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Symmetries, length scales, magnetic response, and skyrmion chains in nematic superconductors
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Nematic systems are two component superconductors that break rotational symmetry, but exhibit a mixed
symmetry that couples spatial rotations and phase difference rotations. We show that a consequence of this
induced spatial anisotropy is mixed normal modes, that is the linear response to a small perturbation of the
system about its ground state, generally couples magnetic and condensate degrees of freedom. We will study the
effect of mode mixing on the magnetic response of a nematic system as the strength of applied field is increased.
In general we show that the coupled modes generate magnetic field perpendicular to the applied field, causing the
magnetic response to spontaneously twist direction. We will study this for the Meissner effect with weak fields
and also for stronger applied fields, which produce a mixture of skyrmions and composite vortices, forming
orientation dependent bound states. We will also calculate the anisotropies of the resulting first and second
critical fields Hc1 and Hc2 . The skyrmion lattices for Hc1 � H � Hc2 in nematic superconductors are shown to be
structurally complicated, in contrast to the triangular or square vortex lattices in conventional superconductors.
For low fields the magnetic response of the system involves a loosely bound collection of parallel skyrmion
chains. As the external field is increased the chains attract one another, causing a transition where the unit cell
becomes triangular for high applied fields. This unique skyrmion lattice and the magnetic twisting are clear
indicators that could be used experimentally to identify materials that exhibit nematic superconductivity. To
obtain these results we develop and present a method to find the unit cell of a vortex lattice that can be applied
to other kinds of superconducting systems.
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I. INTRODUCTION

Nematic superconductors have been of increasing inter-
est in recent years and a number of their properties have
been demonstrated to be unconventional [1–11]. One mate-
rial that has been intensively studied experimentally is the
doped topological insulator Bi2Se3 [12–14]. Superconductiv-
ity has also been reported in CuxBi2Se3, SrxBi2Se3 [15–17],
and NbxBi2Se3 [18], which also exhibits rotational symmetry
breaking.

The possibility of nematic superconductivity in CuxBi2Se3

and other materials, motivates this study of their macroscopic
properties. Two experimental signatures have previously been
predicted: that the upper critical field of a magnetic field
exhibits anisotropy [19,20]; and that topological excitations
exhibit fractional vortex splitting, forming skyrmions [4].

Many questions concerning the properties of this state
still remain. These include the form of the normal modes,
coherence and magnetic field penetration lengths, and collec-
tive properties of topological excitations. By normal modes,
we mean those that govern the response of the system to
small perturbations about the homogeneous superconducting
ground state. In this paper, we demonstrate that the modes
of nematic superconductors are nontrivially mixed. This is
shown to result in a nontrivial magnetic response for nematic
superconductors. We will demonstrate the effect of the mode
mixing by considering the effect of an applied magnetic field
H on the superconductor.

We will first consider |H| < Hc1 and magnetic field screen-
ing. We will show that the mixed modes cause the local
magnetic field B to locally twist direction, as has been
demonstrated for s + is and s + id superconductors [21]. We
will then consider vortex solutions in the bulk, which for
many orientations exhibit fractional vortex splitting, forming
skyrmions. Orientation here refers to the direction of the cen-
ter of the vortex line (or flux tube), which is modelled by
taking a cross-section and assuming the fields are homoge-
neous in the direction of the vortex line. Hence, if we refer
to the basal plane, we mean the cross-section is in the basal
plane and the vortex line is perpendicular to this plane. We
will demonstrate that in the basal plane, the mixed modes do
not excite the magnetic field components orthogonal to the
vortex line, hence the magnetic field is always parallel to the
vortex line. This leads to no magnetic field twisting and hence
the results of [4] are valid. However, once the vortex plane is
not the basal plane, the mixed modes excite the components
of the magnetic field orthogonal to the vortex lines, causing
the magnetic field to twist direction. This leads to nontrivial
bound states that are dependent on the orientation of the
vortex line.

We then calculate Hc1 and Hc2 , demonstrating that they
are anisotropic, confirming the results for Hc2 in [19]. We
then consider the vortex lattice solutions in the bulk (when
Hc1 � H � Hc2 ), namely the periodic solution that minimizes
the Gibbs free energy per unit area G/A. We present a
new method to find such solutions that minimizes G/A with
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respect to the unit cell geometry and the field configuration
over the cell. This demonstrates that in general the lattices
initially form skyrmion chains with rectangular unit cells and
winding N = 2. These chains attract as the external field
strength |H| is increased, until the cell eventually becomes
triangular.

II. THE MODEL

Our starting point is a general anisotropic effective model.
We will describe the methods used for this general model and
restrict to the specific case of a nematic superconductor when
we present the results. The most general three-dimensional
anisotropic Ginzburg-Landau free energy is given as

F =
∫
R3

{
1

2
Qαβ

i j DiψαDjψβ + 1

2
|B|2 + FP(|ψα|, θ12)

}
d3x,

(1)

where Di = ∂i − iAi is the covariant derivative associated with
the U (1) gauge field Ai, leading to the magnetic field Bi =
εi jk∂ jAk . We will consider a two-component model, where
the two complex fields ψα = ραeiϕα represent the different
superconducting components. Note that Greek indices α =
1, 2 will always enumerate components of the order param-
eter and Latin indices i = 1, 2, 3 indicate spatial components,
while summation over repeated indices is implied for both.
Fp collects together the potential terms, which due to gauge
invariance, depend only on the condensate magnitudes ρα and
the phase difference between the condensates θ12 := θ1 − θ2.

The anisotropy of the model is given by the anisotropy ma-
trices Qαβ , which must satisfy the minimal condition Qαβ

i j =
Q

βα

ji so that the energy is real. Note that our methods will be

presented for general values of Qαβ
i j and hence are applicable

to any two-component anisotropic Ginzburg-Landau theory.
Nematic superconductors can be modelled by making the

following restriction (for a microscopic derivation, see [4]):

Q11 = Q22 =
⎛⎝1 0 0

0 1 0
0 0 βz

⎞⎠, Q12 = β⊥

⎛⎝1 i 0
i −1 0
0 0 0

⎞⎠,

(2)

where β⊥ and βz are positive parameters to be fixed. Other
papers have extended this choice for the anisotropy, adding
terms designed to break rotational symmetry in the basal
plane. We will neglect such terms, considering the model
where rotational symmetry breaking in the basal plane is
weak. The potential terms can be represented as follows:

Fp = η2

2

(
− |ψ1|2 − |ψ2|2 + 1

2
(|ψ1|4+ |ψ2|4) + γ |ψ1|2|ψ2|2

)
.

(3)

The derivation of the above parameters is briefly discussed
in the Appendix C, along with sensible values. It is worth
noting that this is a chiral representation of the order pa-
rameter ψ1,2 = �x ± i�y, where � represents an interorbital
spin-triplet pairing of the form � = (�x,�y, 0).

For the class of models we consider, the ground-state
(minimal energy degree 0) solution is constant and hence

determined purely by the values ρα that minimize the
potential term Fp. We write the ground-state solution as
(|ψα|, θ12, Ai ) = (uα, δ12, 0), where the values of uα are de-
pendent on the value of γ , and δ12 is a free choice as Fp is
independent of θ12. γ = 1 is a critical parameter choice, as the
ground-state solutions are any point on the circle u2

1 + u2
2 = 1,

leading to an enhanced S1 × U (1) × U (1) symmetry (note
that the phase difference is strictly ill defined if either con-
densate is zero). If γ < 1 then the symmetry of the model
becomes U (1) × U (1) with a single ground state,

u1 = u2 = 1√
1 + γ

. (4)

If γ > 1 then the symmetry becomes Z2 × U (1) and the two
vacua,

(u1, u2) = (1, 0), (u1, u2) = (0, 1), (5)

clearly break Z2 symmetry. Note that as one of the conden-
sates is zero (not superconducting), the phase difference is ill
defined.

We will assume the parameter values β⊥ = 1
3 , βz = 4

3 and
γ = 1

3 < 1 for the rest of this paper. For the microscopic
discussion of the parameters see Ref. [4]. Note that we have
considered some alternate parameters to the ones above, to
ensure that our results are robust.

Stationary configurations, such as vortices, are local min-
ima of F . These satisfy the Ginzburg-Landau equations,
obtained by variation of Eq. (1) with respect to the constituent
fields ψ and A,

Qαβ
i j DiDjψβ = 2

∂Fp

∂ψα

, (6)

∂i(∂ jAi − ∂iA j ) = Ji, (7)

where the total supercurrent is defined as

Ji := Im
(
Qαβ

i j ψαDjψβ

)
. (8)

III. SYMMETRIES

While the potential in Eq. (3) for our chosen parameters
has a U (1) × U (1) symmetry, this, along with rotational sym-
metry, is broken to a mixed symmetry by the gradient terms
if β⊥ �= 0. To be precise, we consider a mapping of fields
(ψ, A) �→ (ψ̃, Ã) to be a symmetry of the model if F (ψ, A) =
F (ψ̃, Ã) for all configurations (ψ, A). It is straightforward to
verify that the following mappings are all symmetries of the
nematic model:

(1) Rotations in the basal plane:

ψ̃ (x) = Sψ (R−1x), Ã(x) = RA(R−1x) (9)

where

R =
⎛⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞⎠, S =
(

eiα 0
0 e−iα

)
. (10)

Note that this couples spatial rotations about the x3 axis with
rotations of the phase difference.
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(2) Reflexion in the basal plane: mapping Eq. (9) with

R = diag(1, 1,−1), S = I2. (11)

(3) Reflexion in a vertical plane: mapping Eq. (9) with

R = diag(1,−1, 1), S =
(

0 1
1 0

)
. (12)

Note that this swaps the condensates.
(4) Complex conjugation:

ψ̃1(x) = ψ2(x), ψ̃2(x) = ψ1(x), Ã(x) = −A(x). (13)

Note that this also swaps the condensate’s components, and
coincides with the time reversal operation ψ± �→ ψ±, A �→
−A, for the fields ψ± = ψ1 ± iψ2.

Any composition of symmetries is also a symmetry, so by
composing Eqs. (10) and (12), for example, we can obtain
a reflexion symmetry in any vertical plane. It is important
to note that the rotation symmetry in Eq. (10) is orientation
preserving (all the others are orientation reversing), and acts
nontrivially on the phase difference θ12. Hence, nonhomoge-
neous solutions of this model (such as vortices or skyrmions),
arise in one-parameter families, parametrized by the value
of θ12 at spatial infinity. These distinct solutions coincide
up to the rotation symmetry in Eq. (10). Hence, the mixed
symmetry Eq. (10) allows us to construct additional solutions
from a given solution, by spatially rotating by an angle α about
x3 and simultaneously rotating the phase difference θ12 by 2α.
Note, for vortices, if the three-dim vortex string is not oriented
orthogonal to the basal plane, this mapping will change the
spatial orientation of the string.

IV. FUNDAMENTAL LENGTH SCALES: ABSENCE OF
CONVENTIONAL COHERENCE AND MAGNETIC FIELD

PENETRATION LENGTHS

We now consider a nonuniform superconducting state,
where the fields locally deviate from their ground-state
values. Generally this is governed by the nonlinear GL equa-
tions Eq. (7), which must be solved numerically. However, it
is instructive to consider the fundamental length scales that
govern how the fields decay to their ground-state values.

In the isotropic case this is normally achieved by assuming
that the fields are small when far from a defect. The magnetic
penetration length is then found by fixing the matter fields to
one of their ground-state values and solving the resulting lin-
ear equations of motion, which is the famous London model
for B. The coherence length is then found by fixing the gauge
field to zero and solving the resulting linearized equations of
motion. Hence, the crucial characteristics are the coherence
and magnetic field penetration lengths, which determine the
exponential law according to which the fields recover their
ground-state values. Whether the superconductor is of type I,
type II, or type 1.5 can then be determined by comparing the
fundamental matter and magnetic length scales, or coherence
and magnetic field penetration lengths.

To understand why this will not work in the anisotropic
case, it is instructive to understand why it does work in the
isotropic case. The correct way to find fundamental length
scales is to linearise all of the equations of motion simul-
taneously (the method for which we present below). In the

isotropic case, the resulting linear equations of motion decou-
ple, leading to a single linear equation for the magnetic field
B (the London model) and some linear matter equations in
terms of |ψα|, which match those from above. If this process
is repeated for the anisotropic case, however, the equations of
motion will not decouple into separate magnetic and matter
equations and are in general mixed. It has been shown that
this leads to mixed modes [21], meaning the familiar London
penetration depth and coherence lengths do not exist. Hence in
this paper, the London model will not describe the magnetic
response of the system.

To find the linearized model we will first write our energy
functional in terms of gauge invariant quantities. To achieve
this we introduce a new gauge invariant vector field,

pi := Ai − ∂iθ�, θ� := 1
2 (θ1 + θ2), (14)

which is well defined wherever ρ1 and ρ2 are both nonzero.
Since the aim is to describe the system in regions where the
condensates are close to their (nonzero) ground-state values,
this restriction is not problematic. Note that in the isotropic
model pi becomes proportional to the supercurrent. Since p
differs from A by a gradient, its curl is still the magnetic field,
Bk = εi jk∂i p j . This gives us the minimal set of gauge invariant
quantities (ρα, θ�, pi ) where

θ� := 1
2 (θ1 − θ2). (15)

The condensates may then be conveniently expressed as

ψα = ραei(θ�+dαθ� ), (16)

at the cost of defining the coefficients dα = (−1)α+1.
We assume that, far from any defect, the gauge invariant

quantities decay to one of the possible ground-state values
(ρα, θ�, pi ) → (uα, θ0, 0). Note that θ0 = 0 or π/2 in the
phase (anti)locked case and θ0 = ±π/4 for s + is, s + id , and
p + ip materials, which breaks time reversal symmetry. This
is because we have defined θ� to be half the phase difference
θ12. However, in the nematic case that we consider in this
paper, Fp is independent of θ12 and hence θ0 is a parameter
of the model, related to the chosen orientation through the
symmetry in Eq. (9). Defining the quantities

εα := ρα − uα, ϑ := θ� − θ0, (17)

the system is close to the chosen ground state precisely when
εα , ϑ , and pi are small. As these are small, we then assume
that only linear terms contribute to the field equations, which
we may derive by expanding the free energy up to quadratic
terms in (εα, ϑ, pi ) and considering its variation. It will be
convenient to define the matrices

Qαβ
i j := Qαβ

i j exp i(dβ − dα )θ0, (18)

which enjoy the same symmetry as the anisotropy matri-

ces: Qαβ
i j = Qβα

ji . Note that Q11 = Q11, Q22 = Q22, Q12 =
e−2iθ0 Q12 and Q21 = e2iθ0 Q21, so passing from Q to Q
amounts to twisting the off-diagonal matrices by the ground-
state value of the phase difference. With this notation, the
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free energy density to quadratic order is

Elin = 1
2Q

αβ
i j (∂iεα + iuα (pi − dα∂iϑ ))(∂ jεβ − iuβ (p j − dβ∂ jϑ )) + 1

4 (∂i p j − ∂ j pi )(∂i p j − ∂ j pi ) + 1
2Hαβεαεβ + Hα3εαϑ

+ 1
2H33ϑ

2, (19)

where Hab is the 3 × 3 Hessian matrix of second partial
derivatives of FP with respect to the variables (ρ1, ρ2, θ�)
evaluated at the chosen ground state, (u1, u2, θ0). This leads
to the linear equations of motion

−Rαβ
i j ∂i∂ jεβ − Iαβ

i j uβ (∂i p j − dβ∂i∂ jϑ )

+Hαβεβ + Hα3ϑ = 0, (20)

−Rαβ
i j uαuβdα (dβ∂i∂ jϑ − ∂i p j )

+ Iαβ
i j uβdβ∂i∂ jεα + H3αεα + H33ϑ = 0, (21)

−∂2
j pi + ∂i∂ j p j − Iαβ

i j uα∂ jεβ

+Rαβ
i j uαuβ (p j − dβ∂ jϑ ) = 0, (22)

where R and I denote the real and imaginary parts of Q. From
Eq. (22), or by direct calculation, we may deduce that the total
supercurrent, to linear order in small quantities, is

Ji = Iαβ
i j uα∂ jεβ − Rαβ

i j uαuβ (p j − dβ∂ jϑ ). (23)

We note that the coupling of the equations depends critically
on whether I is nonzero, and that this may happen even if
the original Q matrices are purely real if the ground state has
complex phase difference (meaning θ12 �= 0, π ).

The linearized field equations are, in general, anisotropic,
so the length scales describing decay from a localized defect
to the ground state depend on the spatial direction along
which decay occurs. To analyze this, we choose and fix a
direction n in physical space and then impose on Eqs. (20)–
(22) the ansatz that εα , ϑ , and pi are translation invariant
orthogonal to n.

In practice, the most convenient way to implement this
ansatz is to rotate to a new coordinate system (x1, x2, x3), such
that the x1 axis is aligned with our chosen direction n. We
then seek solutions, which are independent of (x2, x3). This
amounts to choosing an SO(3) matrix R whose columns are
the chosen orthonormal basis (x̂1, x̂2, x̂3) and then transform-
ing the matrices Qαβ according to the rule

Qαβ �→ RT QαβR. (24)

Note that the phase-twisted anisotropy matrices Qαβ and
their real and imaginary parts Rαβ, Iαβ also transform in the
same way.

Having rotated our coordinate system and imposed the
ansatz that εα , ϑ , and pi depend only on x1, the linearized
field equations (20)–(22) reduce to a coupled linear system of
ordinary differential equations for

�w(x1) = (ε1(x1), ε2(x1), θ�(x1), p1(x1), p2(x1), p3(x1)),
(25)

which may be economically written

Ad2 �w
dx2

1

+ B d �w
dx1

+ C �w = 0, (26)

where A,B, C are the real 6 × 6 matrices

A =
(

a 0
0 a′

)
, (27)

a :=

⎛⎜⎜⎝
−R11

11 −R12
11 I1β

11 uβdβ

−R21
11 −R22

11 I2β

11 uβdβ

I1β

11 uβdβ I2β

11 uβdβ −Rαβ

11 uαuβdαdβ

⎞⎟⎟⎠, (28)

a′ := diag(0,−1,−1), (29)

B =
(

0 b
−bT 0

)
, (30)

b :=

⎛⎜⎜⎝
−I1β

11 uβ −I1β

12 uβ −I1β

13 uβ

−I2β

11 uβ −I2β

12 uβ −I2β

13 uβ

Rαβ

11 uαuβdα Rαβ

12 uαuβdα Rαβ

13 uαuβdα

⎞⎟⎟⎠, (31)

C =
(
H 0
0 〈R〉

)
, (32)

〈R〉i j := uαR
αβ
i j uβ. (33)

Note that A and C are symmetric while B is skew, and that
all these matrices depend implicitly on the chosen direction n
through the transformation Eq. (24).

The linearized system of field equations (26) describes how
a system recovers from a perturbation in the x1 direction,
under the assumption of translation invariance orthogonal to
x̂1, for example, how the system behaves near the boundary
of a superconductor with normal x̂1, subject to an external
magnetic field. We seek solutions of the form

�w(x1) = �ve−μx1 (34)

where �v ∈ C6 is a constant vector and reμ > 0, so that all
fields decay to their ground-state values as x1 → ∞. We inter-
pret �v as a normal mode of the system about the chosen ground
state, μ as the associated field mass, and λ = 1/μ as the
associated length scale. Given such a solution, let �z = −μ�v.
Then (�v, �z) is a solution of the linear equation,

�

(
v

z

)
= μ�

(
v

z

)
, (35)

where � and � are 12 × 12 matrices,

� :=
(

B A
−I6 0

)
, � :=

(
C 0
0 I6

)
. (36)

If C is invertible (as assumed in [21]), then � is invertible
allowing Eq. (35) to be written as an eigenvalue problem.
However, if the potential Fp is independent of θ12 (H3α =
H33 = 0), as for the nematic potential in Eq. (3), then C is
singular. Hence, we must solve the generalized eigenvalue
problem in Eq. (35).

Given an eigenvector (�v, �z) of Eq. (35) corresponding to a
nonzero eigenvalue 1/μ, �z = −μ�z and Eq. (34) is a solution
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of Eq. (26). We conclude, therefore, that the length scales as-
sociated will decay to the ground state in the fixed direction x1

are those eigenvalues with positive real part. Such eigenvalues
are solutions of the degree 12 polynomial equation

det(A − λB + λ2C) = 0. (37)

It follows from the symmetry properties of A,B, C that
Eq. (37) is actually a real degree six polynomial equation in
λ2, so if λ is a solution, so are −λ, λ, and −λ. Note that 0 is an
eigenvalue of � of algebraic multiplicity 2 with eigenvector
(0, . . . , 0, 1, 0, 0). This should be discarded as it does not
correspond to a solution of Eq. (26). Of the remaining 10
eigenvalues, in general five have positive real part: these are
the five length scales we seek. Let us order them by decreasing
real part λ1, λ2, . . . , λ5. We call �v1, the mode corresponding
to the longest length scale λ1, the dominant mode since,
generically, at large x1, this will dominate the solution of
Eq. (26). Depending on the details of the defect being studied,
it may be, however, that the dominant mode is unexcited, so
subleading modes �v2, �v3, . . . may still be phenomenologically
important.

It is important to note that we have retained all three
components for pi, as it was shown in [21] that reducing to
a single component does not, in general, yield a solution of
the equations of motion.

Note that in the case of a more conventional multicompo-
nent superconductor, where Q12 = 0 and Q11 = Q22 is real,
the linear equations decouple into the London model for
pi, governing the magnetic response, and three matter equa-
tions for (ε1, ε2, θ�). This is handled by the usual approach
of taking the London limit (see e.g., [22]), leading to a sin-
gle magnetic field penetration length and multiple coherence
lengths, each associated with different linear combinations of
density fields [23,24].

The less restrictive case, where Q12 = 0 and Q11, Q22

are real was considered in [25–27], in general leading to a
modified London model, a pair for (pi, θ�), and two matter
equations, a pair for (ε1, ε2). This gives the familiar multiple
coherence lengths, but also multiple magnetic field penetra-
tion lengths, due to the hybridization of the matter modes and
magnetic modes.

In general (and for nematic systems), the linear equa-
tions are all coupled, leading to modes that are linear
combinations of all physical quantities. The implication of
this is that the system can no longer be characterized by a dis-
tinct magnetic field (London) penetration depth and coherence
length. Instead, the magnetic and density modes are mixed
and one should construct a linear combination of the density
and gauge fields to find the normal modes. In other words, the
magnetic field decay will have several length scales that are
shared with the matter fields.

Restricting to the specific case of nematic superconductors,
Fp is independent of θ12 leading to an additional two zero
modes. Hence, for nematic superconductors we always have
exactly four decaying modes, four equivalent growing modes
and four massless (or zero) modes. The two additional zero
modes point purely in the phase difference θ� direction, this
mode is massless due to the absence of θ12 in Fp in Eq. (3).
Hence for the linearization to be valid for a given excitation,
one must be careful to match the value of δ12 to the value the

phase difference θ12 decays to as x1 → ∞, where changing
δ12 is equivalent to rotating the system around the z axis, due
to the symmetry in Eq. (13).

Hence, in the nematic case we have four decaying modes
and can rewrite the key linear quantities as

εα =
4∑

i=1

ci�vα
i e−μix1 ,

Blin =
4∑

i=1

−μici
(
0, �v4

i ,−�v5
i

)
e−μix1 , (38)

where ci are constants and Blin is the linear magnetic field.
We have plotted the modes and length scales for δ12 = 0 and
various values of η in the basal plane [x̂1 = (cos θ, sin θ, 0)]
in Fig. 1 and in a tilted plane [x̂1 = (cos θ, sin θ, 1)/

√
2] in

Fig. 2. These plots have regions where a subset of the length
scales have nonzero imaginary part (dashed lines), as well as
mixed modes (discussed in the next section).

The nonzero imaginary part is due to the masses μi = 1/λi

associated with the mixed modes �vi being complex. This leads
to the fields oscillating as they decay. Note that the period of
such oscillations is large in comparison to the decay rate of
the modes.

A. Mixed modes

In an isotropic multicomponent superconductor, the nor-
mal modes vi are separated into matter modes: those
associated with the coherence length or the modulus of the
order parameters, and magnetic modes: those associated with
the magnetic penetration depth or the massive vector field
leading to the magnetic field. Our analysis reproduces these
separate real length scales (coherence length and magnetic
penetration depth) in the isotropic limit Qαβ

i j = δαβδi j .
Away from the isotropic limit, and in particular for the case

of nematic superconductors, the normal modes are associated
with linear combinations of magnetic and matter degrees of
freedom. Hence, we should consider all excitations of our
system in terms of these mixed modes �vi and their corre-
sponding length scales λi. This leads to important physical
consequences, e.g., a density excitation can only be excited
through coupled modes and hence induces magnetic field fluc-
tuations. This leads to excitations that in the isotropic model
would feature purely excited matter fields, such as domain
walls and defects, spontaneously inducing localized magnetic
field, as seen in [21,28] and noted in [29].

In addition, if we apply an external field H , such as for
the Meissner state or vortices, if the magnetic component of
the excited coupled modes is not parallel with H , the induced
magnetic field will exhibit local twisting. For example, take
the Meissner state where the boundary conditions ensure B =
H , but the excited linear modes (which dominate far from
the boundary) have the magnetic field pointing in a different
direction. Hence, as B decays it will twist direction, away
from H on the boundary, to align with the excited mode
with longest length scale. A similar effect will happen for
vortices (by a similar argument), where B twists as it decays
spatially from the centre of the vortex line. We will refer to
excited magnetic field orthogonal to the vortex line direction
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FIG. 1. Plot of the linear modes and length scales in the basal plane with spatial dependence x̂1 = (cos θ, sin θ, 0), for successive values
of η and δ12 = 0. Note that rotations θ are equivalent to rotating δ12 by 2θ instead, due to Eq. (13). The top panels plot the masses (inverse
length scales) μi = 1

λi
. Each μi is a different color, with the real part plotted as a solid line and the imaginary part as a dashed line of the same

color. The bottom panel plots the mixing angle θ i
m of each mode, where the colors of the modes match the colours of the corresponding mass

above. The dominant mode is the highest solid line in the top plot and maximum coupling occurs at π/4 for the bottom plot. So for example,
for small θ , η = 0.8 the dominant mode exhibits strong mixing.

or applied field H as spontaneous magnetic field, as without
mixed modes these would not be excited.

It is useful to have a measure of how mixed a given mode
is. By ignoring the p1 contribution, we can achieve this by
considering a general mode as a vector in a five-dimensional
space (ε1, ε2, ϑ, p2, p3), where we define the quantity θ i

m as
the mixing angle of the ith mode,

cos θ i
m =

√∣∣v1
i

∣∣2 + ∣∣v2
i

∣∣2 + ∣∣v3
i

∣∣2︸ ︷︷ ︸
matter modes

, sin θ i
m =

√∣∣v4
i

∣∣2 + ∣∣v5
i

∣∣2︸ ︷︷ ︸
magnetic modes

.

(39)

Conceptually, the mixing angle is then the angle that the five-
dimensional vector makes with the two regions in this space
representing purely matter and purely magnetic modes.

This allows us to classify each mode as either purely mat-
ter (θ i

m = nπ ), purely magnetic (θ i
m = π/2 + nπ ) or mixed

(θ i
m �= nπ/2), where n ∈ Z. The angle can be used as a nu-

merical value that determines the strength of the mixing.
We can see a plot of this quantity for the basal plane in

Fig. 1 and away from the basal plane in Fig. 2. The lower
panels of these plots show the mixing angle of each mode.

Note that the modes are particularly mixed in the complex
regions of the plot. This is due to decaying length scales
appearing in complex conjugate pairs with equivalent modes.
This means two modes must have equivalent decay coeffi-
cients in the complex region, bringing together two otherwise
mostly matter and mostly magnetic modes.

B. Leading modes

The long-range behavior of each field, in the x1 direction,
is governed by the eigenvector �v1 whose eigenvalue μ1 has
smallest positive real part. If this eigenvalue is complex we
would expect the fields to oscillate as they decay. However, the
period of the oscillations is long in comparison to the decay.
In addition, the oscillations are dependent on the choice of δ12.
These two complications ultimately lead to oscillations being
unobservable in practice for the parameters we consider in the
full nonlinear model.

For nematic superconductors it is more interesting to con-
sider the mixing angle of the leading mode. The mixing angle
θ1

m of the leading length scale is plotted in Fig. 3. For the ne-
matic model we can see in Fig. 3 that for small η matter modes
dominate and for large η magnetic modes dominate. How-
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FIG. 2. Plot of the linear modes and length scales on a half plane with spatial dependence x̂1 = (cos θ, sin θ, 1)/
√

2, for successive values
of η and δ12 = 0. Note that rotations θ are equivalent to rotating δ12 by 2θ instead, due to Eq. (13). The top panels plot the masses (inverse
length scales) μi = 1

λi
. Each μi is a different color, with the real part plotted as a solid line and the imaginary part as a dashed line of the same

color. The bottom panel plots the mixing angle θ i
m of each mode, where the colours of the modes match the colours of the corresponding mass

above.

FIG. 3. Contour plots of the mixing angle θ1
m given in Eq. (39), corresponding to the leading mode, for δ12 = 0. The position corresponds

to the (x, y) components of the normal unit three-vector x̂1 ∈ S2, where we have projected the northern hemisphere of S2 to a flat disk. Due to
reflection symmetry the southern hemisphere will match. Note that changing δ12 is equivalent to rotating the plot around the origin by δ12/2.
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ever, for η ≈ 1 we observe that the leading mode is highly
coupled for certain orientations. Hence, we would expect
extreme orientation dependence for the interactions for these
parameters.

Finally, the dominant eigenvalue will determine the direc-
tion of the magnetic field at long range. If there is a disparity
between the field direction of the nonlinear part of the defect
(for example, the direction of external field for a Meissner
state), then the magnetic field will exhibit twisting as it de-
cays from x1 = 0 (nonlinear dominated) to x1 → ∞ (linear
dominated). Note that this assumes that the leading mode is
excited by the defect. If we again return to the basal plane,
the purple mode in each plot is a purely magnetic mode,
corresponding to in-plane magnetic field in the direction x̂2 =
(− sin θ, cos θ, 0). Hence if we apply an external magnetic
field in the orthogonal direction to this (in the x̂3 direction),
this mode will never be excited, meaning a different linear
mode must dominate at long range.

V. MEISSNER STATE

We turn now to the effect of applying a weak external
field H to a nematic superconductor, requiring us to solve
the full nonlinear equations of motion in Eq. (7). We will
model a superconductor/insulator boundary as a semi-infinite
superconductor � occupying the half space x1 � 0, where
x̂1 is the inward pointing normal. An external magnetic field
H = H0x̂3, orthogonal to the boundary normal (x̂1 · x̂3 = 0)
is applied. This excites the superconducting fields that decay
orthogonally from the boundary into the bulk of the system,
dimensionally reducing the problem to a one-dimensional
variational problem on x1 ∈ [0,∞).

We first perform a transformation of coordinates from the
crystalline basis (x, y, z) to the excitation basis (x1, x2, x3).
This coordinate transformation is performed by transforming
the anisotropy matrices in Eq. (1) according to Eq. (24). We
assume our fields are only spatially dependent on x1 and then
seek minimizers of the Gibbs free energy G within �,

G =
∫

�

F − H
∫

�

B. (40)

Note that
∫
�

B is quantized up to a surface term as it is equiv-
alent to the first Chern number (winding number), multiplied
by a constant. Hence, the equations of motion are independent
of H in the bulk of the superconductor, which only has an
effect on the boundary of the system. These boundary condi-
tions are a result of x1 < 0 being an insulator and are given in
the Appendix B. As we focus on the long-range behavior of
the fields, we will ignore additional boundary terms that result
from modification of the pairing near the surface [30,31].

While we have assumed that the fields are invariant in
(x2, x3) directions, we cannot make the standard assumption
that A3 = 0. While this would hold in an isotropic model, in
an anisotropic model this would imply B2 = 0, which due
to nontrivial coupling of modes would not in general be a
solution of the equations of motion. This requirement suggests
that the magnetic field will not always be in a fixed direction,
but may twist as it penetrates the material.

The set of parameters that defines a given solution com-
prises the normal vector x̂1, the external magnetic field H =

H0x̂3, the chosen parameter value for η, and finally the chosen
phase difference δ12 on the right boundary in the bulk (x1 �
0). Note that the choice of phase difference on the boundary
is not physical, as due to θ12 being massless, there is no
restriction on the value it takes. Hence, one should minimise
over the parameter δ12. Note that if � were truly infinite, δ12

would have no effect on the energy, as the massless decay
mode for θ12 would allow it to decay linearly at no energy
penalty over the infinite distance.

Finally, we must ensure that the external field strength
H0 < Hc1 , Hc2 . Namely, the external field should be weak
enough such that vortices or the normal state are not ener-
getically preferred. This is the case for all our simulations; we
will discuss how to explicitly calculate Hc1 and Hc2 in a later
section.

Meissner state solutions

All Meissner state solutions were found by choosing the
parameters (x̂1, x̂3, H0, η), then transforming the anisotropy
matrices as described in Eq. (24) according to our chosen
orthonormal basis {x̂1, x̂2, x̂3}. We then solved the resulting
1-dimensional boundary problem (where H purely fixes the
boundary conditions), using a Newton flow algorithm [32]
which we describe briefly in Appendix A.

We first present Meissner state solutions for the basal plane
for η = 1.6 in Fig. 4 with normal x̂1 = (1, 0, 0) and H0 =
1.0, for various directions x̂3 of applied magnetic field. For
x̂3 = (0, 1, 0), plotted in red, we find the minimal value for
the phase difference on the boundary to be δ12 = π . If we
consider the corresponding length scales, plotted in Fig. 1,
we would expect the leading length scale to be complex.
However, the mixed eigenvalue (linear mode) couples B2, ρ1,
and ρ2 and is not excited. This can be seen in the solution as
there are only two decoupled modes remaining, one purely
magnetic for B3 and one purely matter for ρ1 + ρ2. Hence
the solution acts similarly to the isotropic GL model, where
ψ1 and ψ2 have equivalent coherence length, which is exactly
what is observed in the numerical solution.

If we then consider x̂3 = (0, 0, 1), plotted in green, the
minimal value for phase difference is δ12 = 0, giving a cou-
pled real mode that is excited. This coupled mode is mixed
between B3 and ρ1 − ρ2, so that a strong magnetic field im-
plies a large disparity between the condensate magnitudes.
We observe exactly this in the numerical solution, where ρ1

is lower than its ground-state value and ρ2 is higher than
its ground-state value. In addition, another feature that often
occurs in tandem with mode mixing is field inversion, which
we observe in the condensates and magnetic field.

Finally for x̂3 = (0, 1, 1)/
√

2, plotted in blue, we also get
δ12 = 0, but with all modes excited. As the modes with mag-
netic component have different length scales, and hence decay
at different rates, we observe magnetic field twisting. This
can be observed locally as |B2| > 0, representing the mag-
netic field orthogonal to the direction of the applied magnetic
field B̂3. We can represent this local magnetic twisting by an
angle,

tan θt = B2/B3, (41)

which we call the twisting angle. Note that θt = 0 means
the magnetic field is aligned with H , while this choice is
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FIG. 4. Plot of the Meissner state, with an external field of strength H0 = 1 and η = 1.6. The applied field is applied in the three directions
x̂3 = (0, 1, 0) (red), x̂3 = (0, 0, 1) (green), and x̂3 = (0, 1, 1)/

√
2 (blue). We have plotted the total magnetic field |B|, magnetic field parallel

to the applied magnetic field B3 and orthogonal B2, as well as the angle between the total magnetic field and the applied field (twisting angle).
Finally we have plotted the normalized free energy density, condensate magnitudes ρ1 and ρ2, and the phase difference θ12.

arbitrary this choice makes the most sense due to the boundary
condition B(0) = H or θt (0) = 0. We have plotted this for the
Meissner state in blue and see that it changes as the fields
decay into the bulk of the material. The linearization predicts
for δ12 = 0 that the leading length scale corresponds to the
mixed mode, with magnetic component in the direction of B3.
This suggests that the twisting angle will decay towards π/4,
which matches the numerical result.

Other results in the basal plane match the above anal-
ysis, so we now consider solutions away from the basal
plane. In Fig. 5 we can see solutions for η = 1 with normal
x̂3 = (1, 0, 1)/

√
2. The applied magnetic field is H = H0x̂3

with H0 = 0.3. For x̂3 = (−1, 0, 1)/
√

2, plotted in red with
δ12 = 0, we see that the length scales have a leading mode
that is mixed in the direction of the applied field. This is
excited, causing disparity between the two condensates. For
x̂3 = (0, 1, 0), plotted in green with δ12 = π , only a purely
magnetic and purely matter mode are excited, causing no
twisting and the condensates have equivalent behavior. Finally
x̂3 = ( −1

2 , 1√
2
, 1

2 ), plotted in blue with δ12 = 1.156. The blue
line is very different from the basal plane case, with leading
length scale having a combination of x̂2 and x̂3 and as pre-
dicted we see the twisting angle change as the fields decay.

The Meissner state solutions exhibit clear magnetic field
twisting that is predicted by the linearization. However, we

have seen that to understand how to apply the linearization re-
quires minimizing over δ12 first. This limits its usefulness and
also mutes some of the interesting behavior like oscillations.
Nonetheless, the predictable disparity between condensate
magnitudes and the existence of magnetic field twisting are
key experimental signatures of nematic systems. Our analysis
also suggests that giving the phase difference mode a mass,
by adding a term dependent on θ12 to Fp would simplify the
process of predicting the Meissner state and will likely add
additional behavior predicted by the linearization.

VI. VORTICES AND SKYRMIONS

We turn now to topologically nontrivial energy minimizers.
We will focus on minimizers that exhibit winding n = 1 − 4
in the form of single vortices and vortex bound states. By
this we mean that we will model the cross-sections of vortex
strings in the three-dimensional model defined in the free
energy Eq. (1). We will assume that after transforming our co-
ordinate system, according to Eq. (24), that the vortex string is
in the x3 direction. Hence, we assume that our fields ψα (x1, x2)
and Ai(x1, x2) vary only in the cross-section of the string and
are translation invariant in the x3 or string direction.

In an isotropic Ginzburg-Landau model, all choices of x̂3

are equivalent due to rotational symmetry. In contrast, the
anisotropy of a nematic system [defined by Eq. (2)], breaks

FIG. 5. Plot of the Meissner state with boundary normal x̂1 = (1, 0, 1)/
√

2 and external field strength H0 = 0.3, η = 1.0. The applied
field is applied in the three directions x̂3 = (−1, 0, 1)/

√
2 (red), x̂3 = (0, 1, 0) (green), and x̂3 = (− 1

2 , 1√
2
, 1

2 ) (blue). We have plotted the total
magnetic field |B|, magnetic field parallel to the applied magnetic field B3 and orthogonal B2, as well as the angle between the total magnetic
field and the applied field (twisting angle). Finally we have plotted the normalized free energy density, condensate magnitudes ρ1 and ρ2, and
the phase difference θ12.
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rotational symmetry, meaning x̂3 becomes a parameter of the
model. Note that only x̂3 is a parameter, as the choice of x̂1 and
x̂2 just serves to pick a coordinate system on the cross-section.

The standard approach is then to set A3 = 0, which fixes
the magnetic field to be in the x3 direction (B1 = B2 = 0).
However, we have already shown that in general this is not
a solution of the equations of motion. Hence, we will retain
all three components of A, which will allow the magnetic field
to twist direction around the vortex. Note that the magnetic
flux has the topological quantization condition

1

2π

∫ ∞

−∞
B3 dx1 dx2 = n, (42)

where n is the winding number of the system, representing the
number of vortices. The other components in contrast must
topologically integrate to zero

∫
B1 = ∫

B2 = 0.
The model’s parameters exist within a four-dimensional

family: the potential parameter η > 0, the boundary phase
difference δ12 ∈ [0, 2π ], and the unit normal to the plane x̂3.
The n = 1 and 2 vortex solutions were previously found for
η = 3, x̂3 = ẑ, δ12 = 0 [4]; however, they assumed that A3 =
0. While in general this assumption is false, it does hold for
the specific choice x̂3 = ẑ (the basal plane) as we will show,
hence their results hold despite the assumption. In Ref. [4]
it was demonstrated that vortex solutions take the form of
a pair of spatially separated fractional flux vortices called
skyrmions (for a detailed discussion of flux quantization in
multicomponent system, see e.g., [33]). We will study these
solutions in more detail, for various parameters, as well as
solutions for higher winding number. Note that the connection
between skyrmion solutions and models that exhibit coupled
length scales has been previously considered in [27].

A. Skyrmions

Skyrmions form when integer flux vortices split into spa-
tially separated fractional vortices in each component ψα ,
such that their zeros (points at which ψα = 0) are not coinci-
dent. Since any such field configuration never attains the value
(ψ1, ψ2) = (0, 0) ∈ C2, we may construct from it a gauge
invariant field � : R2 → S2,

�(x1, x2) = (ψ̄1ψ2 + ψ1ψ̄2, i(ψ̄1ψ2 − ψ1ψ̄2), |ψ2|2 − |ψ1|2)

|ψ1|2 + |ψ2|2 .

(43)

We may then describe the field using the gauge invariant quan-
tities �, ρ =

√
|ψ1|2 + |ψ2|2, and J , the supercurrent, which

is conveniently regarded as a one-form on R2. In order for
a two-dimensional solution on the physical space R2 to have
finite energy, as |x| → ∞, � and ρ must tend to constants
�0 ∈ CP1, ρ0 ∈ R and J should tend to 0. Since � tends to
a constant on the circle at spatial infinity, we may extend it
continuously to a maps, still denoted �, from the one-point
compactification R2 ∪ {∞} ∼= S2 to S2. Any such map has an
integer valued winding number Q(�), the number of times
the map wraps the domain two-sphere around the target two-
sphere, and this quantity is a topological invariant of the map.

Rewriting the magnetic field using the gauge invariant
quantities we get

B =
(

1

2
��ω − d

(
J

ρ2

))
, (44)

where ω is the usual area form on S2, and �∗ω is its pullback
to R2 by the map �. It then follows, by Stokes’s theorem, that
the total magnetic flux through the plane is∫

�

B = 1

2

∫
�

��ω =: 2πQ(�), (45)

where we have observed that the winding number of � equals
the total signed area of its image divided by 4π (the area of
S2). For numerical purposes, it is convenient to use the integral
formula

Q(�) =
∫
R2

iε ji

2π |�|4
(|�|2∂i�

†∂ j� + �†∂i�∂ j�
†�

)
d2x,

(46)

where � = (ψ1, ψ2) (see [34] for a detailed derivation in the
N-component case). Note that the expression on the right is
invariant under � �→ λ� for any function λ : R2 → C\{0},
so this really is a function of �. We call Q the Skyrme charge
or skyrmion number. Note that this integral is well defined
only if the cores of the fractional vortices do not coincide and
that, in this case, it is precisely the number of magnetic flux
quanta in the field configuration.

B. Solutions

To find the vortex solutions we transform the anisotropy
matrices according to Eq. (24) and use the same Newton flow
algorithm described in Appendix A. We will first consider
vortex solutions in the basal plane, with normal x̂3 = (0, 0, 1).
The n = 1 solution for η = 3 with boundary phase difference
δ12 = 0 is plotted in figure Fig. 6. While this solution has
been previously considered [4], the intricate symmetry of the
system was not discussed. So we can ask which, if any, of
the symmetries in the symmetries section leave this vortex
solution unchanged? Such a symmetry must be orientation
preserving (else it maps n = 1 configurations to n = −1 con-
figurations), and must leave θ12 unchanged (else it changes
the boundary condition). The sole candidate for δ12 = 0 is
the composition of Eqs. (12) and (13) (in either order as they
commute),

ψ̃α (x1, x2) = ψα (x1,−x2), (47)

Ã(x1, x2) = ( − A1(x1,−x2), A2(x1,−x2),−A3(x1,−x2)).

(48)

The numerical solution in Fig. 6 exhibits precisely this reflex-
ion symmetry, about the axis connecting the two fractional
vortices. The mixed symmetry in Eq. (13) implies that chang-
ing the boundary phase difference δ12 is equivalent to rotating
the basal plane. Hence, rotating δ12 in Fig. 6 causes the re-
flexion axis of the solution to rotate by δ12/2, which can be
seen in Fig. 6. Also, while the energies of the vortex and
antivortex are degenerate, the symmetry that produces the
antivortex from the vortex reflects the free energy density,
magnetic flux magnitude |B3| and phase difference θ12 in
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FIG. 6. Contour plots of degenerate single vortex/antivortex solutions in the basal plane x̂3 = (0, 0, 1). The top row fixes the boundary
phase difference to be δ12 = 0, while the bottom row fixes it to be δ12 = π

2 . For each solution we have plotted the (normalized) free energy
density, magnetic flux B3, condensate magnitudes ρ1 and ρ2, and the phase difference θ12. The solutions form skyrmions such that Q = 1. Note
that there is no in plane magnetic field in the basal plane B1 = B2 = 0.

the line orthogonal to the symmetry axis of the vortex so-
lution (y axis for δ12 = 0) as can be seen in Fig. 6. Finally,
we note that there is no spontaneously generated in plane
magnetic field in the basal plane. This can be seen by substi-
tuting the translationally invariant ansatz for the basal plane
into the nonlinear equations of motion in Eq. (7), leading
to B1 = B2 = 0 being a trivial solution despite B3 �= 0 and
ψα �= uα . In addition, this is predicted by the length scales,
as the mixed or coupled magnetic modes in the basal plane
couple only B3 and the matter fields, whereas B1 and B2

completely decouple.
We have plotted the n = 2, 3, 4 numerical solutions for

η = 3 in the basal plane in Fig. 7. Unlike standard Ginzburg-
Landau theory, the solutions for n � 2 form bound states.
This can be seen by considering the normalized free energy
of each configuration F̂n = Fn−F0

n , where Fn is the total free
energy of the solution with winding number n. In the basal
plane with η = 3, we have the energies F̂1 = 7.42, F̂2 = 7.30,
F̂3 = 7.33, and F̂4 = 7.28, such that for even winding number
n, the normalized free energy always decreases. This demon-
strates that the bound state has lower energy than infinitely
separated vortices, leading to a stable solution. We can see in
Fig. 7 that the n = 1 skyrmions form pairs for n = 2, which
subsequently form chains for higher even degree solutions.
For odd degree, however, one of the vortices cannot form a
pair and is either repelled away from the chain or deforms it,
causing the normalized energy per degree to increase slightly.

We have also plotted the solutions for η = 1 in the basal
plane in Fig. 8. We see that skyrmions are not formed (Q = 0);
instead we get bound states of distorted composite vortices.
Due to the highly coupled length scales, seen in Fig. 1, the
vortices do exhibit magnetic field inversion, which can cause
bound states, as discussed in [25,35].

We now turn to vortex solutions away from the basal plane.
If we consider the equations of motion in Eq. (7) after per-
forming a change of coordinates, we notice that B1 = B2 = 0
is not trivially a solution if we assume that B3, ψα �= 0 and
x̂3 �= ẑ. In addition, if we consider the linearization in a plane
away from the basal plane, then the linear modes mix in-
plane magnetic fields with the matter fields. This suggests that
fluctuating matter fields can induce spontaneous in plane mag-
netic fields (orthogonal to the vortex line), causing magnetic
field twisting.

We have plotted the n = 1 solution for η = 3 on the half
plane x̂3 = (0, 1, 1)/

√
2 in Fig. 9. We can see substantial

magnetic field twisting away from the vortex line. Note that
the magnetic field is always orthogonal to the plane at the
zero of a condensate (ρ1 = 0 or ρ2 = 0). We can represent
the twisting as an angle, similar to the Meissner state,

tan θt =
√

B2
1 + B2

2/B3. (49)

For η = 3 we observe spontaneous magnetic fields B1 and
B2 greater than 10% of the orthogonal field B3. This effect
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FIG. 7. Contour plot of n = 2 − 4 bound states for η = 3, in the basal plane x̂3 = (0, 0, 1) with boundary phase difference value δ12 = 0.
The normalized energies of the solutions are F̂1 = 7.42, F̂2 = 7.30, F̂3 = 7.33, and F̂4 = 7.28. The solutions exhibit fractional vortex splitting
or skyrmions (Q = n), that form bound states.

FIG. 8. Contour plots for the n = 1 − 4 solutions for η = 1, in the basal plane x̂3 = (0, 0, 1) with boundary phase difference value δ12 = 0.
The solutions do not form skyrmions (Q = 0), but do exhibit magnetic field inversion.
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FIG. 9. Contour plot for η = 3, in the half plane x̂3 =
(0, 1, 1)/

√
2 with boundary phase difference value δ12 = 0. The

coordinates are x̂1 = (1, 0, 0) and x̂2 = (0,−1, 1)/
√

2. Note that
spontaneous in-plane magnetic field is generated from the coupled
modes, causing the magnetic field to twist significantly.

is easily strong enough to be detected in experiment, and
could be used to point towards materials that exhibit nematic
superconductivity.

The mixed symmetry in Eq. (13), combines rotations about
the z axis, which rotates the normal x̂3, with rotations of the
phase difference θ12. This produces a one-parameter family of
energetically equivalent vortex solutions. This suggests that
we should try changing orientation or δ12. We know that
vortex bound states are mediated by their long-range forces.
Thus, if we consider the values of η that gave the leading mode
to be mixed and heavily orientation dependent, this region will
be affected most by changing orientation. Thus by checking
Fig. 3 we can see that η ≈ 1 is the region we expect the most
effect. By comparing the resulting vortex states in Figs. 13 and
14 we can see a marked difference in the structure. When the
normal to the vortex plane is x̂1 = (0, 1, 1)/

√
2 in Fig. 13 we

see a tight skyrmion structure for the bound state. However,
when the normal is x̂1 = (1, 0, 1)/

√
2 we observe a loosely

bound composite vortex structure. Note that these simula-
tions were run with a fixed phase difference δ12 = 0 on the
boundary. Due to the mixed symmetry, rotating this would be
equivalent to rotating the normal.

If we consider the higher winding solutions for η = 3 in
Figs. 10–12 we see that the bound states are still skyrmion
chains, but of a different form. For η = 1, plotted in Fig. 13
the bound states are now skyrmion clusters, unlike in the
basal plane. Both of these parameters also exhibit significant
magnetic field twisting.

Finally, we note that if the vortex plane is rotated such that
the normal lies in the basal plane, we find that the interest-
ing physics disappears and the solutions act very similar to
an isotropic model. This is unsurprising, as the length scale
calculation demonstrated mixed modes with magnetic com-
ponent purely in the z direction and hence are never excited.

FIG. 10. Contour plot of an n = 2 bound state for η = 3, in the
half plane x̂3 = (0, 1, 1)/

√
2 with boundary phase difference value

δ12 = 0. The coordinates are x̂1 = (1, 0, 0) and x̂2 = (0,−1, 1)/
√

2.
Note that spontaneous in-plane magnetic field is generated from the
coupled modes, causing the magnetic field to twist.

The magnetic mode in y and x directions decouple, allowing
the condensate to act according to its decoupled length scales.

VII. MAGNETISATION AND CRITICAL FIELDS

We turn now to the effect of applying an increasing external
field H ∈ R3 to a nematic superconductor. The material has
three possible phases separated by critical values of external
magnetic field strength H0 = |H |. For H0 < Hc1 (lower crit-
ical field) the material exhibits the Meissner state, discussed

FIG. 11. Contour plot of an n = 3 bound state for η = 3, in the
half plane x̂3 = (0, 1, 1)/

√
2 with boundary phase difference value

δ12 = 0. The coordinates are x̂1 = (1, 0, 0) and x̂2 = (0,−1, 1)/
√

2.
Note that spontaneous in-plane magnetic field is generated from the
coupled modes, causing the magnetic field to twist.
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FIG. 12. Contour plot of an n = 4 bound state for η = 3, in the
half plane x̂3 = (0, 1, 1)/

√
2 with boundary phase difference value

δ12 = 0. The coordinates are x̂1 = (1, 0, 0) and x̂2 = (0, −1, 1)/
√

2.
Note that spontaneous in-plane magnetic field is generated from the
coupled modes, causing the magnetic field to twist.

above, where the magnetic response is limited to the boundary
of the system. For Hc1 < H0 < Hc2 vortices or skyrmions enter
the system. Finally for H0 > Hc2 , the material becomes a nor-
mal conductor ψα = 0, with B = H . The only caveat to this is
if the critical field for vortex state formation is larger than the
thermodynamical critical magnetic field then the system acts
as a type I superconductor exhibiting a single phase transition
from the Meissner state directly to the normal state. In this
section we will approximate the values of Hc1 and Hc2 .

A. Lower critical field Hc1

The lower critical field Hc1 determines the point at which
it becomes optimal, in the bulk, to have a vortex structure,
as opposed to the familiar constant superconducting ground
state ψα = uα . Specifically, we seek the minimum value of H0

such that we can find a vortex solution whose bulk Gibbs free
energy per unit area is equivalent to that of the homogeneous
state ψα = uα , Ai = 0.

Given an external field direction Ĥ , we can calculate the
lower critical field Hc1 by considering the normalized Gibbs
free energy Ĝn = Gn − G0 of the possible vortex states in the
plane with normal Ĥ . Note that Gn is the minimal Gibbs free
energy for the winding number n. Hence, we seek the value
of external field strength H0 such that Gn = 0 for some n. By
rearranging Eq. (40) we can see that this occurs at

Hc1 = min
n

{F̂n/(2π )}. (50)

where minn is the minimum with respect to the winding num-
ber n and F̂n is the normalized free energy.

The above method requires finding the global F minima
for all winding numbers n, which is impractical in practice.
Hence, we will assume that F̂1 is sufficiently close to the min-
imum to give a good approximation for Hc1 . We have plotted

the values for Hc1 calculated using the above approximation
for the basal plane in Fig. 15.

B. Upper critical field Hc2

To find the upper critical field Hc2 , we must consider the
standard conductor solution, ψα = 0 and B = H , which is
always a solution of the equations of motion in Eq. (7). If
H0 � Hc2 this solution becomes linearly stable, but it is unsta-
ble below this critical external field strength.

We return to the linearization; however, unlike the work
presented in the linearization section, we must linearize
Eq. (7) about ψ = 0, with A such that ∇ × A = H ,

−Qαβ
i j DiDjψβ − η2ψα = 0. (51)

We can then assume that Hc1 is the largest value of H0 for
which Eq. (51) has solutions other than ψα = 0. We will use
the same method as in the linearization section to rotate the
orthonormal basis, setting the applied magnetic field direction
to be x̂3 such that H = H0x̂3 and we define the SO(3) matrix M
with rows (x̂1, x̂2, x̂3) where x̂1, x̂2 can be any unit vectors that
are orthogonal to x̂3. Hence we can write our new coordinate

system along with a rescaling xi :=
√

H0
2 Mx, such that we can

fix our gauge and write the gauge field,

A =
√

H0

2
(−x2, x1, 0). (52)

This leads to Eq. (51) becoming

−H0

2
Qαβ

i j DiD jψβ − η2ψα = 0. (53)

This gives the transition Hc2 to occur at

Hc2 = 2η2/λ (54)

where λ is the lowest eigenvalue of the operator O,

O
(

ψ1

ψ2

)
= −

(
Q11

i j DiD j Q12
i j DiD j

Q21
i j DiD j Q22

i j DiD j

)(
ψ1

ψ2

)
. (55)

We seek the lowest eigenvalue of the differential operator O,
which can be found analytically for simple Q or particular
choices of x̂3, but in general must be found numerically. We
first note that [O, I2 ⊗ iD3] = 0, so we can seek simultaneous
eigenstates of O and I2 ⊗ iD3. Hence we can assume

ψ = ψ (x1, x2)eikx3 (56)

for some k ∈ R. We will assume that k = 0, so that ψ is
translation invariant in the direction of x̂3. We can then make
use of ladder operators, an approach used for numerous other
models [36,37] to find Hc2 , which we define as,

a := i

2
(D1 + iD2), a† = i

2
(D1 − iD2), (57)

and the number operator N := a†a. These satisfy the relations

[N, a†] = a†, [N, a] = −a, [a, a†] = 1. (58)

Hence, writing the operator in terms of the ladder operators,

O = Lαβ (a†)2 + Pαβa2 + Rαβ (a†a + aa†) + Sαβ (59)
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FIG. 13. Contour plots for n = 1 − 4 bound state for η = 1, in the half plane x̂3 = (0, 1, 1)/
√

2 with boundary phase difference value
δ12 = 0. The coordinates are x1 = (1, 0, 0) and x2 = (0,−1, 1)/

√
2. Note that spontaneous in pane magnetic field are generated from the

coupled modes, causing the magnetic field to twist significantly.

where we have defined

Lαβ = Qαβ

11 − Qαβ

22 + i
(
Qαβ

12 + Qαβ

21

)
, (60)

Pαβ = Qαβ

11 − Qαβ

22 − i
(
Qαβ

12 + Qαβ

21

)
, (61)

Rαβ = Qαβ

11 + Qαβ

22 , (62)

Sαβ = i
(
Qαβ

12 − Qαβ

21

)
. (63)

We now define the function |0〉 := e−(x2
1+x2

2 )/2 noting that
as required a|0〉 = 0. We then seek eigenfunctions of O of
the form

ψα =
∞∑

n=0

cα
n |n〉 (64)

where we have defined

|n〉 := 1√
n!

(a†)n|0〉. (65)

With respect to this basis the ladder operators take the form

a =

⎛⎜⎜⎜⎜⎜⎝
0

√
1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .

0 0 0 0 . . .
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠, (66)

a† =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 . . .√
1 0 0 0 . . .

0
√

2 0 0 . . .

0 0 0
√

3 0 . . .
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠. (67)

We then truncate the infinite matrices to size (n + 1) × (n +
1), approximating the ladder operators to produce a 2(n +
1) × 2(n + 1) matrix operator On, which approximates O.
We can then numerically calculate an approximation of λ

by finding the smallest eigenvalue λn of On for increasing
n stopping when |λn − λn−1| < ε, for a chosen tolerance ε,
which we took to be ε = 10−6.

While we have presented a general method for any Q, we
now restrict to the nematic model presented in Eq. (2). In
particular if we assume H is orthogonal to the basal plane
x̂3 = (0, 0,±1), the sequence λn is constant for all n � 2 as
O has an exact ground state of the form

ψ =
(

c0|0〉
c2|2〉

)
. (68)

This is because, for x̂3 = (0, 0,±1),

O =
(

2(a†a + aa†) 4β⊥a2

4β⊥(a†)2 2(a†a + aa†)

)
, (69)
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FIG. 14. Contour plots for n = 1 − 4 bound state for η = 1, in the half plane x̂3 = (1, 0, 1)/
√

2 with boundary phase difference value
δ12 = 0. Note that spontaneous in pane magnetic field are generated from the coupled modes, causing the magnetic field to twist significantly.

which acts on the two-dimensional subspace Eq. (68) as

O :

(
c0

c2

)
�→

(
2 4β⊥

√
2

4β⊥
√

2 10

)(
c0

c2

)
. (70)

The smallest eigenvalue of this 2 × 2 matrix is

λ = 6 − 4
√

1 + 2β2
⊥ = 6 − 4

3

√
11, (71)

which, when substituted into Eq. (54) gives Hc2 ((0, 0, 1)) =
3η2

9−2
√

11
≈ 1.2676η2. We have plotted this against the values

of Hc1 in Fig. 15 For other choices of x̂3 the ground state is an
infinite series in |n〉.

FIG. 15. A plot comparing Hc1 (lower critical field) and Hc2

(upper critical field) for the basal plane.

We have plotted the results, which demonstrate the
anisotropy of Hc2 in Fig. 16. Note that Hc2 is only dependent
on the z component of x̂3 due to the symmetry in Eq. (9).
The numerical results suggest it is only weakly anisotropic:
its maximum value [attained when x̂3 = (0, 0,±1)] is 1.195
times its minimum value (attained when x̂3 lies in the xy
plane).

FIG. 16. The upper critical field Hc2 as a function of orientation
for applied fields directed along x̂3 = (cos θ cos φ, cos θ sin φ, sin θ ).
A symmetry of the model implies that Hc2 is independent of φ.
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FIG. 17. Diagram of the geometry of a general unit cell of a
vortex lattice. The cell is defined by the two vectors v1 and v2.

VIII. LATTICE SOLUTIONS

In this section we consider vortex lattice solutions in the
presence of an external field H . Namely, we find the unit
cell of the periodic vortex solution in the bulk, with external
field strength Hc1 < H0 < Hc2 . The standard approach for a
Ginzburg-Landau model is to consider a unit cell of degree
n = 1 with either triangular (α = π/3) or square (α = π/2)
symmetry. However, as we are considering an anisotropic
model, there is no reason to expect that a lattice with such high
symmetry will be the global minimizer. Hence, the correct
approach is to minimize energy, not just with respect to the
periodic fields, but also with respect to the geometry of the
unit cell itself. We present here a general method of finding
the optimal unit cell, without assuming the symmetry of the
underlying lattice.

We note that vortex lattices in the basal plane of nematic
superconductors have recently been considered using a finite-
dimensional field ansatz [10], optimized over a general cell.
The ansatz, a superposition of isolated vortices, was motivated
by the GL equations linearized around the superconducting
state, so the results are expected to be valid only for H close to
Hc2 . This contrasts with our numerical approach, which works
for the full range of applied fields. Reference [10] proposes
some very surprising vortex lattice structures, in which one of
the condensates acquires extra zeros compensated by zeros of
opposite winding. These solutions are found in a very distant
parameter regime from the one we consider here, however.
We will investigate the claims made in [10] using our more
general method in a later paper.

We first assume that far from the boundary of the system
(deep in the bulk), the gauge invariant quantities (ρα, θ12, B)
are periodic in the plane orthogonal to the applied field, and
translation invariant in the direction of the applied field. As in
previous sections, we begin by rotating our coordinate system
such that H = (0, 0, H0) and all spatial dependence is with
respect to (x1, x2). This implies that the constituent fields
(ψα, Ai ) are doubly periodic functions of (x1, x2) up to gauge.
We also note that we can represent a general periodic structure
as a tessellation of the x1x2 plane by a general parallelogram
(unit cell), as seen in Fig. 17, formed by two vectors v1 and v2

with angle α.
In the bulk of a superconductor (excluding boundary ef-

fects), the optimal lattice is the one that minimizes the total
Gibbs free energy of the system Gsys. If such a solution is
periodic Gsys can be calculated from the unit cell as Gsys =
AsysG/A, where Asys is the area of the system, G is the Gibbs
free energy of the field configuration in a single unit cell and
A is the area of a unit cell. Hence, we seek local minimizers

of the Gibbs free energy per unit area G/A with respect to
the fields (ψα, Ai ) defined on a general flat periodic two-torus
T 2

� = R2/� with the geometry of the torus T 2
� is represented

by vi in Fig. 17,

� = {
n1v1 + n2v2 | n1, n2 ∈ Z, v1, v2 ∈ R2

}
. (72)

The fields defined on the unit cell have periodic boundary
conditions, up to winding, such that they have boundary con-
ditions

ψα (x + vi ) = ψα (x)ei fi ,

Aj (x + vi ) = Aj (x) + ∂ j fi. (73)

Note that while the fields are not periodic, the above boundary
conditions do leave all physical quantities periodic,

B(x + vi ) = B(x), J (x + vi ) = J (x),

ρ(x + vi ) = ρ(x). (74)

Hence, we just need any fixed real function fi(x), which leads
to the correct winding for the unit cell.

We can encode the geometry of the unit cell by the matrix
L ∈ GL+(2,R) with columns v1, v2 or, equivalently, by the
pair (M,A) ∈ SL(2,R) × (0,∞) where M := √

AL−1 and
A = det L is the area of the unit cell.

To simulate the fields on the unit cell, we will simplify the
above formulation by transforming to a more convenient co-
ordinate system in the x1x2 plane. Let us define X1, X2 so that
(x1, x2) = X1v1 + X2v2. The unit cell spanned by v1, v2 is now
covered by (X1, X2) ∈ [0, 1] × [0, 1] where Xi = Mi j√

Ax j . It is
convenient to also rescale the spatial coordinate orthogonal to
the x1x2 plane, defining X3 = x3/

√
A. Then

F (M,A, ψα, A) =
∫

[0,1]2

{
1

2
(MQαβMT )i jDiψαDjψβ

+ 1

2A ((∂1A2 − ∂2A1)2 + (M2 j∂ jA3)2

+ (M1 j∂ jA3)2) + AFp(ψα )

}
dX1 dX2,

leading in turn to the Gibbs free energy

G(M,A, ψα, A) = F −
∫

[0,1]2
H0(∂1A2 − ∂2A1) dX1 dX2

= F − 2nπH0, (75)

where n is the winding number of the field configuration.
We seek minimizers of G/A with respect to the fields and

the shape M ∈ SL(2,R) and area A ∈ (0,∞) of the unit cell.
Note that the degree or winding number of a given unit cell
n is fixed. This means that strictly speaking we must find
the global minimizer of all Gn/A, where Gn is the Gibbs
free energy of a unit cell of degree n and then minimize
over n. In practice, we find minima of Gn/A until we get a
repeated minimizer, that is, until we find a minimizer of Gn/A
whose cell and field configuration is two cells of the Gn/2/A
minimizer joined together, and hence Gn/A = Gn/2/A.
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A. Numerical method

To numerically find minimizers of G(M,A, ψα, A) we dis-
cretize the standard square unit cell as described in the vortex
section, but with periodic boundary conditions

ψα (X + (1, 0)) = ψα (X )ein2πnX2 ,

ψα (X + (0, 1)) = ψα (X ),

A2(X + (1, 0)) = A1(X ) + 2πn,

Ai(X + (1, 0)) = A2(X ) i �= 2,

Ai(X + (0, 1)) = Ai(X ), (76)

where n is the winding number of the unit cell. We set the
fields φ = (ψ, A) on the unit square torus and the geometry
of the unit cell (M,A) to be some initial condition, avoiding
anything too symmetric so as not to bias the results. Then,
fixing the unit cell (M,A), we find a local minimum with re-
spect to the collected fields φ, using arrested Newton flow for
a particle subject to the potential Gdis(M,A, φ). This is con-
tinued for a small fixed number of steps. We then fix the field
configuration φ and area A, and minimize Gdis(M,A, φ)/A
with respect to M ∈ SL(2,R) to a very small tolerance. We
will discuss this step in more detail in the next subsection.
Finally, we fix the fields φ and the shape M and minimize
Gdis/A with respect to A. This last step can be performed
exactly using elementary calculus.

The above process is repeated, switching between mini-
mizing G/A with respect to the collected fields φ, the shape
M, and the area A. Once a given tolerance is reached for all
three, we stop the minimization process.

B. Finding the minimal shape

To find the minimal shape of a unit cell with a given con-
figuration (ψα, A), we must solve an optimization problem.
We first note that the only terms of G that are dependent on
the shape M are the gradient term and the in-plane magnetic
terms of the free energy. In fact

G = 1
2 MacPac,bd Mbd + CabMab + D (77)

where D contains the terms independent of M and P = P1 +
P2 and C are given by

P1
ac,bd := Re

∫
[0,1]2

Qαβ

cd DaψαDbψβ, (78)

P2
ac,bd :=

∫
[0,1]2

1

Aδab∂cA3∂d A3, (79)

Cab :=
∫

[0,1]2
A3Im

(
Qαβ

3a ψDbψβ

)
. (80)

It is convenient to identify M with the vector

m := (M11, M12, M21, M22) ∈ R4, (81)

by thinking of the pair (a, b) as a single index ranging over
{(1, 1), (1, 2), (2, 1), (2, 2)}. Then

G(m) = 1
2 mT Pm + CT m + D, (82)

where P = P1 + P2 has been reinterpreted as a real symmetric
4 × 4 matrix, C ∈ R4, using the same re-indexing trick, and D

contains the energy terms that are independent of m. Hence
we must minimize G(m) over R4 subject to the constraint
det M = 1 [or M ∈ SL(2,R)], that is,

1

2
mT Jm = 1, J :=

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠. (83)

Note that J2 = I4. To consider minimisers subject to the
above constraint, we add a Lagrange multiplier term to the
energy G(m),

λ

(
1 − 1

2
mT Jm

)
, (84)

Hence, we seek m ∈ R4 such that

Pm + C − λJm, mT Jm = 2, (85)

for some λ ∈ R.
Finding solutions to Eq. (85) is a challenging problem in

general. However, it is simplified in the special case of the
basal plane. If we assume that the vortex plane normal is ẑ,
then ∂iA3 = 0 and hence C = 0. Then Eq. (85) is an eigen-
value problem (where we have used the fact that J2 = I4),

JPm = λm. (86)

In other words m is an eigenvector of JP and λ is given by the
corresponding eigenvalue. This allows us to minimize G(m)
with respect to m explicitly by

(i) constructing JP,
(ii) finding its four eigenvectors,
(iii) selecting the eigenvector with smallest positive real

eigenvalue λ,
(iv) normalizing the eigenvector s.t. mT Jm = 2.
If we are not in the basal plane, however, we cannot assume

C = 0 and hence we will find the minimizer of G(m) using
a gradient flow algorithm. We first find the eigenvector that
corresponds to the smallest eigenvalue of JP and use this as
an initial condition. We then numerically evolve the vector m,
calculating the time derivative at each step as

dm

dt
= −

(
Pm + C − Jm

2
(mT Pm + mT C)

)
. (87)

Once the gradient reaches a small tolerance we stop the
algorithm.

Finally, whether through explicit calculation or gradient
flow, we have found the vector m, and hence the unit-cell
shape M ∈ SL(2,R) that minimizes G. Hence we can read
off the new period lattice as being the span of the columns of

L =
√
AM−1, M =

(
m1 m2

m3 m4

)
. (88)

Having minimized G with respect to the fields and then the
shape M of the unit cell, the last step in each iteration of our
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FIG. 18. Contour plots of the vortex lattice for η = 3 in the basal plane x̂3 = (0, 0, 1) with increasing external field strength H = H0x̂3.
Increasing H0 initially causes the skyrmion chains to squash together. Then the length of the chains is squashed. Finally there is a phase
transition to a standard triangular lattice. The unit cells are marked by black lines and tessellated in the plane. Note that the deviation in the
order parameter and magnetic field is decreasing for high external field.

algorithm is to minimize G/A with respect to A. Since
G

A = 1

2A2

∫
[0,1]2

((∂1A2 − ∂2A1)2 + mT P2m)dX1dX2

+ 1

A

(
1

2
mT P1m + CT m − 2nπH0

)
+

∫
[0,1]2

Fp(ψ )dX1dX2,

this step has a unique solution provided H0 is sufficiently
large.

C. Numerical solutions

We are interested in understanding the structure of bulk
solutions when Hc1 < H0 < Hc2 , namely vortex lattices. In
addition, we want to understand how the lattice changes as
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the strength of the external field H0 changes. As the criti-
cal fields are parameter and orientation dependent, we first
choose our η parameter and the external field direction Ĥ ,
performing a change of basis to (x1, x2, x3), so that Ĥ = x̂3.
We then approximate Hc1 and Hc2 using the methods described
above. Hence, given our parameters, we want to understand
the one-dim family of solutions that minimize G/A and are
parametrized by H0. Hence, we find the minimal lattice for
H0 = Hc1 + 1

2 (Hc2 − Hc1 ) using the method described above.
Then using this solution as an initial condition we vary H0 up
to Hc2 to find half the family and then down to Hc1 to find the
other half. We then have a set of solutions that represent how
the fields and geometry of the periodic vortex lattice change
as the external field is increased. Note that for H � Hc1 it
is optimal for A to diverge, making simulations challenging
when very close to Hc1 .

By tracking G/A for the family of solutions, we can
numerically find Hc1 and Hc2 allowing us to check the accu-
racy of our approximations above. In particular, Hc1 occurs
when the normalized Gibbs free energy per unit area Ĝn/A =
(Gn − G0)/A = 0, where Gn is the global minimiser of degree
n. Note that G0 is the energy corresponding to the homoge-
neous superconducting state with B = 0 and ψα = uα .

To check Hc2 , we consider the normal state, where ψα = 0
and B = H . This leads to a normal state Gibbs free energy of
Ĝnorm = −FP(uα ) − H2. Hc2 is then the value of H0 such that
Ĝnorm = Ĝ(H0).

Using the above critical field values, we can predict the
magnetic response of a material, or the magnetic flux per
unit area that penetrates a superconducting material as H0

changes. For the homogeneous superconducting ground state
1

A�

∫
�

B = 0, for the vortex lattice state 1
A�

∫
�

B = 2πn
A and

finally the normal sate 1
A�

∫
�

B = H0, where � is the system
and n is the degree or winding number of the unit cell that is
the global minimiser of G/A.

The result of this procedure for η = 3, in the basal plane
x̂3 = (0, 0, 1), where the external field is orthogonal to the
plane H = H0x3, is plotted in Fig. 18. The corresponding
magnetic response, unit-cell geometry, and normalized Gibbs
free energy are plotted in Fig. 19. The unit cell for the
global minimiser is initially rectangular (α = π/2) with de-
gree n = 2. The field configuration takes the form of chains
of skyrmions, such that the Skyrme charge is Q = 2 for each
unit cell. For H0 near Hc1 we observe well separated chains,
but as H0 increases the chains get closer and then squash
together. This can be seen in the resulting field configura-
tion plots in Fig. 18 and also in the top plot of Fig. 19.
We see |v1| the separation of the chains shrinking compar-
atively to |v2| the length of a link in the chain. Once the
chains are particularly close we then see a slight squashing
of the chain link length comparative to the separation. Fi-
nally, at H0 ≈ 8.0 there is a phase transition as the unit cell
becomes triangular (α = π/3) with degree B = 1 and |v1| ≈
|v2|. This means we go from two qualitative length scales:
the chain separation and the chain link length, to one length
scale: the vortex separation. Finally, note that in the basal
plane, as with the vortex bound states, there is no generation
of spontaneous in-plane magnetic field, as predicted by the
linearization.

FIG. 19. Plot of the geometry of the minimal unit cell for η = 3
in the basal plane x̂3 = (0, 0, 1) for increasing external field strength
H = H0x3. The top plot shows the relative lengths of the vectors v1,
v2 that form the unit cell. G/A is the normalized Gibbs free energy
per area, which is approximately 0 at H0 = Hc1 (dashed line). The
third plot gives the magnetic response, which is proportional to the
inverse of the area B/A = 2πn/A where the winding is initially n =
2, but for the top row is n = 1. Finally α is the angle of the unit cell.

It is worth noting that the normalized Gibbs free energy per
unit area plotted in Fig. 19 goes to zero at H = Hc1 marked
by the dashed line. This confirms our approximation of Hc1

from the previous section. In addition, as expected the order
parameter becomes suppressed as H0 approaches Hc2 and the
orthogonal magnetic field B3 approaches H0 as H0 approaches
Hc2 with reduced deviation.

We also consider the results of performing this process for
η = 3, on the tilted plane x̂3 = (0, 1, 1)/

√
2, giving rise to

the field configurations plotted in Fig. 20. We again observe
the formation of skyrmion chains, with a rectangular unit
cell (α = π/2) of degree n = 2. The biggest difference is the
spontaneous generation of in plane magnetic field B1, B2 �= 0.
We again see the chain separation decrease as the external
field is increased. Then the chain lengths are squashed and
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FIG. 20. Contour plots of the vortex lattice for η = 3 on the half plane x̂3 = (0, 1, 1)/
√

2 for increasing external field strength H = H0x3.
H0 (noted on the left) increases up the page causing the chains to squash together. The unit cells are marked by grey lines and tessellated in the
plane. The unit cell has degree n = 2 and Skyrme charge Q = 2. At H0 = 3.25 the skyrmions disappear (Q = 0), leaving composite vortices.
The coordinates are x1 = (1, 0, 0), x2 = (0, 1, −1)/

√
2.

eventually the vortices are forced together, forming composite
vortices in a triangular lattice rather than skyrmions. This
transition occurs at a smaller value of H0 than for the basal
plane.

IX. CONCLUSIONS

We have discussed properties of nematic superconductors
with a focus on their response to an external magnetic field H

and the nature of topological excitations. We first established
that the fundamental length scales are nontrivial. In standard
superconductors the fundamental length scales are the co-
herence lengths, associated with the modulus of the order
parameter, and magnetic field penetration depth, describing
monotonic decay of the magnetic field. In nematic super-
conductors the modes are mixed, leading to each physical
quantity being described in general by multiple (complex)
length scales. This leads to magnetic fields spontaneously
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twisting in space. This was demonstrated by considering a
boundary problem for the Meissner state, which exhibited
both spontaneous fields and magnetic field twisting.

We then considered topological excitations in the bulk,
showing that the form of the solutions depend on the parame-
ters of the model and the orientation of the vortex string. There
is a large parameter region that admits skyrmions as solutions
and this region depends on the orientation of the solution
relative to the crystal axes. We also showed that spontaneous
orthogonal fields are excited that cause the magnetic field to
twist away from the vortex line. This magnetic field twisting
occurred whenever the vortex line was not orthogonal to the
basal plane and was up to 10% of the maximum strength of the
magnetic field parallel to the vortex line. This should easily be
detectable in muon spin rotation experiment and give a clear
hallmark of nematic superconductivity.

We then used these results to calculate Hc1 , which we
showed was anisotropic. We then confirmed previous results
concerning the weak anisotropy of Hc2 .

Finally, we introduced a method to find vortex lattices, by
finding the periodic unit cell of the lattice with no assumption
of the symmetry of that lattice. This method can be used
to find the vortex lattice solutions in any anisotropic model,
without biasing the symmetry of the result. We found for
nematic systems that the unit cell tended to contain two flux
quanta (skyrmions) that formed chains for low applied fields
H . Then as the external field strength was increased the chains
squashed together tightly. Finally, the system underwent a
phase transition and the vortices became composite and were
forced into a traditional triangular lattice. Note that the unit
cells with two quanta consist of well-separated half-quantum
vortices and are markedly different from the double-quanta
vortex lattices found, for example, in chiral p-wave supercon-
ductors [38].

The vortex states discussed above could be detected in
scanning squid probes, scanning Hall probes, and small-angle
neutron scattering. However, the most distinct signal may
come from muon spin relaxation experiments. We will di-
rectly consider the signal resulting from such an experiment
in a follow up paper shortly [39].
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APPENDIX A: NEWTON FLOW NUMERICAL METHOD

Throughout the paper we make use of a newton flow
method to approximate local minimisers of several energy

functionals w.r.t. the fields (ψ1, ψ2, A). These different en-
ergy functionals describe the same system but with different
assumptions, conditions or boundary conditions applied. In
particular we have three different cases:

(1) Meissner state - a 1-dimensional boundary problem
with natural boundary conditions (see Sec. V). We choose
our parameters (x̂1, x̂3, H0, η), transforming the anisotropy
matrices as described in Eq. (7), according to our chosen
orthonormal basis {x̂1, x̂2, x̂3}. This results in a 1-dimensional
energy in terms of three dynamic fields (ψ1, ψ2, A).

(2) Vortex clusters - a 2-dimensional problem on a regular
grid with fixed boundary conditions (see Sec. VI). We first
choose our parameters, transforming the anisotropy matrices
according to Eq. (24). This gives a free energy dependent on
three gauge dependent dynamic fields (ψ1, ψ2, A).

(3) Vortex lattices - a 2-dimensional problem on a non-
trivial unit cell with periodic (up to winding) boundary
conditions (see Sec. VIII). We choose our parameters and fix
the geometry of the unit cell (see Sec. VIII) such that our
resulting fields are on a regular unit square with the boundary
conditions given in Eq. (77).
It is important to note that for all simulations, due to mag-
netic field twisting, we must retain all three components of
the gauge field A, as we cannot assume the magnetic field
direction is fixed.

Having performed the above transformation on the fields
and/or space for the given problem, we seek local minimisers
of the transformed energy functional with respect to the fixed
parameters. Hence, we discretize the resulting fields on a
regular grid of Nd

1 lattice sites with spacing h > 0, where d is
the dimension of the particular problem. We approximate the
1st and 2nd order spatial derivatives using central 4th order
finite difference operators, yielding a discrete approximation
Fdis to the functional F (φ) in Eq. (1) (after bring transformed
as described above), where φ = (ψα, Ai ) are the collected
fields. If we consider the function Fdis : C → R, where the
discretized configuration space is the manifold C = (C2 ×
R3)Nd

1 ≈ R7Nd
1 . We then seek local minima of Fdis subject to

the boundary conditions of the chosen problem:
(1) Meissner state - ρα = uα , ϕ1 = 0, ϕ2 = −δ12 and Ai =

0 on the right boundary of the computational grid and the
left boundary conditions are given by the natural conditions
described in Appendix B.

(2) Vortex bound states - ρα = uα , ϕ1 = n θ , ϕ2 = n θ −
δ12 and Ai = 0 on the boundary of the computational grid,
where n is the degree or winding number and θ is the polar
angle in the plane.

(3) Vortex lattices - the boundary conditions are described
in Eq. (77)
We then evolve the system in Eq. (1), using a gradient decent
method, in particular an arrested Newton flow algorithm (de-
scribed in detail in [32]), solving for the motion of a particle
in C under the potential Fdis,

φ̈ = −gradFdis(φ), (A1)

starting at an initial configuration φ(0) and φ̇ = 0. Evolving
the algorithm causes the configuration to relax towards a local
minimum. At each time step t �→ t + δt , we check to see if
the direction of the force on the particle opposes its velocity. If
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φ̈i(t + dt ) · φ̈i(t ) < 0, then the we set φ̇i(t ) = 0 and continue
relaxing the configuration. The flow was terminated once the
discrete approximate was sufficiently close to a local mini-
mum, namely when every component of gradFdis(φ) was zero
within a given tolerance.

APPENDIX B: NATURAL BOUNDARY CONDITIONS

In order to numerically compute the Meissner state on the
half-line � we must minimise the Gibbs free energy,

G =
∫

�

(F − HB) +
∫

∂�

Fsurf =:
∫

�

G. (B1)

We will denote the dynamical fields as φa, a = 1, ..., 7 (con-
sisting of the real and imaginary parts of ψα and the
components of A = (A1, A2, A3). The variation of G is then

δG =
∫

�

(
∂G
∂φa

− ∂i

(
∂G

∂ (∂iφa)

))
δφa (B2)

+
∫

∂�

(
∂Fsurf

∂φa
− ni

∂G
∂ (∂iφa)

)
δφa, (B3)

where we have used the divergence theorem, and recalled that
n is an inward pointing normal to ∂�. Demanding that δG = 0
for all variations requires both of these integrals vanish iden-
tically, and hence that φa satisfy the usual Euler-Lagrange
equations in � together with the boundary conditions,

∂Fsurf

∂φa
− ni

∂G
∂ (∂iφa)

= 0 (B4)

on ∂�.
In general boundary conditions should be calculated mi-

croscopically and they are strongly affected by the Friedel
oscillations of the density of states near the surface [31].
For our model we ignore the surface terms, Fsurf = 0, as
we are interested in the functional form of the long range
of asymptotic field behavior away from the boundary, which
is determined by bulk normal modes. Thus we reduce the
boundary conditions to the following:

niQ
1β
i j D jψβ = 0, niQ

2β
i j D jψβ = 0, (B5)

∂iAi = 0, B = H. (B6)

Imposing translational invariance ψα = ψα (X ), Ai =
a(X )n⊥

i + b(X )n�
i + c(X )ni, and B(X ) = (0,−b′, a′) where

X = nixi and assuming that the external magnetic field
H = (0, 0, |H |) is parallel to n⊥, hence always orthogonal to

X . This gives the boundary conditions at X = 0 to be

n · Qαβn
(
ψ ′

β (0) + ic(0)ψβ (0)
)
, (B7)

+ in · Qαβ (n⊥a(0) + n�b(0))ψβ (0) = 0, (B8)

b′(0) = c′(0) = 0, (B9)

a′(0) = H. (B10)

For the other boundary at X = L, we assume L so large that
the fields decay to their bulk ground-state values. Hence we fix
the field values, demanding that a′ = b′ = c′ = 0, ψ1 = u1,
and ψ2 = u2.

APPENDIX C: RESCALING OF FIELDS AND
PARAMETERS

Our starting point is the model presented in [4] with the
following free energy density:

F =
∑
s=±

{−|�s|2 + |Dx�s|2 + |Dy�s|2 + βz|Dz�s|2

+β⊥D−s�sDs�−s + 1

2
|�s|4 + γ

2
|�s|2|�−s|2

}
, (C1)

where �± = |�±|eiϕ± is the complex order parameter and we
have covariant derivatives D± = Dx ± iDy where the standard
covariant derivative is Di = −(i/η)∂i + ai, where a is the
gauge field.

We can rescale the theory presented in Eq. (C1) using the
following rescaled fields:

F = 1
2η2F , (C2)

A = −1

η
a, (C3)

ψ1 = �+, (C4)

ψ2 = �−, (C5)

giving the following the three-dimensional free energy F =∫
R3 F given in Eq. (1) with anisotropy given in Eq. (2) and

potential given in Eq. (3).
We are interested in modeling a layered material such as

Bi2Se3. The assumption that the Fermi velocity in the plane
of the layers v is equivalent to the orthogonal Fermi velocity
vz leads to the following parameter values [4]:

β⊥ = 1
3 , βz = 4

3 , γ = 1
3 , (C6)

which are the parameters we will use throughout the paper.
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