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Structure-independent flat bands induced by discontinuity plasma-air
interface in photonic crystals
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The band structures of transverse electric (TE) polarized dispersive photonic crystals are generally more
complicated than those of transverse magnetic (TM) polarized photonic crystals. Here, by simplifying the
governing equations of a TE polarized dispersion system and conducting the band structure analysis, we deduce
the Hermitian eigenstates of the vector electric field. The results exhibit the double degeneracy eigenstates in
the triangular lattice for lower eigenfrequencies and numerous plasmon-induced flat band modes in the interface
of the plasma and air for higher eigenfrequencies. Moreover, we illustrate that the surface plasmon modes tend
to present the quantized eigenfrequencies, which is due to the boundary condition imposed by the cylindrical
geometry. However, when the eigenfrequency approaches the surface plasma frequency, the localization of the
field on the boundary becomes stronger, which weakens the coupling between sites and reduces the dependence
of the flat bands on the lattice structure. Unlike the generation mechanism of the lattice-induced flat bands, such
plasma frequency-dependent localization at the interface enables a robust flat band characteristic immune to the
lattice disorder and provides a novel degree of freedom to control the energy band. Our findings are expected to
be useful for electromagnetic wave manipulation and field enhancement.
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I. INTRODUCTION

A rich variety of intriguing phenomena in solid-state
physics, including unusual ferromagnetic ground state [1], su-
perconductivity [2], Zitterbewegung [3], and pseudodiffusive
transmission [4], are generally attributed to the characteris-
tics of electron transport and localization in diverse matters
[5,6]. Numerous efforts have been made to understand these
mechanisms within the photonic community of optical waveg-
uide [7] and various metamaterials [8]. As one class of such
systems, photonic crystals support the electromagnetic wave
to propagate and refabricate their dispersion relations, al-
lowing us to optically explore band structure [9–11]. The
early work of photonic crystals thrived from dispersiveless
materials with constant permittivities [12,13], and now it is
further developing towards temporal and spatial dispersive
systems with frequency-dependent electromagnetic properties
[14–17]. However, frequency-dependent permittivities usu-
ally lead to nonlinear eigenvalue problems in the transverse
electric (TE) polarization case [18,19]. Importantly, both band
structure and field distribution in such nonlinear systems
can show attractive electromagnetic response characteristics,
which are typically endowed with Dirac cone with linear
spectrum and numerous flat bands or quasiflat bands with zero
groups velocity.
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The band structure of graphene near the corner of the
Brillouin zone at the K point can be described by the massless
Dirac equation and hence exhibit the linear dispersion [20,21].
The typical linear dispersion behavior is entirely originated
from the threefold rotational symmetry of the graphene lattice
in condense state physics. The existence of Dirac cone disper-
sion is not limited to electronic models but can also be found
in many other photon platforms [22–24]. It is well known that
the classical wave periodic systems with spatial potentials of
the same symmetry can generate Dirac spectra, which is de-
termined by the system structure. Contrary to atomic systems,
for dispersive metallic or plasma photonic crystal systems,
Dirac cones are observed in triangular lattices rather than in
honeycomb lattices [25,26]. In fact, the physical mechanism
of the linear dispersions of a Dirac cone in photonic crystals
described by the Drude model is not well explicated.

On the other hand, the singular characteristics of the disper-
siveless flat band have been widely investigated in a variety
of platforms, including ultracold atoms [27], metamaterials
[28], photonic crystals [29], electronic, and other realistic
materials, which mimic the flat-band properties in condensed
matter systems [30]. The kinetic energy in a flat band is
completely quenched, which suppresses wave transport and
then enhances the particle interaction, leading to strongly cor-
related systems [31,32]. Due to the strong localized field, the
fabricated flat bands are useful for potential applications such
as diffraction-free image transmission [33], Aharonov-Bohm
photonic cages [34], lasing [35], Raman scattering [36], and
nonlinear optics [37]. Hence, it is meaningful to study the
formation mechanism of photonic flat bands. Generally, the
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dispersiveless photonic crystals offer a high control over the
lattice geometry and allow for the addition of tunable disorder
or interactions between the sites. However, it is notable that
the dependence on the structure of the flat bands in dispersive
photonic crystals is still yet to be explored. Compared to geo-
metrically induced flat bands, which cause nonzero dispersion
when subjected to external disturbances [38], in plasma pho-
tonic crystals, the localized surface modes at the plasma-air
interface are less affected by external disturbances. Therefore,
the research on the flat bands in the dispersive system offers
a promising tool for optically probe zero group velocity, high
density of states (DOS), and infinite effective mass [39–41].

In this paper, we formulate the coupling eigenequation in
TE polarized photonic crystals with Drude dispersion. Then
the energy band and eigenmodes of typical triangular and
honeycomb lattices are numerically investigated. For the low-
frequency range, we exploit the k · p theory to derive the linear
dispersion for the triangular lattice and calculate its relative
slope. Furthermore, the formation mechanism of the flat bands
for higher eigenmodes is also presented. Finally, we exten-
sively discuss the surface plasmon modes at the discontinuity
plasma-air interface and show the structure-independent flat
bands characteristics.

II. MODEL AND METHOD

In the case of the isolated plasma columns periodically
embedded in the air host, we consider the linear electromag-
netic response of free electron under weak excitation. The
equations of motion for an electron with mass m and charge
e, located at a position r, damped by a electron-neutral inter-
action with a collision frequency ν, and subject to an electric
field E are as follows:

m
d2r
dt2

= −eE − mν
dr
dt

. (1)

Note that the current density J is related to dr/dt as J =
−enedr/dt with ne being the electron density. We reformulate
Eq. (1) as follows:

∂J
∂t

= ε0ω
2
peE − νJ, (2)

where ωpe(r) =
√

e2ne(r)/ε0m resembles the distribution of
plasma frequency with ε0 being the permittivity of the free
space. The introduction of J results in a first-order derivative
in time. In general, the electromagnetic field is described by
Maxwell’s equations:

∂H
∂t

= − 1

μ0
∇ × E, (3)

∂E
∂t

= 1

ε0
(∇ × H − J). (4)

Here H is the magnetic field and μ0 is the vacuum permeabil-
ity. Then we assume that all fields with the time-dependent
term eiωt in the Maxwell’s equations satisfy the following

eigensystem:

ω

⎛
⎝H

E
J

⎞
⎠ =

⎛
⎜⎜⎜⎝

0 i
μ0

∇× 0
−i
ε0

∇× 0 i
ε0

0 −iω2
peε0 iν

⎞
⎟⎟⎟⎠

⎛
⎝H

E
J

⎞
⎠. (5)

To get the real eigenvalues ω, a lossless Drude model is
adopted by applying ν = 0. In fact, not all field vectors are
necessary, so we further reduce Eq. (5) to the following matrix
form:

ω2

⎛
⎝H

E
J

⎞
⎠ =

⎛
⎜⎜⎝

c2∇×∇× 0 −c2∇×
0 ω2

pe+c2∇×∇× 0

ω2
pe∇× 0 ω2

pe

⎞
⎟⎟⎠

⎛
⎝H

E
J

⎞
⎠,

(6)

where c = 1/
√

ε0μ0 is the speed of light in the vacuum. Thus,
one can derive electromagnetic field equations for the gener-
alized E or (H, J)T wave function involving a second-order
time derivative. For instance, for the E component in the TE
mode case,

ω2

(
Ex

Ey

)
=

⎛
⎝ω2

pe − c2 ∂2

∂y2 c2 ∂2

∂x∂y

c2 ∂2

∂x∂y ω2
pe − c2 ∂2

∂x2

⎞
⎠(

Ex

Ey

)
, (7)

where (Ex, Ey)T is the time-harmonic eigenmode. Obviously,
Eq. (7) is a Hermitian eigenvalue problem. Moreover, the
Hermitian nature of the operator in Eq. (7) ensures that the
eigenfunctions of the system form a complete, orthonormal
basis.

Then we can find the following orthogonality condition in
terms of the physical fields:∫

dr(E∗
x,mEx,n + E∗

y,mEy,n) = δmn. (8)

Here the subscripts m and n represent the index of basis. δmn

is the Kronecker symbol. Note that the orthogonality relation
is frequency independent and thus efficient for the dispersive
photonic crystal system with plasma permittivity.

We now perform the photonic band structure analysis in
three kinds of photonic crystal structures. One plasma site
in the unit cell for the triangular lattice [as shown in the left
in Fig. 1(a)], two plasma sites with different plasma frequency
for hybrid lattice [as shown in the middle in Fig. 1(a)] and
two same plasma sites for honeycomb lattice [as shown in
the right in Fig. 1(a)]. The periodic structures consist of the
plasma columns(ωpe = ωp0) of radii r = 0.2a embedded in
the air host(ωpe = 0). As shown in Fig. 1(a), the color of
the circle represents the value of the plasma frequency. The
blue circles represent ωp0a/2πc = 2 and white circles repre-
sent ωp0a/2πc = 0. For the purple circles in the middle in
Fig. 1(a), ωp0a/2πc = 1. Figure 1(b) presents the TE band
structures in the first Brillouin zone for the three correspond-
ing lattices, respectively. To calculate the band structure, we
use a finite-difference discretization of the transverse electric
field components Ex and Ey with a Yee grid in a single unit cell
[18]. Consequently, the numerical band computation naturally
converts into an eigenvalue problem for finite-difference ma-
trix. The matrix elements at the boundaries are determined by
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FIG. 1. (a) The photonic crystal structures from (left) triangular
lattice to (right) honeycomb lattice, which consist of plasma columns
embedded in the air host, with column radius r/a = 0.2 and varied
plasma frequency ωpea/2πc, where a is the lattice constant. The mid-
dle panel represents a lattice structure composed of plasma columns
with two different plasma frequencies. The blue circles represent
ωp0a/2πc = 2 and white circles represent ωp0a/2πc = 0. For the
purple circles in the middle, ωp0a/2πc = 1. (b) The corresponding
TE bands of the first Brillouin zones for three structures showed in
(a), and the darker color of the curve represents higher group velocity.
Points KA and KB are the lowest and second-lowest modes at the K
point, respectively.

the Bloch’s theorem, which retains Hermitian of the matrix
operators.

As presented in the left plot of Fig. 1(b), for the triangular-
lattice photonic crystal, the first lowest and second-lowest TE
eigenmodes(KA and KB) are degenerate at the K point. It
shows that there is a Dirac cone in the energy band structure.
This is quite similar to the tight-binding electron in graphene.
As for the honeycomb lattice as shown in the right plot of
Fig. 1(b), the degeneracy at the Dirac cone is lifted, opening
a photonic band gap. Specifically, the second band is clearly
separated from the first band at K, whereas the former are also
in contact with the third band. Since the plasma is adopted
as the lattice site as shown in Fig. 1, which is opaque to

FIG. 2. TE band structure near K point for the triangular lattice
of plasma columns embedded in the air host, with column radius
r/a = 0.2 and plasma frequency ωp0a/2πc = 2, where a is the lat-
tice constant. (a) The circles are extracted from Fig. 1(b) and the red
curves show the results predicted by Eq. (A17). (b) The isotropic
Dirac cone at K point in the quasimomentum space.

the electromagnetic waves and is described by the Drude
model. Thus, the lattice site in Fig. 1 is equivalent to the
potential barrier, and the host corresponds to the potential
well. Therefore, the triangular lattice mimics the honeycomb
atomic structure with a Dirac cone (Fig. S2 in the Supplemen-
tal Material [42]), while the honeycomb lattice corresponds
to the triangular atomic structure with the band gap (Fig. S3
in the Supplemental Material [42]). Meanwhile, for these two
lattices, numerous flat bands with nearly zero group velocity
are observed in the TE band diagrams, which correspond to
the surface plasmon modes in both two structures. Moreover,
for the band structure of hybrid lattice as shown in the middle
of Fig. 1(b), the first band is similar to the honeycomb lattice,
while the first flat band appears within the band gap. This
allows for experimental observation of flat band modes. In
general, when the frequency is lower than half of the plasma
frequency, the propagation of electromagnetic wave is cut
off inside the plasma column, and the energy band mainly
depends on the geometric structure of the lattice. As the fre-
quency increases to half of the plasma frequency, the surface
plasmon resonance is activated, thus the flat band appears.
This origin of flat band in plasma photonic crystal in stark con-
trast to conventional flat band systems where the fundamental
properties are determined by the lattice structure. Therefore,
the plasma frequency provides a variety of opportunities to
control the band structure.

For the purpose of exploring the origin of the Dirac point
in the triangular lattice, we further plot its dispersion near
the high symmetric point K as shown in Fig. 2. The circles
extracted from Fig. 1(b) show the band structure near the K
point. It can be seen that there is an almost linear dispersion
relationship. To describe this dispersion phenomenon quan-
titatively, we exploit the k · p theory to derive the reduced
Hamiltonian for the triangular lattice [43], as illustrated in
Appendix A. Thus the eigenfrequencies of propagating modes
depend linearly on the distance �k of the quasimomentum
from the K point. Then the analytic dispersion relationship
near the K point is shown as the red curve in Fig. 2(a), while
the circles are the results of the finite-difference calculation.
Generally, for the periodic triangular-lattice plasma photonic
crystal, there is also linear dispersion near the Dirac point,
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FIG. 3. Resolution dependence of the surface plasma mode.
(a) Eigenfrequencies at high symmetric point 	 for TE modes
computed with different grid resolutions for the triangular photonic
crystal with ωp0a/2πc = 2. Red dots, blue dots, green dots, and
orange dots correspond to the four resolutions of 20×17, 30×25,
40 × 34, and 50×43, respectively. The middle inset shows the eigen-
mode in the range of (1.2, 1.4), and the points A, B, C, and D
are the lowest mode for this range. (b) The normal magnetic field
distribution (Hz) of a unit cell under four resolutions in the inset in
(a), and the eigenfrequency ωa/2πc is 1.280 for point A (upper left),
1.251 for point B (upper right), 1.272 for point C (lower left), and
1.266 for point D (lower right), respectively.

which is consistent with the trivial characteristics of disper-
sionless photonic crystals.

III. STRUCTURE-INDEPENDENT LOCALIZATION
BEHAVIOR

In this part, we focus on the properties of the dispersiveless
flat band modes which are presented in Fig. 1(b). The charac-
teristics for dispersive bands are presented in the supplemental
material [42].

The eigenfrequencies for TE modes versus the index of
eigenmode with four different grid resolutions, Ngrid = 20 ×
17 (red dots), 30 × 25 (blue dots), 40 × 34 (green dots), and
50 × 43 (orange dots), at the 	 point for a triangular lattice,
are presented in Fig. 3(a). Furthermore, we also extracted the
eigenmodes in the frequency range of (1.2, 1.4) as shown in
the middle inset in Fig. 3(a), and the eigenfrequency ωa/2πc
in the inset is 1.280 for point A, 1.251 for point B, 1.272
for point C, and 1.266 for point D, respectively. The slight
difference in the eigenfrequencies at these four points is due
to the fact that the grid used is square. Figure 3(b) shows the
magnetic field at four resolutions corresponding to points A
(upper left), B (upper right), C (lower left), and D (lower right)
in Fig. 3(a). It can be seen from Fig. 3(a) that the number of
flat bands increases within the range of (0.859,1.835) as the
grid points increases. This implies that the flat band modes be-
low ωp0a/2πc = 2 are spatial oscillation modes (i.e., surface
plasmon modes with a large wave number), which are only
accessible to a grid scale smaller than the spatial oscillation
scale, as shown in Fig. 3(b). Figure 3(b) exemplifies that
the surface plasma mode becomes more apparent when the
grid resolution increases from Ngrid = 20 × 17 (upper left) to
Ngrid = 50 × 43 (bottom right). Furthermore, there are many

FIG. 4. Schematic diagram of the localization behavior of the
magnetic field at the plasma-air interface. The region y > 0 is air
medium (ωpe = 0), and the region y < 0 is plasma medium (ωpe =
ωp0). The surface modes at the interface propagate along the x
direction.

degenerate modes appear at ωp0a/2πc = 2, which are con-
sistent with the number of grids in the plasma region. This
degenerate behavior can be checked by the finite-difference
matrix, and these modes describe the Langmuir oscillation
(wave number is zero) in the plasma. The flat band illustrates
the strong localization mode with almost zero group velocity
and the extremely weak coupling of lattice sites. Specifically,
for the modes below ωp0a/2πc = 2, the electromagnetic en-
ergy is localized at the interface between plasma and air
and decays as an evanescent wave inside both sides of the
interface. In order to investigate this localization mode, we
consider the two-dimensional structure of the air half space
(ωpe = 0) for y > 0 and the plasma filled half space (ωpe =
ωp0) for y < 0, as shown in Fig. 4. The electromagnetic wave
propagates along the interface in the x direction and the mag-
netic field is polarized in the z direction. Considering the time
harmonic dependence eiωt , we combine Eq. (3) with Eq. (7)
as the following equations:

iωHz = − 1

μ0

(
∂Ey

∂x
− ∂Ex

∂y

)
, (9)

∂

∂y

(
∂Ey

∂x
− ∂Ex

∂y

)
= 1

c2

(
ω2 − ω2

pe

)
Ex, (10)

∂

∂x

(
∂Ex

∂y
− ∂Ey

∂x

)
= 1

c2

(
ω2 − ω2

pe

)
Ey. (11)

Assuming that Hz has the following form [44]:

Hz =
⎧⎨
⎩

A1
μ0

eiκxeβ1y, y < 0

A2
μ0

eiκxe−β2y, y > 0
. (12)

The parameter κ refers to the propagation constant along the
interface, and β1 and β2 are the attenuation coefficients in the
plasma and air, respectively. Continuity of Hz at the interface
requires that A1 = A2 = A, and, thus,

Ex =
⎧⎨
⎩

− A iω
ω2−ω2

p0
β1eiκxeβ1y, y < 0

A i
ω
β2eiκxe−β2y, y > 0

and (13)
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FIG. 5. The normal magnetic field (Hz) profiles in magnitude for different surface plasmon modes and the DOS distribution of TE
polarization for the triangular lattice and honeycomb lattice. Panels (a)–(d) and (e)–(h) present the magnetic field distribution with n = 3, 4, 5, 6
at the 	 point in the first Brillouin zone of the triangular lattice and honeycomb lattice, respectively. The grid resolution is Ngrid = 300 × 259.
Panel (i) presents the DOS of the two lattices. Panel (j) is extracted from panel (i): The upper represents the triangular lattice and the lower
represents the honeycomb lattice.

Ey =
⎧⎨
⎩

− A ω

ω2−ω2
p0
κeiκxeβ1y, y < 0

− A 1
ω
κeiκxe−β2y, y > 0

. (14)

According to the continuity of Ex at the interface, we obtain
the following relationship:

β2

β1
= − ω2

ω2 − ω2
p0

. (15)

By substituting Ex and Ey into Eq. (10) or Eq. (11), we can
get:

β2
1 = κ2 − 1

c2

(
ω2 − ω2

p0

)
(16)

and

β2
2 = κ2 − 1

c2
ω2. (17)

According to Eqs. (15)–(17), the propagation constant at
the interface can be expressed as:

κ = 1

c

√√√√2ω2
(
ω2 − ω2

p0

)
2ω2 − ω2

p0

. (18)

The surface plasmon modes at the circularly symmet-
ric interface between the plasma and air exhibit quantized
wave numbers due to the boundary condition imposed by
the geometry. When n azimuthally periodic repetitions are
considered on the circle, it possesses translation symmetry in
the azimuthal direction with a period of 2π/n. Thus, κ = n/r,

where the integer azimuthal mode number n = 1, 2, 3, . . . .
As n approaches infinity, we can get the frequency of sur-
face plasmon oscillation ωsp = 1√

2
ωp0, which is marked in

Figs. 3(a).
Figure 5 shows the magnetic fields in magnitude for four

azimuthal mode numbers n = 3, 4, 5 and 6 in two lattices
at the point 	 below the surface plasma frequency ωsp. The
deviation of numerical calculation of the field distribution
shown in Fig. 5 essentially came from the localized nature of
the eigenmodes of the surface plasmon modes. Therefore, the
field distribution is difficult to reproduce by the discretization
of a small number of sample points. It can be seen that the
electromagnetic energy is strongly localized on the surface of
the plasma column, which is in contrast to the low-frequency
case (Figs. S2 and S3 in the Supplemental Material [42])
where the energy is dispersed in the air. This is due to the
decaying of the magnetic field of the surface plasmon polar-
ization on both sides of the interface as described in Eq. (12).
Meanwhile, the group velocity is close to zero, resulting in the
flat band as shown in Fig. 1(b). Furthermore, the flat band rep-
resents high density of states. Figure 5(i) describes the DOS
of triangular lattice (orange plot) and honeycomb lattice (blue
plot). The band gap is marked with yellow. For n = 3 modes
shown in Figs. 5(a) and 5(e), the magnetic field has three local
maxima along the angular direction. There exits a pronounced
coupling between the sites of the honeycomb lattice compared
to the triangular lattice, which results in an inconsistency
in their eigenfrequencies. As shown in Figs. 5(j), when n = 3,
the eigenfrequency for the triangular lattice is 1.271, while
it is 1.205 for the honeycomb lattice. However, this incon-
sistent tendency on the eigenfrequencies is decreasing with
the increasing n as shown in Figs. 5(j). Since the localization
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behavior becomes obvious for larger n and the coupling
between the sites is weakened, the dependence of eigenfre-
quency on the lattice structure decreases. For example, when
n = 5 and n = 6 as shown in Fig. 5, both lattices present
the identical eigenfrequencies (1.368 for n = 5 and 1.376 for
n = 6). For larger modes, the predicted eigenfrequencies shall
have a rising tendency of approaching ωsp, as illustrated in
Figs. 3(a). Therefore, a large amount of modes will accu-
mulate near ωsp, and thus a DOS peak appears, as shown in
Figs. 5(i).

IV. CONCLUSION

In summary, we have theoretically investigated the energy
band and eigenmodes of a typical TE polarized triangular and
honeycomb lattice consisting of lossless dispersion plasma
columns embedded in air. Specifically, by simplifying the
governing equations of a TE polarized dispersion system, we
deduce the Hermitian eigenstates of the vector electric field.
It is found that there are dispersive bands and nondispersive
energy bands at the specific frequency range in these two
kinds of lattices. For instance, there exists a band gap in
the honeycomb lattice while a double degeneracy occurs at
K point in the triangular lattice. Since the energy concen-
trates on the air host, these band characteristics are strongly
dependent on the crystal structure. However, for the surface
plasmon-induced flat band, it exhibits the strong localization
of the energy at the interface of the plasma and air with
almost zero group velocity, which produces the extremely
weak coupling between the lattice sites and thus results in the
structure-independent eigenfrequencies. Our findings on such
plasma frequency-dependent localization at the interface offer
a way to implement a robust flat band characteristic immune to
the lattice disorder. Moreover, the analytic research of the flat
band in the dispersive photonic crystals system provides a new
freedom to realize the specific control of the band structure.
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APPENDIX

The governing equation Eq. (7) for the TE modes can be
rewritten as:

∇(∇ · E ) − ∇2E + ω2
pe

c2
E = ω2

c2
E. (A1)

Since point K is a high symmetry point and the energy band
is degenerate at point K, forming a Dirac cone, thus point K
is suitable as the k0 point to study the dispersion relation of
the Dirac cone. According to Fig. 1(a), the eigenfrequency at
point K is 0.553. By utilizing the Bloch theorem, one can get
the wave function at the wave vector k near a selected k0 as
follows:

Enk = ei(k−k0 )r
∑

j

αn j (k) · E jk0 . (A2)

where n is the band number and αn j (k) is the expanding
coefficient of the Ex and Ey. The wave function E jk0 at k0

point can be obtained numerically. Then substituting Eq. (A2)
into Eq. (A1),

∇(∇ · E ) = ei(k−k0 )·r ∑
j

αn j (k)
{ − (k − k0)

[
(k − k0) · E jk0

]
+ i∇[

(k − k0) · E jk0

] + i(k − k0)∇ · Ejk0

+ ∇(∇ · Ejk0

)}
(A3)

and

∇2E = ei(k−k0 )·r ∑
j

αn j (k)
[−|k − k0|2E jk0

+ 2i∇(k − k0) · ∇E jk0 + ∇2Ejk0

]
. (A4)

Finally, we obtain

ei(k−k0 )·r ∑
j

αn j (k)

{
− (k − k0)

[
(k − k0) · E jk0

]
+ i∇(k − k0) · ∇E jk0 + i∇(k − k0)

[∇ · Ejk0

]
− 2i∇(k − k0) · ∇E jk0 + ω2

jk0
− ω2

nk

c2
E jk0

}
= 0.

(A5)

Using the orthogonal regime of the wave function E jk0 and
E lk0 as presented in Eq. (8), where the integral area is the unit
cell of the triangular lattice, Eq. (A5) can be rewritten as:

∑
j

αn j (k)

[
Pl j (k) − ω2

nk − ω2
jk0

c2
δl j

]
= 0, (A6)

where

Pl j (k) = �k · pl j + �kx�kyhl j + |�k|2ql j, (A7)

with

pl j = i
∫

dr
[
E∗

lk0
· ∇E jk0 + E∗

lk0

(∇ · E jk0

)−2∇E jk0 · E∗
lk0

]
,

(A8)

hl j = −
∫

drE∗
lk0

σE jk0 , (A9)

and

ql j = δl j . (A10)

Here �k = k − k0, σ = (0 1
1 0). It is obvious that Pl j (k) =

P∗
jl (k), thus the Hermitian matrix Pl j (k) can be regarded as

a reduced Hamiltonian, namely

Hl j = Pl j (k). (A11)

To obtain a nontrivial eigensolution of Eq. (A6), then

det

∣∣∣∣∣H − ω2
nk − ω2

jk0

c2
I

∣∣∣∣∣ = 0. (A12)

When considering the linear dispersion relation at the de-
generate point in the band structure of the triangular lattice,
the nonlinear terms �kx�kyhl j and |�k|2ql j in Eq. (A7) are
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ignored and only the linear term �k · pl j is retained. Con-
sequently, we only need to consider the degenerate states
at the Dirac point in the summation of Eq. (A2). Thus, the
2 × 2 reduced Hamiltonian at the K point can be numerically
calculated. According to the definition of pl j in Eq. (A8), the
following equations can be obtained:

p11 = −p22, (A13)

p∗
12 = p21, (A14)

|p11|x/y = |p12|x/y, (A15)

p11,x/y · p12,x/y = 0. (A16)

From Eq. (A12), we can approximate the dispersion rela-
tionship at the K point as follows:

ω = ω0 + c2
√|�k · p11|2 + |�k · p12|2

2ω0
, (A17)

where ω0a/2πc = 0.544 is the eigenfrequency of the degen-
erate modes. Combining Eq. (A15) and Eq. (A16), we can
obtain an isotropic linear dispersion relation, which can be
seen in Fig. 2(b).
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