Sinha revealed a negligible renormalization
of plasmon and magnon energies [38]. This was confirmed
by Barna$ [39] who showed that even though a mechanism
of plasmon-magnon coupling can be realized in the presence
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FIG. 1. The calculated electron energy-loss function L(q, 2)
(color scale)—defined in Eq. (45)—of monolayer doped Cr,Ge,Teg
is plotted as a function of €2 and ¢, around the I point. These re-
sults have been obtained by including electron-magnon interactions,
which manifest as plasmon-magnon interactions. The bare plasmon
and bare magnon dispersions are shown by solid and dashed white
lines, respectively. Here, we have taken a background dielectric con-
stant k = 3.0, temperature 7 = 20K < T¢, and a 1% hole doping
corresponding to a ~2.5 x 10'>cm™2 hole density. Finally, the pa-
rameter 7 is used to indicate the wave vector ¢ along high-symmetry
directions. The unit of 7 is 0.2537 A~!.
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of an external electric or magnetic field, no measurable hy-
bridization of plasmon and magnon modes can be obtained
in 3D. The situation is expected to be dramatically different
in 2D doped magnetic materials. Indeed, these must, on the
one hand, harbor a gapless plasmon mode [40,41] with a dis-
persion relation @ o ,/qg in the charge sector (see white solid
line in Fig. 1). On the other hand, 2D magnetic materials with
a honeycomb crystal structure support spin waves with two
branches, one of which is a weakly dispersive optical branch
[42—45] (see dashed white line in Fig. 1). Consequently, a 2D
wave vector ¢ must exist at which plasmons and magnons
share similar energy scales, thereby providing us the missing
ingredient necessary to realize and study plasmon-magnon
interactions.

In this paper, we present a microscopic theory of plasmon-
magnon interactions in 2D doped magnetic materials. More
precisely, by including electron-electron and electron-magnon
interactions in the realm of a double random phase approx-
imation, we calculate the electron-energy loss function of a
prototypical 2D honeycomb magnet, i.e., monolayer doped
Cr,Ge,Teg (see Ref. [46] and references therein to earlier
work). We find that plasmon-magnon interactions clearly
manifest in the spectra of collective charge excitations, yield-
ing a splitting of the plasmon dispersion into two branches
as shown in Fig. 1. This splitting can be probed by cryo-
genic SNOM [47-50], opening an avenue to investigate the
properties of spin waves in 2D materials. Finally, we em-
phasize that, in stark contrast to common wisdom [39,51,52],
plasmon-magnon interactions do not require spin-orbit cou-
pling to exist. We show that they naturally arise from the
exchange interaction between the itinerant carriers and the
localized magnetic moments hosted by the lattice.

Our paper is organized as follows. In Sec. II, we present the
microscopic Hamiltonian we have used to capture the physics
we are interested in. Section III contains a derivation of the
effective Hamiltonian, obtained by using a canonical trans-
formation approach, which is carried out after introducing
the eigenstate (band) representation for the itinerant electron
subsystem and the magnon representation for the localized
electron subsystem. In Sec. IV, we describe the double ran-
dom phase approximation (RPA) we have used to evaluate
the electron-energy loss function and present numerical re-
sults obtained by using it. Finally, in Sec. V we present a
brief summary of our main results. Two appendices contain
further theoretical and numerical details. In Appendix A, we
demonstrate how the exact same results can be obtained by
an equation-of-motion (rather than a diagrammatic) approach.
In Appendix B, we discuss the role of temperature on the
electron-energy loss spectra.

II. EFFECTIVE HAMILTONIAN

In this paper, we are interested in the possibility of coupling
the collective modes (spin waves) of a 2D honeycomb magnet
with the plasmons of an itinerant electron gas. To this end,
we consider, as a prototypical example of a 2D honeycomb
magnet [11], monolayer Cr,Ge,Teg (MCGT).

MCGT is a crystal with rhombohedral R3 symmetry
formed by edge-sharing distorted CrTeg octahedra [53,54]. In
this crystal, the Cr atoms form a honeycomb lattice, which

FIG. 2. (a) The honeycomb lattice formed by Cr atoms. A and
B indicate the two sublattices. In (b), we show the corresponding
Brillouin zone with its high symmetry points.

is shown in Fig. 2(a). The unit cell (depicted by a dotted
line) consists of two inequivalent atoms. A and B indicate the
sublattice indices. The corresponding Brillouin zone is hexag-
onal. Its high symmetry points are shown in Fig. 2(b): "' =
(0,0), K =(27/3,27/(3¥/3)), M = (27/3,0), and K’ =
(27 /3, =27 /(3+/3)). Here, the Cr-Cr distance is taken to be
unity for convenience.

According to ab initio calculations (see Ref. [46] and
references therein), MCGT is an easy-axis ferromagnetic
semiconductor with a gap E; ~ 0.69¢eV and a Curie temper-
ature Tc ~ 34K [55]. Upon, e.g., electrostatic doping, free
electrons/holes roam into this crystal and, at temperatures
T < Tc, coexist with the ordered localized magnetic mo-
ments. For the sake of analytical amenability, we consider
a model with two electronic subsystems: (a) an itinerant 2D
electron gas describing the aforementioned carriers due to
doping and (b) a localized electron system, contributing to the
magnetic moments. Here, we are interested in the small dop-
ing regime, in which the Cr magnetic moment is well-defined
and independent of carrier concentration [56]. Subsystem (a)
alone displays 2D plasmons. Subsystem (b) alone displays
spin waves.

The simplest Hamiltonian 7{ that captures the physics we
are interested in contains four terms, i.e.,

A =Hs + He + Hes + Hee. 1)

In our model, the localized magnetic moments are described
by a ferromagnetic Heisenberg [57,58] S = 3/2 Hamiltonian
on a honeycomb lattice,

,?:ZSI—ZJUS‘['SJ'—AZ(SI-Z)Z, (2)

i<j i

where J;; > 0 are the exchange couplings and A is the mag-
netocrystalline anisotropy energy (MAE). We include first-,
second-, and third-neighbor exchange processes, parametrized
by three exchange constants, Ji, J», and J3, respectively [46].
The MAE term circumvents the Mermin-Wagner theorem
[59,60] and is responsible for long-range magnetic order in
2D [61]. The values of the exchange couplings and MAE
used here have been calculated in Ref. [46] (see the caption
of Fig. 3).

The second term in 7:1, ie., 7-Ale, describes itinerant carriers.
In this paper, we choose a minimal one-orbital model, which
captures the low-energy physics of MCGT (rather than devel-
oping a full tight-binding model to fit all the bands obtained
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FIG. 3. (a) Magnon dispersion for the following
Heisenberg-model parameters J; = 6.236 meV, J, = 0.083meV,
J; =0.268meV, and A =80pueV—see Ref. [46]. The lower
spin-wave branch is gapped at I' but the gap is not visible on the
scale of the figure, since it is given by 3SA ~ 0.4 meV. (b) The red
and green curves are the valence and conduction bands Ej; , of
our noninteracting itinerant electron model described by Eq. (3).
The black points are the results obtained from ab initio calculations
[46]. The parameters of our model Eq. (3) are 7, =0.32¢V,
t, = —0.04eV, t; =0.45eV, Aso = 0.09eV, U = 1.54eV, and the
band splitting M = ZS = 0.97eV.

from the ab initio calculations [46]). The electronic Hamilto-
nian in the site representation is given by

Fo =D itlafrathso D Euoiplss

ije (i.j).a.p

+U D 8i8] i 3)
i,a

where Latin indices i and j denote the sites of a 2D hon-
eycomb lattice (which is not a Bravais lattice and therefore
a sublattice index t will appear momentarily). In Eq. (3),
6Ia (¢ p) creates (annihilates) an electron with spin o =1, |,
(B) on site i (j), t;;-which physically represents the tunnel-
ing amplitude between sites i and j—is a real, symmetric
matrix that limits hopping processes to first-, second- and
third-neighbor sites. The effect of spin-orbit coupling is ac-
counted for by an effective spin-dependent nearest-neighbor
hopping of strength Ago [62—65]. This term is present since

MCGT does not have a mirror symmetry about the xy plane.
Once again, this term does not play any qualitative role and
plasmon-magnon interactions occur even for Ago = 0 (and
in fact weakly depend on Ago # 0). Finally, the third term
in Eq. (3) is a staggered—§; = 1—sublattice potential of
amplitude U, which is present since MCGT is not invariant
under a 180° rotation around the z axis.

The third term in the full Hamiltonian 71, i.e., He;, de-
scribes the interaction between the itinerant electron’s spin
and the localized magnetic moments:

Hes=—T) 8- (@], 00p1p). )
i,o,p

where Z > 0 is a ferromagnetic on-site exchange coupling
between localized and itinerant electrons, not to be mixed with
Heisenberg exchange interactions.

Finally, the last term in #{ describes long-range Coulomb
interactions between the itinerant electrons,

N 1 &> .
_ AT At A A
He=5 D g Cialistintia )
i#jap

where « is a background dielectric constant. Extrinsic effects
due to nearby hyperbolic media [66] and metal gates [67,68],
which lead to an effective momentum- and frequency-
dependent dielectric screening function, can be easily taken
into account and will be the subject of a future technical
publication. The Coulomb term in Eq. (5) is responsible for
the occurrence of plasmons in the itinerant electron system
[40]. Rather than bosonizing the latter system by resorting to
a plasmon-pole approximation [69], we here derive plasmons
microscopically from 7:[,ee.

III. DERIVATION OF THE FINAL EFFECTIVE
HAMILTONIAN

We now move on to analyze the collective modes of the
full Hamiltonian . Before doing that, we first briefly review
the theory of spin waves in a 2D honeycomb magnet and then
perform a change of basis in the electronic Hamiltonian, in-
troducing the bare electronic bands (i.e., bands in the absence
of electron-electron interactions and coupling to the localized
magnetic moments).

Below T¢, the system of magnetic moments displays spin
waves. These are found by following a standard linear-spin-
wave analysis [58], which we now briefly review. Such theory,
which does not include quantum fluctuations, is valid for T <
Tc. Quantum effects in 2D magnets have been studied in the
self-consistent spin-wave theory and have been shown to lead
to small quantitative differences in the explored temperature
range [61].

We first write the spin operators ; in a Holstein-Primakoff
representation [58,70]. Retaining terms up fo second order in
the magnon operators, we have

S,Jr ~ £/28,

A P

S~ s -EE, §; ~EV2s. (6

Here, §; (&) refers to the magnon creation (annihilation) oper-
ator for the ith site. Since we are dealing with a 2D honeycomb
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lattice with two atoms per unit cell, from here onward we
change from the notation where i is the site index to the
notation with a pair of indices, i, T, where now i indicates
the unit-cell index and t = A, B the sublattice index. The
corresponding operators in momentum space, i.e., é‘;r and

éq’r’ can be easily obtained by Fourier transforming éifr and
&i,v, respectively,

o= R D )
and
~ 1 A
Eo=—=) eRg, . ®)
VN 4

Here, N is the number of unit cells, ¢ belongs to the first
Brillouin zone, and R; denotes the position of the ith unit cell.

After some algebraic calculation, the spin Hamiltonian
Eq. (2) can be written in terms of magnon operators as the
following:

A = ’}-A[; + const, 9)

where
Zcb"(Aq Bq)ci:,l (10)
with &, = (§,4 &, 5)" and we have defined

Ay = S[3J1 +3)+24+2), (3 — cos v/3¢,

3¢, ﬁqy)] (1
2 2

and

) . 3q,
B, = S|: - <e"1“ + 2¢71%/2 cos _\/;q}>
— J3(e7%x 4 2¢'% cos «/gqy)i|. (12)

We now carry out a change of basis to diagonalize the
magnon Hamiltonian:

Epe =) Arc@ige. £, ZAN(q)M“ (13)
¢

The matrix form of the unitary transformation A, reads as
the following:

1 n//q/2 n//q/2
A=Flewr i) (14)

where v, = arctan[Im(B, )/Re(B )] and ¢ = +£1 refers to the

magnon bands with energy Q( glven by
Q) = Ay £ |B,l. (15)

In such a linearized spin-wave approximation, the Heisen-
berg Hamiltonian is diagonal and reads as the following:

ZQ“?/:L;{;%“, (16)

where Q! {) is the magnon energy for wave vector ¢ and
magnon-band index ¢ = 1. In writing Eq. (16), we have
neglected a trivial constant. The two magnon branches, QfIm{)
for ¢ = £1, are plotted as functions of ¢ in Fig. 3(a). While
the energy of the lower magnon branch is too small near the I"
point (¢ = 0), the energy of the upper branch is much larger,
paving the way for the possibility to study plasmon-magnon
interactions near the I" point.

We now work on the electron-spin coupling Hamiltonian
in Eq. (4). Performing the approximate Holstein-Primakoff
transformation Eq. (6) for the spin operators, Eq. (4) can be
written in terms of magnon operators, in the momentum-space
representation, as

N A A
Hes = —I8 Z 08 1 oCkro

k,t,0

Z PR A4
+1 Z Uéq.rEQ+PaTCk,r,aCk—P,TaU

k.t.o q.p

SSY Y6

A oA
k0,1 Chtg Tl

+ & el g Chrt); (17)

where o0 = +(—) refers to spin 1 () and 6’;”, Cr.ro are
the wave-vector (Bloch) representation of the electronic field
operators:

6‘i,t,a fzelqR q,7,0 (18)
and
1 .
b =—=y_ 1Ry . (19)
VN 4

The first term in Eq. (17) corresponds to the polarization
of the itinerant electrons by the ionic magnetization and will
be included in the electronic Hamiltonian—see 7—% in Eq. (20)
below. The second and third terms represent electron-magnon
interactions.

It is convenient to switch to a diagonal band representation
also in the case of the itinerant electron system. Inserting
Egs. (18) and (19) in Eq. (3) and taking into account the first
term in Eq. (17), we finally find

7y A At N
Ho=He —M Z 08 1 oCkz0

k,t,0

= |lek) — Mo + U1e} , éno
k,o

+ [e2(k)
+ [e1(k) + e3(k) + O'ESO(k)]é]I’A,UCA'k,B,a

— Mo — U8y 5 ko

+ €] (k) + €5(k) + 0€io(ONE)  Ckac).  (20)
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where

M =18, 21
3k,
ak)=n (e’k + 2 k/2 cog 2 V3 ) (22)
3k ky
& (k) =2n (cos x/gky + 2 cos TX cos \/; ), 23)
e3(k) = t3( “2ike 4 26k cos A/3k ) 24)

J

H.k,o)= \TJ;’J(

and Wy, = (Ckao CkBo )T, It is more convenient at this
stage to perform a change of basis,

é\‘k 1,0 — Z Frk a(k)ﬁ,A,as

Z FrA g(k)f/;)"g’ (28)

Ckra

I'; .0 being a unitary transformation written in a matrix form
as

r

Q

Bro e Wrol?

g gei¢k,a/2
= —ay Ge_l‘/’k,n/z

Br.o eiﬁoli.o /2 ) . (29)

Here, we have defined

1
2

e (k) —Mo +U
er(k) + e (k) + oty (k)

and
) . 3k
eso(k) = Aso (e’k‘ + 2¢7 k2 cos %) (25)

Due to the absence of a spin-mixing term, the tight-binding
Hamiltonian Eq. (20) in momentum space can be decoupled
for 1 and | spins, and can be expressed in the Bloch spinor

representation as
=YY Hik.o) (26)
k o

where

€1k) + €3(k) + aeso(k>) B, @7)

ek)—Mo —U

(

In Eqgs. (28), f: o ( ﬂ 1.0) creates (destroys) an electron with
wave vector k, band index A = %1, spin ¢ =%, | and energy
given by Ey 1 ,:

Eiio = ek)— Mo
+ V]e1(k) + e3(k) + geso®))> + U2 (32)

In this band basis, the electronic Hamiltonian ?fle assumes
the following diagonal form:

o= Exrohysofiio (33)

kAo

The electronic band energies Ej ; , are shown in Fig. 3(b).
These results have been obtained by fitting the results of ac-
curate ab initio calculations [46] in the vicinity of the valence
band maximum and conduction band minima. We stress that,

1 U :
O = —= |:1 + > 2:| , for the sake of analytical amenability, in this paper we have
V2 Viek) + e3(k) + oesotk)* +U considered a minimal one-orbital model which describes the
! relevant low-energy physics of MCGT, instead of develop-
Buw = L u ing a full tight-binding model to mimic the ab initio band
V2L Vel + el +oeso) + U? structure.

(30) In the aforementioned semiclassical spin-wave S >> 1 ap-
proximation and after expressing the longitudinal and spin-flip
and parts of the exchange Hamiltonian H., in Eq. (20) in terms of
Im(e; + €3 + o€so) the magnonic and electronic operators in the respective band

¢k, = arctan |:R @t ):|. (€2)) representations, two terms are generated:

c(€1 €3 O €50
Fiem=T) > D 3 Y oAl (@Are@+PITes ootk =PIt figipe Sy ofipios (34)
kgqp T AN (G O

Floem = —IV2S Z > Z L@, WOT e ke + @y fl, firgiry +He). (35)

T AN

The term 7:[1,em describes direct scattering of magnons and
electrons with strength Zo while the term ﬂzyem describes the
emission or absorption of magnons with strength —Z+/2S.
Since states at the Fermi energy have only one spin
[46], ﬂz,em, which is a spin-flip term, can be removed by a

(

canonical Schrieffer-Wolff transformation [35,71] whose
smallness parameter is 1 /S < 1. We note that Hy.em is linear
in the magnon operators and describes the emission or absorp-
tion of magnons with strength —Z+/2S. The Schrieffer-Wolff
transformation is a canonical transformation of the following
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form:

A p A

H = e =+ [P, 7]+ LB B, AN+.... (36)

With the aim of eliminating 7:L2,em, the generator P of the
transformation is chosen in such a way to satisfy the following
equation:

[P» 7:[:3 + 7:\[;] + /7':[2,em = 0. (37)

The general solution of the previous equation is

P=-1v25 Y [Kecank @Al (@

k.q, T, 00 ¢
X UL, 2O (k+ @pd fl s fergay
+ Yeon e, @A (T, e+ )T 4 (k)

X e Sy g Jiat] (38)

where

Xeganwlk,q) ==Y vk, q)
1

Exrgn,) — Ekap — Q,(IIE)

1
~— . (39)
Nkt — hip +2M

We have defined iy, = ex(k) + A/|e1 (k) + e3(k)|2 + U2 It
is evident that X; ; ; »(k, ) and Y; ; ; ;- (k, q) do not depend
on the sublattice index t and on the magnon band index ¢ any-
more and we can write X; 7, » = Xy )y and Yz ¢, 0 = Yo 0.

The price that one has to pay for removing ’}-Alg,em is a
renormalization of 7:[1,em, as we now show. If we neglect the
terms of order higher than quadratic in Eq. (36), we obtain the
following effective electron-magnon interaction:

A

,l,em = 7:Zl,em + %[Pa ﬂZ,eml 40)

After a tedious but straightforward calculation, we find

Hiem=2_2 > oLyt Al @Avc(g+p)

k.q.p T.0 AN L0
x FZ,A,a(k)Ft,k’.a(k - p)ﬂ;,;ﬂq+p,;'

At a
X fk,)hgfkfp,)d,a

=22 > oL AL k. p)

k.q.p ©.0 AN 0.0

At a ftA
X /qu,gHq+p,é”fk_)\’gfk7p,)»’,ov (41)

where the electron-magnon scattering amplitude f,’}’qxp is
given by

jl::;,/p =T —IM[Y, wk,q)+ Y,k —p,q+ p)l

. 7_:< Micyg 0 — hic s
2 \ Mpeyg e — iy +2M

h — Ng—p
+ k+q, A k—p,\ >’ (42)
hicy g — he—p oy +2M

and we have introduced
Ai:g/;k,)d(k’ q,p) = A;C(q)AT’g,(q +p)
xTT, 0Tewak—p).  (43)

Note that f,i’;;) vanishes for g, p — 0, thereby taking prop-
erly into account the rotational symmetry of electron-magnon
interactions [72,73]. A more general and rigorous variational
approach, which is valid well beyond the regime of ap-
plicability of perturbation theory in 1/S, does not produce
qualitatively different outcomes [35,74].

The final result for the transformed Hamiltonian is

T =+ A+ T o+ L (44)

where ’ﬂ/e is reported in Eq. (33), 7:[,; in Eq. (16), and
Aﬁ,em in Eq. (41). The last term in Eq. (44) is the
electron-electron interaction Hamiltonian in the Fourier
representation, Hee = % Zq £0 v P(q)p(—q), where p(q) =
D kron Fj,x,q(k + Q)Fr,w,g(k)fA,Lq’A,(,ﬂ,;\fg is the Fourier-

transformed density operator and v, = 2e?/(kq) is the 2D
Fourier transform of the Coulomb potential [40].

IV. THEORY OF THE ELECTRON-ENERGY LOSS
FUNCTION

A. Double RPA approach

The spectrum of density excitations can be found, in prin-
ciple, by finding the zeros of the dynamical dielectric function
e(g, 2) in the wave vector ¢ and frequency €2 space [40].
Numerically, however, it is more convenient to calculate the
so-called loss function £(g, €2), which can be directly mea-
sured in EELS [75,76],

L(gq, Q) = —Im|: :|, 45)

&(q, §2)
where ¢(q, 2) is related to the causal density-density response
function x,,(q, 2) by the usual relation [40]

1
e(q, 2)

To understand the interplay between electron-magnon and
electron-electron interactions in the loss function, we calcu-
late x,,(q, 2) by carrying out two RPAs [40] in a row, the first
one with respect to electron-magnon interactions and the sec-
ond one with respect to electron-electron interactions. Below,
we will refer to this procedure as the double RPA approach.
The exact same results, obtained here with a diagrammatic

=1+ vgx0p(q, ). (46)
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(a)

FIG. 4. Feynman diagrams for the spin-resolved density-density
response function up to second order in the electron-magnon interac-
tion. The solid (dashed) line refers to the free-electron Gf,o)(k, iwpy)
[free-magnon G (q, iQ2,)] Green’s function; iw,, = 2m + 1)m /B,
i, =2nr/B (n,m=0,1,2,3,...) are the fermionic and bosonic
Matsubara frequencies, respectively, with 8 = (kg7)~' being the
inverse temperature. The wavy line corresponds to the electron-
magnon scattering process. Finally, the filled grey vertices in the
fermionic bubbles (the empty vertices in the magnonic bubbles)
refer to the spin-resolved electronic density operator p,(q) [magnon
density operator p™(¢q) = Y, , /TLZ_'_qv{ﬁLk,;].

approach, can be obtained via an equation-of-motion ap-
proach [41,77], as detailed in Appendix A.

In what follows, we illustrate the steps that are necessary
to calculate the density-density response function x,,(q, i€2,)
in the imaginary-frequency domain, where diagrammatic per-
turbation theory is most conveniently formulated. The causal
quantity x,,(q, $2) is obtained after carrying out the usual
analytical continuation i©2, — Q + 0%,

Our perturbative scheme relies on the knowledge of the
noninteracting spin-resolved density-density response func-
tion, x,ﬁ%{a(q, i2,), which does not include any of the
interactions at play. It is simply obtained from the bare elec-
tronic bands (33):

1 P
) ; _ MAT,T
pr.,a(q’ iQ2,) = 71 Ek § B k., q)

7,7 AN

ng(Eg o) — np(Ekgg,0)
i, — Ek+q,k,a + Ek,A/,a .

(47)

Here, A is the 2D system’s area, B**"7(k,q)=
Il e®le ok + UL, (k + @Tvyo(k) and
ne(x) = 1/(ef%~" 4+ 1) is the Fermi-Dirac distribution
function, T = (kgB)~! and p being the temperature and
chemical potential [40]. In writing Eq. (47) and in all the
equations below, we have set i = 1.

We now proceed to calculate the density-density response
function including electron-magnon interactions. To this end,
we first note such a response function can be decomposed into
spin channels since the electron-magnon interaction 7'2,1,em
in Eq. (41) does not mix them. This is not a consequence

FIG. 5. (a) Diagrammatic representation of the Dyson equa-
tion for the density-density response function including electron-
magnon interactions at the RPA level. The vertices are same as
in Fig. 4. (b) Dyson series expansion of density-density response
function including electron-electron interaction at the RPA level.
Here, the filled black circles refer to the electron density operators

pg) =2, bs(q).

of symmetry, but just a result of our perturbative Schrieffer-
Wolf calculation, which neglects terms O(1/S) [71]. We are
therefore led to define the spin-resolved density-density re-
sponse function including electron-magnon interactions, i.e.,

x5 (g, i2,). We carry out a perturbative expansion in the

parameter Z. The lowest order terms that contribute to the
expansion are of second order in the Z and are shown in Fig. 4.
For example, Fig. 4(a) is a vertex correction while Figs. 4(b)
and 4(c) are self-energy diagrams. These are proper diagrams,
which cannot be split into two disconnected pieces by cut-
ting out a single magnon line. They contribute to the proper
density-density response function. Clearly, the diagram in
Fig. 4(d) is an improper diagram and does not contribute to
the proper density-density response.

In the following, we carry out the first RPA, in which the
proper density-density response is replaced by the noninter-
acting one, x ). The resulting spin-resolved density-density
response function including electron-magnon interactions
( Xéep‘?g) at the RPA level is obtained by summing the infinite
set of diagrams shown in Fig. 5(a). We find

X, i) — 0Vo(q. i) Y 0%\ (q. i)

=% (q. i), (48)

where y,(q, i€2,) is given by

| 1 i g
Yo (q, i€2,) = A2 Z Z Z ZII?:;,—‘III?%;,‘I’—M

k.q Tt v AN L
LI A BT
X ALEF Mk, g AL ke + 9.4 — q.9)
ne(Ex,0) — NE(Egygn0)
i, — Exigio + Ex o
(m) (m)
% g (Qq’quz’) ~ ”B(Qq’,{)

‘o _ o (m)
€2, Qq,’C+Qq,7q‘;,

(49)

Here, ng(x) = 1/(ef* — 1) is the Bose-Einstein distribution
function.
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Solving Eq. (48) and summing over both spin components, we finally find

X0(q. iQ0) = 2[ v, (@ iQu)x 5 1 (g, i) + v1(g, i)} | (g, 1Q0)]

em) (‘I, iQn) =

X ; ;
e 1 - [)/T(q9 lQn) + yl,(qv lQn)]

where x (5™ (q. i) = Y, xS (q. iR2,) and x (g, i2,) =
Yoo X0 (g, iS2,).

So far, the two itinerant electron subsystems, one of elec-
trons with spin 1 and one of electrons with spin |, are
decoupled. We now include electron-electron interactions into
the picture, which couple the two fluids, arriving at the ap-
proximate density-density response function x,,(q, i€2,) that
is needed in Egs. (45) and (46). To this end, we perform a
second RPA, where we now sum the infinite sum of diagrams
shown in Fig. 5(b), the dotted line denoting the Coulomb inter-
action v,. Carrying out the summation, we find x,,(q, i€2,) =
(g, iQ2)/[1 — vgx 5™ (g, i2)]. The dielectric function

Xop
in the double RPA formalism is then given as

£(g. i) = 1 — vyx 5" (q. iQ). (51)

It should be noted that the order in which the two RPAs are
carried out does not change the final result Eq. (51).

B. Numerical results

An illustrative numerical result for the loss function
Eq. (45), resulting from the double RPA dynamical dielectric
function in Eq. (51), is reported in Fig. 1, for wave vectors
q near the I" point. In the absence of electron-magnon in-
teractions, we have an ordinary long-lived plasmon (white
line in Fig. 1), which in the long-wavelength limit is well
described by the usual 2D plasmon formula Qp(g — 0) =
[2nne*q/(kmy)]'/?, where my is the carrier band mass and
n is the carrier concentration [40]. When electron-magnon
interactions are turned on, the loss function displays an im-
portant feature akin to an avoided crossing at the energy at
which the bare plasmon £2,; meets the upper magnon branch.
In condensed matter systems, we are used to avoided crossings
between, e.g., bare photons and matter modes such as phonons
and excitons, yielding polaritons [26]. This type of hybridiza-
tion stems from a coupling of the type (a+ a" )b+ b"),
where a' (a) are photonic creation (annihilation) operators
while 5" (b) creates (annihilates) a bosonic mode of the matter
degrees of freedom. Here, instead, coupling between magnons
and plasmons arises from the microscopic exchange interac-
tion Eq. (4) between localized spins and itinerant electrons
and from the long-range Coulomb interactions in Eq. (5) be-
tween itinerant electrons.

For the parameters used in Fig. 1, which are relevant to
Cr,Ge; Teg, such feature occurs at frequencies on the order of
20 THz and is therefore fully measurable.

V. SUMMARY AND CONCLUSION

In summary, we have shown that plasmon-magnon inter-
actions clearly manifest in the spectra of collective charge
excitations of 2D doped magnetic materials, yielding a split-

; (50)

(

ting of the plasmon dispersion into two branches—Fig. 1.
Such splitting can therefore be probed by cryogenic SNOM
[47-50]. This is important since standard neutron scattering
techniques cannot be used to investigate the properties of spin
waves in 2D materials.

Once again, we hasten to emphasize that, in stark contrast
to common wisdom [39,51,52], plasmon-magnon interactions
do not require spin-orbit coupling to exist. They can arise
solely from the exchange interaction between the itinerant
carriers and the localized magnetic moments hosted by the
lattice. To this end, in the future it will be interesting to set up
a macroscopic theoretical approach to such coupled plasmon-
magnon dynamics by combining a Euler equation for the
charge density [40] with a suitable Landau-Lifshitz-Gilbert
equation for the magnetization density.

Even though this paper was focused, for the sake of con-
creteness, on monolayer Cr,Ge, Teg, our formalism is readily
applicable to other 2D magnetic materials [11].
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APPENDIX A: EQUATION-OF-MOTION APPROACH FOR
THE CALCULATION OF THE DIELECTRIC FUNCTION

To validate the diagrammatic double RPA method of cal-
culating the dielectric function presented in the main text, we
here present a calculation of (g, £2) based on the equation of
motion approach. This method is also known as the method
of self-consistent fields [41,78]. The essential idea of this
approach is to introduce an external charge density pex(r, t)
and its Fourier transform pex(q, €2). Such excess charge is
screened by mobile electrons and the total (a.k.a. “screened
potential”) potential V is the sum of the external V. and
induced V4 potentials:

V(g ) = Vexi(q, ) + Vina(q, 2). (AD)
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Once V (g, 2) is found, the dielectric function e(q, €2) can be
calculated by &(gq, Q) = Vex(q, 2)/V(q, Q).
The effective Hamiltonian of our system reads

N N N N 1
H =H +H +H, — Vg, t)p(q), A2
L+ l,em+A; (q.0)p(g), (A2

where the electronic density operator is expressed, using
Egs. (28), as

N AT N
p(q) = Z Crtq,1,0Ck 0

k,t,0
= Y T k@l o®f 0, o fieno, (A3)
k,t,0, M

and the 2D system’s area .4 has been introduced in the main
text.

It is important to note that there is no explicit electron-
electron Coulomb repulsion term in the Hamiltonian. It is
included indirectly in the Hamiltonian through the total poten-
tial V. In fact, the induced part Vjyq arises from the Coulomb
interaction [40].

We now write the equation of motion for the density oper-
ator, i.e.,

d N
Eﬁ(q’ 1) = i[H', p(g. )] (A4)

The external charge creates a classical oscillating field, and
we are trying to find the quantum response of the electron
gas to this classical oscillation. Furthermore, since the exter-
nal field is assumed to be oscillating at a frequency €2, the
density response of the electron system will also depend on
Q. Therefore, we have p(q, ) ~ p(q)e’*.

Rather than Eq. (A4), it is more convenient to consider the
equation of motion for the operator f: g ﬁ Vot

d s IR
_fk’jL ,)"gfk,/\’,a = Z[Hl, fk+ ’)\’O-fk,)u,.ﬂ']' (A5)
dt q q

Let us first investigate the case in which 7:L’1,em = 0. In what
follows, we list all the commutators that are needed to evaluate

J

1

P =V@ 23 Y 3B

M q)

the right-hand side of Eq. (AS):

(He g fero) = Eiigio = Eiiro) g0 fiion
(A6)

[ﬁ;’ f:+q,)hgﬁc,)»’,a] =0, (A7)

D VG OB, f ool

q
=> VgD, k+q+¢)Teiok+q)
q.T

X fk'Jqurq',)»’,ofk’)‘/v(’ - FI,N,G (k)Ff’)‘»” (k - q/)
x fk'Jrq,)»,afk_‘I/v)“’”]'

The right-hand side of the last equation is approximated by
retaining only the term with ¢ = —q in the summation. Terms
with other values of ¢’ are assumed to average out to zero. In
this formalism, it is very well-known that including only the
contribution with ¢' = —¢q is equivalent to the RPA [41,78].
We also assume V(—¢q,t) = V(q,1).

Under these assumptions, the equation of motion reads

(22— Ek+q,A,U + Ek,A’,a )fz.»,.q_)hgfk,)ﬂ,a

1 ]
=V@.n > Tl ok + )

(A8)

X (Fisoferro = firgiofiranc): (A9)

Therefore, summing over k,o, 7,7, A, A,
operator—see Eq. (A3)—can be written as

o= van Y Y Y Bk

o k t,7 AN

the density

- ~ t ~
fk,)g,gfk,?»’,cr - fk+q,;hgfk+q.}»,0

X .
Q- Ek+q,A,(f + Ek,)J,(f + i0+

Here, ~ BX*""(k.q) =T, () ey qk+qT), (k+
@I'v 5 (k). We now take the average of this equation, so
(P(g,1)) becomes p(g, Q)e', while (fy,, , ,firgio) and
( fz Voo Fr. ~.o) are replaced by the Fermi-Dirac distribution
functions ng(Exig,.0) and ng(Ey ) o), respectively. Finally,
we take V(q,t) = V(q, Q)e™¥. Carrying out these steps, we
find

(A10)

np(Ex,0) — NE(Eggg o)
Q — Exigio + Expo +i0F

(Al1)

X0 (q.Q)

The quantity relating p(g, 2) to V(q, 2) is easily seen to coincide with the polarization operator or density-density

response function [40,41,78] x 0(g, Q) = x;)(;), (g, Q)+ x©

introduced in Eq. (47) of the main text.

P

(g, 2), where the spin-resolved quantities x ,(,(:,),a (g, ©2) have been

We now investigate the effect of the electron-magnon interaction by including the commutator (H, f,j g fk ».o] in the

equation of motion Eq. (AS5). The commutator is given by

1,em?

7 AT A _ 1AL A ISR IS ’ / INAT A~ At R AT a
(H s fivgino ol =D D D Y Y o Lo AL g DOy Py [, o T g a0 g o T ]

Kq.p T M5 o

_ P A0V d —aVal G a2 T
= Z Z Z Ly AL e g —Dig g g0 (fk,;v,gfk.k’,a - fk+q,x,(,fk+q,x,a),

g T b

(A12)
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where Ai:f,/"\'” (k, q, p) has been introduced in Eq. (43) in the main text. In the last step, similarly to the previous case with
just the Coulomb interaction, we used the RPA to carry out the sum over p’ by neglecting all the terms other than the one with
P=-q

Looking at Eq. (A12), it is evident that we need to also write the equation of motion for the magnon number operators
o ;, ¢, lg—q.5,- This will involve again the equation of motion for the electron number operators, thereby allowing us to solve

them self-consistently. Analyzing different terms of the Hamiltonian, we get

[7:[23’ ﬂ;’,{l ﬂ‘l’-%{z] =0,

> Vg 0[p@). i) ftg—g.0] = O

q

(e gy o g —g.0] = [0 = 07 oI o g

. R _ Iz 30 83,8450
(e g aac]= D0 2.0 2 D 0" T A

K\ p' T Mo (3,04 o7

(A13)

(A14)

(A15)

NYYs R/ AWl ~ AT A AT A
(k ’ q I p )fk,/,)ul ’a.r/fkﬁfp”,)xz,a” [lu’q/"{'} /’Lq”+17”,€4 ’ I'Lq’_;] Mq,7q7{2] ’

— 1AL £2,815h1,A2 / AT A AT ~ PN
= Z Z Z o ijrq,zq’fq,q Ar’,tf” (k + q.9 — ¢, q)karq’)L]’o-ka,)uz.a” (Mq/_q,;zﬂq/—q,lz - Ml]’,{l Mq/v{l)'
o

o” )\.],)»2

(A16)

Here, we have again used the RPA as in Eq. (A12), neglecting all the terms of the momentum sum other than the term with

4

P’ = —q. As described previously, we take the average of the operators assuming a time dependence of the form e

% and replace

the magnon number operators with Bose-Einstein distribution functions ng. We find

At N 23 &80, / T 3
Ky cHta—q.00 = Z Z Z O Llgq-adte K44 =4 Dy, o0 T
-

o )\1,)\2

Using this result in Eq. (A5), we finally find

1 (2y.c) — (2,

s e N o s
(Q = Exigio + Eero iy rgoolirs = 9 0> o it ALE" M, g, —)(f 1 o fero = Figrofirarc)

qg T a.n

14A1,02 $2.813A,A2 / At 7
X Z Z Z 0O L y—aqAre k4.4 — 4D fy g5, o Thinor
o

o’ }\.1.)\.2

1 " o
=V@.n4 D TG WOT o+ ) (F 0 oo = Fligsoferans)-
T

. (A17)
Q-+, +i0t
(m) (m)
g (qu’nfq.{z) — B (qu’l,lzl)
(m) (m) .
Q—Qy + Q7 ,, +i0F
(A18)

So far, we have studied the equations of motion for f: g fr.o and /AL:;,’ ¢ lg'—q.c,- Now, recalling Eq. (A3), we can write the
equation of motion for the spin-resolved density p, (g, €2) by summing over repeated indices and taking the averages. We obtain

, 1 [ n (E X /’g)_n (E s ,a)
Pe@. ) — 0y (q. DY ' por(q. ) = Vg, Q)ZZ 3B gy k. F(Ektq..

k T, AN

where y,(q, ) is the same as in Eq. (49) of the main text.
We now use the definition of the spin-resolved density-density
response function X/()Z'f‘g (g, 2) including electron-magnon
interactions—see the main text, right before Eq. (48):

Ps(q. ) = x7)(g. QV (¢, Q). (A20)
Replacing Eq. (A20) inside Eq. (A19) and eliminating
V(q, 2), we finally get Eq. (14) in the main text.

In conclusion, the polarization of mobile electrons
caused by the external charge density pex(q, 2) re-
sults in an induced potential Vi(q, ) = vypo(q, 2) =

g x 5™ (g, Q)V (g, ), where x Mg, Q):X;;T;(q, Q)+

, Al19
Q- Ek+q,/\,a + Ek,)»’,a + i0* ( )

(

(em)

pr,i(q, Q) and v, = 27T€2/(Kq) is the 2D Fourier trans-
form of the Coulomb potential [40], x being a background
dielectric constant. Therefore, from Eq. (A1), we have the
dielectric function which includes both the electron-magnon
and Coulomb interactions:

(em)

£(g. ) =1 — v, 5M(q, Q). (A21)

We conclude that, using the equation of motion method at
the RPA level, we have obtained results that are identical to
those obtained from the double RPA diagrammatic approach
described in the main text.
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FIG. 6. Panels (a) and (b) illustrate the real and imaginary parts of y(q, 2), respectively, at T = 25K, plotted as functions of ¢ and 2.
(c) The real and imaginary part of y (g = 0, 2). (d) The temperature dependence of y (g = 0, 2) is shown for different values of 2. Filled
circles denote data points from our numerical calculations, while solid lines are fits carried out on the basis of the simple analytical formula

Eq. (B1).

APPENDIX B: FURTHER COMMENTS ON THE ROLE OF y

The calculated electron energy-loss function L(gq, 2)—
defined as in Eq. (11) of the main text—of monolayer doped
Cr,Ge,Teg is plotted in Fig. 1 of the main text. It clearly
shows an important feature at the energy at which the 2D bare
plasmon dispersion £, meets the upper magnon branch.

The g and of 2 dependence of the real and imaginary parts
of the function y(q, Q) = y4(q, 2) + y,(q, 2) at T =25K
are reported in Figs. 6(a) and 6(b), respectively. As we can
see, y (g, 2) barely depends on ¢ and its imaginary part has
a divergence at the upper magnon branch (=58 meV). Fig-
ure 6(c) shows in more detail the behavior of y(q, 2) as
a function of Q2 for the case of ¢ =0. As a consequence
of such a trend, Xg“)(q, Q) ~ m vanishes at frequen-
cies just below the upper magnon branch frequency, thereby
yielding e(q, 2) — 1 and the quenching of the plasmon
oscillation.

We evaluated y(q, 2) and the electron energy-loss func-
tion L(q, 2) for T « T but it is important to discuss the
T dependence of y(q, 2) because it affects the plasmon-
magnon interaction. Owing to the presence of the magnon
bubble, y (g, 2) has a divergence near the upper magnon
branch frequency, and the 2 and 7 dependence of y(q, 2)
are determined by the magnon part. Moreover, as discussed
before, y(q, 2) has a negligible dependence on ¢ in the
long-wavelength limit. Further calculations reveal that the

temperature dependence of y is controlled by the thermal
factor nB(ng‘_)) — nB(Qf)i“l), Qg"i being the frequencies of
the two magnon branches for ¢ = 0. Here, we are interested
in temperatures below T¢ (*34 K), which is much smaller
than the upper magnon branch energy (= 760 K). Therefore,

np(2") < np(22)"), and we have

1

—_—, B1
oS0 /keT) _ G

v(q, 2) ~

where Q(()m_) ~ 268 eV (~3.1K). In the temperature range
(T ~ 10-30K) we are interested in, we approximate

kgT
v(q, ) ~ ) (B2)
Qo,—

The temperature dependence of y (g, 2) is shown in Fig. 6(d).
Evidently, the linear dependence of y(q,2) on T is well
described by Eq. (B1). In summary, y(q, 2) is small at low
temperatures, where we expect that the plasmon-magnon in-
teraction is suppressed. On the contrary, the plasmon-magnon
interaction increases with increasing 7' because y (g, 2) in-
creases, quenching the plasmon oscillation. Numerical results
for the 7 dependence of the loss function confirming these
expectations are reported in Fig. 7.
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FIG. 7. The calculated electron energy-loss function £(g, ©2) (color scale)—defined in Eq. (11) of the main text—of monolayer doped
Cr,Ge,Teg is plotted as a function of 2 and ¢ around the I" point. The bare plasmon and bare magnon dispersions are shown by solid and
dashed white lines, respectively. Results presented in this figure have been obtained by using the same parameters as in Fig. 1 of the main text,
i.e., k = 3.0 and a 1% hole doping corresponding to a 2.5 x 10'> cm~2 hole density. Different panels refer to different values of temperature:

(@ T = 10K, (b) T = 15K, (¢) T = 20K, and (d) T = 25K.
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