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Spin motive force by the momentum-space Berry phase in magnetic Weyl semimetals
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We show that the magnetic precession of ferromagnetic moments in a noncentrosymmetric magnetic Weyl
semimetal induces a dc electric current through a mechanism analogous to an adiabatic charge pump. The
dc current is a consequence of a Berry phase effect in momentum space resulting from the circular motion
of Weyl nodes induced by the precession. This mechanism resembles the Faraday effect, namely, an induced
magnetic field by a circular electric current. The circular motion of Weyl nodes induces a magnetic charge
current in momentum space, which results in a Berry phase that describes the adiabatic pump. Experimentally,
this phenomenon is similar to a spin motive force, which is an electric current induced by magnetic precision
in the presence of the spatial gradient of magnetization. However, unlike a conventional spin motive force, this
dc current occurs without the magnetization gradient. The result demonstrates a nontrivial interplay between the
topological electronic state and magnetic dynamics.
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I. INTRODUCTION

The interplay of topological electronic states and mag-
netism realizes peculiar electronic states and phenomena
arising from the interplay, which attract attention from both
basic science and applications such as spintronics [1]. For
instance, in topological insulators [2,3], coupling the edge
mode to a ferromagnet makes it a quantum anomalous Hall
insulator [4–6], and coupling topological insulators to an-
tiferromagnets is a route to realize an axion insulator [7].
The effect of magnetism on nontrivial electronic states was
also studied in relation to Weyl semimetals (WSMs) [8–12]
such as in pyrochlore iridates [11,13,14]. In these materials,
their transport properties were discussed in relation to Weyl
electrons, such as a relatively large Hall effect with small
magnetization [15–17], and a nonmonotonic magnetic-field
dependence of the anomalous Hall effect in EuTiO3 [18]. Un-
derstanding the effect of coupling between the magnetic order
and the topological electronic states was key to understanding
these phenomena.

On the other hand, the dynamical or optical properties of
magnetic materials bring about rich functionalities [19–22],
the study of which has been one of the major topics in
spintronics. While many studies were done on the effect of
magnetic textures, much less is known about the role of
the topological/geometrical nature of electron bands on the
dynamical properties. In this paper, we study the electrical
response of WSMs due to the magnetic dynamics as an illus-
tration of the interplay, in which we find an electrical current
analogous to an adiabatic charge pump [23,24] driven by the
precession of the magnetic moment.

A quantity that plays a central role in this study is the
momentum-space Berry phase defined by bkn = ∇k × akn,
where akn = −i〈unk|∇k|unk〉 is the Berry connection with
|unk〉 being the Bloch function of the nth band with momen-
tum k and ∇k = (∂kx, ∂ky, ∂kz ) [25,26]. The Berry curvature is
directly related to the topological nature of electronic states

such as the Hall conductivity in quantum [27] and anomalous
Hall effects [28].

Another system with a characteristic feature in bkn is the
WSM, where the Weyl node is a singular point of the Berry
curvature with bkn ∝ (k − k0)/|k − k0|3 (k0 is the position of
the Weyl node). The distribution of bkn resembles that of the
magnetic field around a point magnetic charge, hence some-
times called a magnetic monopole in momentum space. The
divergent Berry curvature at the Weyl node is often related
to the unique properties of WSMs. For instance, it gives rise
to the nonmonotonic magnetization dependence of anoma-
lous Hall conductance [18] and enhances the electromagnetic
response related to Berry curvature as in anomaly-related
magnetoresistance [29]. The latter is generally possible in
a system with a finite Berry curvature, but the large Berry
curvature around the Weyl nodes enhances the phenomenon
[30,31]. The enhancement of the Berry phase effect makes the
WSM an interesting material for studying the Berry-phase-
related phenomena.

Besides the Berry curvature in momentum space bkn, a
Berry curvature with a time derivative

ekn(t ) = ∂t akn(t ) − ∇kat
kn(t ) (1)

also contributes to electron transport in a system where
the Hamiltonian H (t ) evolves slowly over time, a phe-
nomenon known as an adiabatic pump [23,24]. Here, akn(t ) =
−i〈unk(t )|∇k|unk(t )〉 is the Berry connection defined by
the Bloch function for the instantaneous Hamiltonian H (t )
and at

kn(t ) = −i〈unk(t )|∂t |unk(t )〉. However, the charge pump
requires a time-dependent perturbation comparable to the
bandwidth, and hence it is realized only in cold atoms [32,33].
An exception to the obstruction might be the WSM, in which
the divergent Berry curvature near the Weyl nodes enhances
the ekn(t ) field [34,35].

As a demonstration of the impact of ekn(t ) induced by
the magnetic dynamics, we study the Larmor precession of
a ferromagnetic moment in a magnetic WSM. We show that
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FIG. 1. Adiabatic charge pumping and spin motive force.
(a) Schematic of the magnetic resonance. The charge current flows
along the direction of the uniform moment (z axis in the main text).
(b) Displacement of Weyl nodes by the precession of the magnetic
moment. The Weyl nodes shown by the solid (dotted) lines corre-
spond to those for the magnetization in (a) shown by the arrow with
the solid (dotted) line. Upon magnetic precession, the Weyl node
moves in momentum space following m(t ). (c) The relaxation-time
dependence of the induced charge current by one node. The result
is obtained by numerically integrating Eq. (8). The result is for
μ/v = 1, v0/v = 0.1, and JK m⊥/v = 0.1.

ekn(t ) induced by the precession causes an electric current
J along the magnetization direction. By explicit calculation,
we show J ∝ τ 2 dependence when the relaxation time τ is
short, whereas it saturates above τ ∼ T/3 where T is the
period of the precession [Fig. 1(c)]. The saturation is a man-
ifestation of the dissipationless current. The low crossover
τ/T implies that the long τ regime is experimentally acces-
sible in a clean WSM if T is in picoseconds. These features
are experimentally testable in noncentrosymmetric magnetic
WSMs [36–41]. The results demonstrate a unique transport
phenomenon arising from topological electronic states and
magnetic dynamics.

II. MODEL AND METHOD

A. Weyl Hamiltonian

For concreteness, we consider noncentrosymmetric Weyl
semimetals coupled to a ferromagnetic moment. The effective
Hamiltonian for these materials is given by a set of Weyl
Hamiltonians [8,12], each reading

H (t ) =
∑
k,α,β

c†
kα

[vk · σ − {v0kz + μ(t )}δαβ

− JK m(t ) · σ]αβckβ, (2)

where σ = (σ x, σ y, σ z ) (σ x,y,z are the Pauli matrices), μ0 is
the chemical potential at equilibrium, v is the velocity of the
Weyl electron, v0 (|v0| < |v|) is the velocity of the tilting term,
JK is the Kondo coupling, ckα (c†

kα
) is the annihilation (cre-

ation) operator of an electron with momentum k = (kx, ky, kz ),
and m(t ) = [mx(t ), my(t ), mz(t )] (|m(t )| = 1) is a unit vec-
tor parallel to the ferromagnetic moment. Hereon, we take
h̄ = a = 1. The time dependence of μ(t ) is a consequence of
the magnetic dynamics, which we discuss later. This model

is often used as an effective model for WSMs with the Fermi
level near the Weyl node.

The Larmor precession of the magnetic moment about the
z axis is given by

m(t ) = (
m⊥ sin(ωt ), m⊥ cos(ωt ),

√
1 − m2

⊥
)
, (3)

where m⊥ is the amplitude of precession and ω = 2π/T is
the frequency. For the Hamiltonian in Eq. (2), the dynamics
of magnetic moments shift the position of Weyl nodes in
momentum space. This is a consequence of band deformation
by magnetism similar to those generally seen in magnetic
WSMs [14–16,18]. The steady precession of ferromagnetic
moments occurs, for example, in ferromagnetic resonance, as
we will discuss later.

B. Semiclassical Boltzmann theory

We use the semiclassical Boltzmann theory [26] to study
the charge transport under the precession of the moment.
Within the relaxation-time approximation, the Boltzmann
equation reads

∂t fkn(t ) = − 1

τ

[
fkn(t ) − f 0

kn(t )
]
, (4)

where τ is the relaxation time, fkn(t ) is the average density
of electron with momentum k and band index n at the time
t , and f 0

kn(t ) = 1/(eβ[εkn(t )−μ(t )] + 1) is the Fermi distribution
function for the instantaneous Hamiltonian H (t ). Here, μ(t )
is defined so that the electron density for the instantaneous
Hamiltonian N = ∫

d3k
(2π )3 f 0

kn(t ) is conserved.
The formal solution to Eq. (4) reads

fkn(t ) = f 0
kn(t )e− t−t0

τ +
∫ t

t0

dt ′

τ
e− t−t ′

τ f 0
kn(t ′),

=
∫ ∞

0

dt ′

τ
e− t ′

τ f 0
kn(t − t ′), (5)

where t0 is the initial time; we assume that the electrons are
in equilibrium at t0. In the second line, we assumed t0/τ →
−∞. For a periodically driven system with period T = 2π/ω,
Eq. (5) becomes

fkn(t ) = 1

1 − e− T
τ

∫ T

0

dt ′

τ
e− t ′

τ f 0
kn(t − t ′), (6)

as f 0
kn(t ) = f 0

kn(t + T ).
Within the Boltzmann theory, the electric current produced

by adiabatic pumping reads [26]

J(t ) =
∑

n

∫
d3k

(2π )3
qekn(t ) fkn(t ), (7)

where q is the charge of the carrier, and the sum over n is for
all bands in the system. Combining this formula and Eq. (5),
the average current in a periodically driven system reads

J̄ =
∑

n

∫
d3k

(2π )3

∫ T

0

dt

T

dt ′

τ

qe− t ′
τ

1 − e− T
τ

ekn(t ) fkn(t − t ′). (8)

In the following, we assume the Fermi distribution for zero
temperature. Similar to adiabatic pumping, the thermal fluctu-
ation gives a small correction to the zero-temperature result,
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because all electrons in the Fermi surface contribute to the
current. Hence, the result should be valid even at a finite
temperature as long as the temperature is small compared to
the chemical potential.

III. RESULTS

A. τ/T � 1 case

When τ/T 
 1, Eq. (8) becomes [42]

J̄ ∼
∫ T

0

dt

T

∫
D

d3k

(2π )3
ek+JK m(t )−τJK ṁ(t )+τ 2JK m̈(t ),n(t ) + O

(
J3

K

)
.

(9)

Here, D is the region inside the Fermi surface. To the second
order in JK , the average current produced by Eq. (3) reads

J̄ =
[

0, 0,−sgn(v)
qτ 2ω3

12π2
F (v0/v)

(
JK m⊥

v

)2
]
, (10)

F (x) = 1 + 3

(
1

x2
− 1

)[
1 − atanh(x)

x

]
. (11)

The sgn(v) in the equation reflects the chirality of the Weyl
node. We note that the current does not depend on the chemi-
cal potential despite finite doping [42]. Hence, a finite current
flows by a mechanism similar to the adiabatic pump.

In a recent work, the noticeable contribution of the adi-
abatic pump in a WSM was discussed using an analogy to
electromagnetic induction. When a circular electric current
flows, it produces the magnetic field penetrating the circuit
known as Ampère’s law. Similarly, if a magnetic charge exists,
the current of magnetic charges induces an electric field as
described by an extension of Faraday’s law. This analogy also
works for Weyl electrons, in which the distribution of the
ekn(t ) field by the circular motion of Weyl nodes (a magnetic
monopole of Berry curvature bkn) resembles that of the mag-
netic field induced by the circular electric current [35]. This
argument also applies to our setup where the position of the
Weyl point is given by k0 = JK m(t )/v. However, we expect
a stronger current in our setup than the previous proposal
because the Kondo coupling is typically stronger than the
coupling to electromagnetic fields.

The current produced by this mechanism is sensitive to the
magnetization direction while it is inert to the direction of
incident light. In the magnetoresonance experiment, the inci-
dent microwave from any direction induces the same magnetic
precession as long as the magnetic field component is perpen-
dicular to the magnetization. As the origin of the above current
is a consequence of the coupling to the magnetic moment, any
incident light producing the same precession should produce
the same result. On the other hand, the magnetization direction
affects the result because the plane of precession changes. The
sensitivity of electric current to the magnetization direction,
rather than to the incident light, provides a way to delineate
the microscopic origin of the current.

We note that this current is a different phenomenon from
the conventional spin motive force (SMF) [43–45]. In SMF,
the electric current flows in the presence of both magnetic
precession and the gradient of magnetization. Intuitively,
this phenomenon is often interpreted as a consequence of a
fictitious electric field induced by the magnetization dynamics

or the Berry phase in real space. In contrast, the current in
Eq. (10) is related to the momentum-space Berry phase.

B. τ/T � 1 limit

We next consider the long relaxation-time limit τ/T � 1.
In this limit, the average current reads

J̄ =
∫ T

0

dt ′dt

T 2
ek(t ) f 0

kn(t ′). (12)

To the second order in JK , it is

J̄ =
[

0, 0,−sgn(v)
qω

12π2
F (v0/v)

(
JK m⊥

v

)2
]
, (13)

where F (x) is in Eq. (11). This formula is essentially equiva-
lent to the τ/|t − t0| � 1 case studied previously in Ref. [35].
In Eq. (13), the current is linearly proportional to ω, resem-
bling the quantization of pumped charges in the adiabatic
pump.

Note that, in this limit, the current does not depend on τ .
Compared to the τ/T 
 1 case, the current simply differs by
a factor of (ωτ )2. The result implies that the current, which
increases with (ωτ )2 in the small τ/T regime, saturates as
it approaches τω = 1. Therefore, we expect a crossover be-
tween the τ/T 
 1 and τ/T � 1 regimes at τ ∼ T .

C. Numerical calculation

To further investigate the τ dependence, we numerically
evaluated the τ dependence of Eq. (8). Figure 1(c) is the result
for the μ/v = 1, v0/v = 0.1, and JK m⊥/v = 0.1 case. The
numerical result (solid line) is proportional to τ 2 in the small
τ/T limit and saturates to a constant at around τ/T � 1/3.
It is semiquantitatively consistent with the above argument
where the crossover occurs at τω = 2πτ/T ∼ 1. In the exper-
iment, the magnetic resonance frequency ranges between 109

and 1012 s−1 while the relaxation time is in 10−15–10−12 s.
Hence, the adiabatic regime τ/T � 1 might also be relevant
to the experiment.

D. Magnitude of current density

We next turn to the magnitude of current expected in a
magnetic WSM. To evaluate the magnitude, we need to know
the amplitude of the magnetic precession. The dynamics of the
ferromagnetic moment is described by the Landau-Lifshitz-
Gilbert equation,

∂t m(t ) = −γ m(t ) × B(t ) + αm(t ) × ∂t m(t ), (14)

where γ is the gyromagnetic constant, α is the Gilbert
damping constant [46,47], and B(t ) = [Bx(t ), By(t ), Bz]; we
assume the static magnetic field is along the z axis. Suppose
the incident microwave is Bx(t ) = B0

x cos(t ) and By(t ) = 0.
Then, at the magnetic resonance frequency ω = ±γ Bz, the
approximate solution of Eq. (14) assuming mz(t ) ∼ 1 reads

mx(t ) = B0
x

αBz
sin(ωt ), my(t ) = B0

x

αBz
cos(ωt ). (15)

Hence, the amplitude of magnetic precession is m⊥ =
B0

x/αBz.
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We estimate the induced current using Eq. (10) and the
above result. For the case v = 105 ms−1, v0 = 104 ms−1,
JK = 10 meV, τ = 10−12 s, B0

x = 10−5 T, Bz = 10−1 T, and
α = 10−3, the current density reads J ∼ 10−3 mA cm−2. This
estimate is several orders of magnitude larger compared to
the photocurrent by a similar mechanism [34,35], despite the
orders-of-magnitude smaller frequency ω/2π ∼ 2.8 GHz. In-
tuitively, the larger current is ascribed to the faster motion of
Weyl nodes associated with the larger orbital radius. Using the
analogy to classical electromagnetism discussed above, the
induced ekn field is larger for Weyl nodes moving at a higher
speed. For a fixed frequency, the Weyl nodes move faster for a
larger radius of Weyl nodes, hence producing a larger ekn field
that results in a larger current.

We also note that linearly polarized electromagnetic waves
can induce a finite current, in contrast to the bulk photovoltaic
effects in WSM. Recent theories for the bulk photovoltaic
effect in a WSM [34,48–50] find that the electric current is
sensitive to the polarization of the incident light. In particu-
lar, a circularly polarized light is often necessary for a finite
photocurrent. This is also the case for a nonlinear Hall effect
[58,59]. In contrast, the above argument on magnetic pre-
cession assumes a linearly polarized microwave; the circular
motion of Weyl nodes is a consequence of the precession of
magnetic moment induced by the microwave. The insensi-
tivity to the polarization of incident light distinguishes this
phenomenon from the photovoltaic effects [51].

IV. WEYL SEMIMETALS WITH MULTIPLE WEYL NODES

Real materials with Weyl electrons have multiple Weyl
nodes, which is partly a manifestation of Neilsen-Ninomiya’s
theorem [52–54] and in part a consequence of the symmetry
requirement. A noncentrosymmetric Weyl semimetal often
hosts more than ten Weyl nodes, where the Weyl nodes with
the same chirality are the time-reversal pair. Therefore, the
current by a pair will be twice that by a Weyl node. With
multiple pairs, the induced electric current is the sum of the
contribution from all nodes. However, in general, the total
current should remain finite.

In special cases, the summation may result in a vanishing
current, such as in a WSM with spatial-inversion symmetry.
In a WSM with inversion symmetry, two nodes with opposite
chirality always appear as a pair; if one node exists at wave
number k0, then its pair node is at −k0. As the current in
Eqs. (10) and (13) depends on the chirality manifested in
sgn(v), the contribution from two nodes cancels. This argu-
ment holds for a WSM with 2n nodes because each pair gives
zero current. Hence, the current vanishes in centrosymmetric
WSMs.

The absence of electric current in a centrosymmetric WSM
is a consequence of the symmetry restriction on the response
tensors. Phenomenologically, the phenomenon studied here
is a nonlinear response to the ac magnetic field J̄ = σ (B0

x )2,
where σ is the nonlinear conductivity. With the inversion
operation, the current and the magnetic field transform as
J̄ → −J̄ and B0

x → B0
x , respectively. Hence, the phenomeno-

logical formula reads J̄ = −σ (B0
x )2, implying σ = −σ , and

hence σ = 0. Therefore, a noncentrosymmetric WSM is nec-
essary for a finite current.

The inversion symmetry is a special symmetry in the way
that it restricts all response tensors. Other symmetries, such
as mirror symmetry, make certain components of the tensors
vanish. However, they do not restrict all tensor components,
similar to the arguments for the photovoltaic effect.

V. DISCUSSIONS

In this paper, we studied the electric current induced by
the precession of a magnetic moment in a type-I magnetic
WSM. We find that the momentum-space Berry curvature
induces a current similar to the adiabatic charge pump. The
induced current is insensitive to the incident light direction
and polarization because it is a consequence of the coupling
to the magnetic moment. Instead, it depends on the direction
of the magnetic moment as the plane of the precession de-
pends on the direction of the moment. This mechanism gives
rise to a finite electric current in a magnetic WSM with a
noncentrosymmetric crystal structure. Note that this current
is different from the contribution in a field theory [55] or an
ac spin motive force [56,57], which predicts an ac response.
Finally, our estimate using a typical value for a WSM and a
ferromagnet gives ∼10−3 mA cm−2, which should be observ-
able in the experiments.

The key feature of the Weyl electron in this phenomenon
is the degeneracy at the Weyl node, which allows a small per-
turbation to significantly change the electronic states. Hence,
a similar effect is expected in other materials with similar
features, such as type-II WSMs.

Experimentally, this phenomenon should be observable
using a setup similar to SMF. However, unlike the con-
ventional SMF, the current due to ekn(t ) appears without a
magnetization gradient, and the current flows along the net
magnetization. These features distinguish the ekn(t )-related
current from those by the conventional SMF, and also from
those by the Berry phase effect [58,59] arising from the direct
coupling of electrons to the electric field.

Recent searches for WSMs discovered various materials
with Weyl nodes near the Fermi level, both in noncentrosym-
metric [60,61] and magnetic materials [11,16,17,36,38,40,62–
64]. Some of these materials have both noncentrosymmetric
crystal structures and magnetism, such as CeAlSi [36,40]
and PrAlGe1−xSix [38]. The symmetry-forced cancellation is
violated in these materials, allowing a larger class of physics
related to Weyl fermions to give observable consequences.
The time-dependent Berry phase ekn(t ) is one such effect that
provides a route to realize nontrivial phenomena arising from
the interplay of magnetism and topological electronic states.
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