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Electronic density of states of a U (1) quantum spin liquid with spinon Fermi surface.
II. Zeeman magnetic field effects
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The Zeeman effect lowers the energy of electrons with spin states which are antiparallel to the applied
magnetic field but lifts that of spin parallel states. In quantum spin liquids where the spin and charge degrees of
freedom are fractionalized, an anomalous Zeeman response may be expected. In the case of spin liquids with
a spinon Fermi surface, the threshold energy to excite an electronic state is found to exhibit no Zeeman shift.
This is specific to the spinon Fermi surface case. In contrast, other gapped spin liquids are expected to exhibit
the standard Zeeman shift at the band edge even though they also exhibit spin-charge fractionalization. When
gauge-field fluctuations are included, we find that the Zeeman shift of the electronic states gets affected by the
gauge field induced binding. In the electronic density of states spectra, weak gauge binding induces band-edge
resonance peaks which exhibit the Zeeman shift in the same direction as that in the standard Zeeman effect,
but the shift is reduced as the binding potential increases. With further increase in the binding potential, the
resonance becomes true in-gap bound states and eventually the Zeeman shift direction reverses so it is opposite
to the standard Zeeman effect. We propose that one can perform spin-polarized scanning tunneling microscope
measurements as a test of the spinon Fermi sea ground state in quantum spin liquid candidate materials.
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I. INTRODUCTION

The Zeeman response of an electronic state to an external
magnetic field has been well understood since the establish-
ment of quantum mechanics [1–3]. In the standard Zeeman
effect, the Zeeman coupling between the electron’s spin and
an external magnetic field shifts the electronic energy [3,4]
in a direction which depends on the spin orientation: Elec-
trons with spins parallel to the magnetic field have the energy
shifting up while those with spins antiparallel have the energy
shifting down. This standard picture assumes that the electron
carries both the charge and spin.

In modern condensed matter physics, it is known that
strong electronic correlations can give rise to exotic states of
matter such as quantum spin liquid (QSL) [5–7], where the
spin degree gets deconfined [8,9]. In a QSL, a physical elec-
tron undergoes spin-charge separation and is fractionalized
into a chargon and a spinon [10,11]. A chargon is a charged
boson that carries the electric charge, while a spinon is a
charge neutral fermion that carries spin 1/2. One particularly
important QSL is the QSL with a spinon Fermi surface (SFS)
[5,11,12]. The QSL with a SFS is a charge insulator but has
gapless itinerant spinon excitations from the SFS. In the QSL
with a SFS, since an electron is a composite particle with the
constituent spinon and chargon spatially separated, it becomes
intriguing to see how the electronic Zeeman response in the
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QSL with SFS can differ from the response in the standard
Zeeman effect.

In this paper, we show that the electrons in the QSL with a
SFS exhibit an anomalous Zeeman response in three aspects:
(1) the Zeeman field has no effect on the threshold energy
to excite an electron or a hole in the QSL, (2) the gauge-
field fluctuations reduce the Zeeman shift of the quasibound
spinon chargon pairs, and (3) strong gauge field fluctuations
can induce an in-gap bound state [13,14] in the QSL and the
Zeeman field shifts the bound-state energy in the direction
opposite to that in the standard Zeeman effect. In the QSL, the
Zeeman field only couples to the spinons, but the electronic
Zeeman response requires the consideration of the constituent
spinon and chargon as a whole. We will show that such an
internal composite structure of electrons along with the spinon
Fermi sea ground state in the QSL gives rise to the anomalous
electronic Zeeman response.

The QSL phase is one of the most fascinating states in the
condensed matter due to its potential to host various exotic
quantum phemonenon [5–7,15–17]. Recently, a series of Mott
insulators [18–25] have been proposed as candidates to host
the QSL phase, but conclusive evidence has yet been arrived
in spite of the intensive experimental investigations [26–32].
Here, based on the anomalous electronic Zeeman response
in the QSL with SFS, we propose to use a spin polarized
scanning tunneling microscope (STM) to detect the spinon
Fermi sea ground state in the QSL candidate materials. In
the electronic DOS spectra, we emphasize that the absence of
Zeeman shift of the threshold energy provides strong evidence
for the existence of the SFS.
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FIG. 1. (a) The schematic showing of the spinon, holon, and
doublon bands in the QSL. The shaded region in the spinon band
represents the Fermi sea filled by the spinons. The filled blue and
red circles denote the spinons and doublons, respectively, while the
empty blue and red circles are the antispinons and holons, respec-
tively. The dashed blue rectangle demonstrates the Zeeman field
induced energy shift of the spinon band. (b) The schematic plot of
the QSL electronic DOS spectra. The antispinon holon pairs and the
spinon doublon pairs are the states in the LHB and UHB, respec-
tively. The spinons and chargons are coupled through the emergent
U (1) gauge field that is represented by the purple wavy lines. (c) The
spin-up electronic DOS calculated in a triangular lattice given differ-
ent Zeeman fields. The Zeeman field has no effect on the threshold
but changes the Hubbard bandwidths. (d) The electronic DOS of a
band insulator. The blue lines denote the case of B = 0 T while the
red dashed lines show the standard energy shift of μbB induced by a
finite Zeeman field applied on the spin up electrons. Here ω denotes
the energy and � is the charge gap.

II. ABSENCE OF ZEEMAN SHIFT
IN THE THRESHOLD ENERGY

Our analysis of the electronic Zeeman effect in the QSL
with SFS starts from the slave rotor mean-field Hamiltonian
of the QSL [33],

H0 =
∑

k

εk(a−ka†
−k + b†

kbk) +
∑

k,σ

Eσ,k f †
σ,k fσ,k, (1)

where a(†)
−k, b(†)

k , and f (†)
σ,k are the annihilation (creation) op-

erators for a holon, doublon, and spinon, respectively. Here
the holons and doublons carry the charge ±e, respectively,
and they are the nonrelativistic approximation to the chargons
[11]. The chargon band is εk. The index σ =↑ / ↓ denotes
the spin. The spinon bands are Eσ,k. Taking into account the
spinon chemical potential μ f , we define ξσ,k = Eσ,k − μ f .
Since μ f does not change with magnetic field to linear or-
der, a finite magnetic field B = (0, 0, B) changes the spinon
band dispersions to ξ↑/↓,k = ξk ± 1

2 gμbB, where g = 2 is the
Landé g factor and μb is the Bohr magneton. In the QSL with
SFS, the spinon chemical potential μ f lies inside the spinon
bands, so the spinon states below μ f all get filled as indicated
in Fig. 1(a). The resulting ground state is the Fermi sea of
spinons: |G〉 = ∏

k,ξσ,k�0 f †
↑,k f †

↓,k |0〉. The chargon band has a
gap � = min[εk], so the holon branch and the doublon branch
are separated in energy as can be seen in Fig. 1(a).

In the QSL, annihilating a spinon and creating a holon
results in the excitation of a hole state, while creating
a spinon along with a doublon leads to the creation
of an electron. At zero temperature, the energy cost to
excite a hole is 〈G| a−k′ f †

σ,k(H0 − μ f N̂ f ) fσ,ka†
−k′ |G〉 −

〈G| H0 − μ f N̂ f |G〉 = −ξσ,k + εk′ , with ξσ,k � 0. Similarly,
the energy cost to excite an electron is 〈G| bk′ fσ,k(H0 −
μ f N̂ f ) f †

σ,kb†
k′ |G〉 − 〈G| H0 − μ f N̂ f |G〉 = ξσ,k + εk′ with

ξσ,k � 0. Here N̂ f = ∑
σ,k f †

σ,k fσ,k is the spinon number
operator. It is clear that the minimum energy cost to excite
an electron or a hole in the QSL equals to the charge gap
� because the minimum spinon excitation is at the Fermi
momentum and cost-zero energy. The minimum energy cost
to excite an electron or a hole in the QSL is defined as the
threshold energy.

In a finite magnetic field, the Zeeman coupling lifts the
spinon band of parallel spin as schematically shown in
Fig. 1(a), while the spinon band of antiparallel spin gets low-
ered. In the region of μbB < μ f , the Zeeman field imbalances
the spinon Fermi sea occupation of the two spin species.
The Fermi surface areas of the spin parallel and antiparallel
electrons become unequal but the chemical potential is un-
changed. As long as the Fermi surfaces of the two spin species
exist inside the charge gap, the threshold energy always equals
� regardless of the spin orientations.

In the energy range beyond the threshold energy, exci-
tations of antispinon holon pairs and spinon doublon pairs
generate the continuum spectrum of the lower Hubbard band
(LHB) and the upper Hubbard band (UHB), respectively, in
the electronic DOS spectra, which is schematically shown
in Fig. 1(b). The LHB top and the UHB bottom denote the
threshold to create a physical electronic excitation. Since the
Zeeman field does not change the threshold energy, no shift is
expected for the threshold in the QSL electronic DOS spectra.

To verify the absence of Zeeman shift in the threshold
energy analyzed above, we perform a calculation on the
QSL electronic DOS in a triangular lattice. The band disper-
sions of the spinon band and the chargon band are taken to
be ξk = −2t f (2 cos 1

2 kxa cos
√

3
2 kya + cos kxa) − μ f and εk =

−2tX (2 cos 1
2 kxa cos

√
3

2 kya + cos kxa − 3) + �, respectively.
Here a is the lattice constant and the band parameters are
set to be t f = 0.03 eV, tX = 0.02 eV, � = 0.25 eV, and μ f =
0.025 eV. The QSL electronic DOS is given by ρσ (ω) =
− 1

�Nπ

∑
k,k′ ImGR

σ (ω, k, k′), where � denotes the sample area
and N is the number of lattice sites. Here the electronic re-
tarded Green’s function GR

σ (ω, k, k′) takes the form [33]

GR
σ (ω, k, k′) = nF(ξσ,k) + nB(εk′ )

ω + i0+−ξσ,k + εk′
+ nF(−ξσ,k) + nB(εk′ )

ω + i0+ − ξσ,k − εk′
,

(2)

with nF(ξ ) and nB(ε) being the Fermi and Bose distribution
functions, respectively. The resulting spin-up electronic DOS
in different Zeeman fields is plotted in Fig. 1(c) and the case
of spin down can be deduced by reversing the magnetic field
direction. Consistent with our analysis, the threshold exhibits
no shift in the Zeeman field. Interestingly, the LHB bottom
and the UHB top are observed to shift by μbB in the same
direction as that in the standard Zeeman effect. Since the states
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at the LHB bottom and the UHB top involve the excitations
of an antispinon at the spinon band bottom and a spinon at
the spinon band top, respectively, the observed shift of the
LHB bottom and the UHB top originates from the Zeeman
shift of the spinon band. As a result, in the QSL with SFS, the
Zeeman field has no effect on the threshold but changes the
Hubbard band width. In sharp contrast, a band insulator has its
threshold shifted with the Zeeman field while the bandwidth
does not change, as is illustrated in Fig. 1(d).

We note that in a gapped QSL, the spinon spectrum ac-
quires a gap �s, so the threshold energy will be at �s + �.
In a Zeeman field, the energy gap in the spinon spectrum
shifts in the standard way, so the threshold energy to excite
an electron or a hole also exhibits the standard Zeeman shift
even when there is spin charge separation and deconfinement
in the gapped QSL. Thus, the absence of the Zeeman shift in
the threshold is a unique signature of the QSL with SFS.

III. NAIVE ZEEMAN SHIFT OF THE QUASIBOUND
SPINON CHARGON PAIRS

The zero Zeeman shift of the threshold in the electronic
DOS spectra shown in Fig. 1(c) stems from the electron
fractionalization and the spinon Fermi sea ground state in
the QSL. In this case, the fractionalized quasiparticles, the
spinons, and the chargons, both couple to an emergent U (1)
gauge field [11,12] and the gauge field fluctuations, in turn,
affect the electronic DOS. It raises the question about how the
electronic Zeeman response gets affected by the gauge field
fluctuations in the QSL.

At the energy near the Hubbard band edges, the longi-
tudinal component of the gauge field fluctuations plays the
dominant role [14] because the small current-current correla-
tions there make the transverse components negligible. The
longitudinal gauge field fluctuations bring about the gauge
binding interaction [14,34]:

Hint =Ub

N

∑

σ,k,q,q′
f †
σ,k−q fσ,k−q′ (a−qa†

−q′ − b†
qbq′ ). (3)

Here, Ub denotes the gauge-binding interaction strength,
which we assume to be short range and on-site due to the
screening by spinons. An antispinon tends to bind a holon to
form a hole bound state above the LHB, and similarly a spinon
tends to bind a doublon to form an electronic bound state
below the UHB. The spinon spinon repulsion from the spin
fluctuations [35] is not included as we focus on the QSL elec-
tronic state where the combination of a spinon and a chargon
matters. Including the gauge binding, the QSL Hamiltonian
becomes H = H0 + Hint and the electronic DOS reads [33]

ρ̃σ (ω) = − 1

�π

∑

k

Im
1
N

∑
q GR

h,σ (ω, k − q, q)

1 − Ub
N

∑
q GR

h,σ
(ω, k − q, q)

(4)

− 1

�π

∑

k

Im
1
N

∑
q GR

d,σ (ω, k − q, q)

1 + Ub
N

∑
q GR

d,σ
(ω, k − q, q)

,

with GR
h,σ (ω, k, k′) and GR

d,σ (ω, k, k′) being the first and sec-
ond terms in Eq. (2), respectively.

In a moderate gauge binding of Ubρ f (0) = 1, the QSL
electronic DOS is found to have a pair of resonance peaks
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FIG. 2. (a) The spin-up electronic DOS in the QSL with the
gauge binding Ubρ f (0) = 1. The gauge binding induces band-edge
resonance peaks and the resonance peaks exhibit the Zeeman shift
in the same direction as that in the standard Zeeman effect. The
inset is the zoom of the UHB edge resonance peaks. The threshold
remains unchanged in the Zeeman field. (b) The linear dependence
of the UHB edge resonance peak energy on the Zeeman field. The
slope is found to decrease with the increase of the gauge binding
interaction. The black dashed line denotes the energy shift in the
standard Zeeman effect. (c) The in-gap bound state peaks in the QSL
electronic DOS spectra. The gauge binding is Ubρ f (0) = 3.5. In the
Zeeman field, the in-gap bound state peaks move in the direction
opposite to that in (a). (d) The reversal of the slope in (b) as the
gauge binding interaction continues increasing. Here ω denotes the
energy, � is the charge gap, and B denotes the magnetic field along
the z direction.

emerging at the Hubbard band edges as shown in Fig. 2(a).
Here the ρ f (0) is the spinon DOS at the Fermi energy mul-
tiplied by �/N . The rise of the band-edge resonance peaks
is interpreted as a pileup of spectral weight to the Hubbard
band edges induced by the quasibound spinon chargon pairs
in relatively weak gauge binding [34,36]. Importantly, the
threshold in the electronic DOS spectra in Fig. 2(a) also ex-
hibits no Zeeman shift as that in Fig. 1(c), but the Zeeman
field shifts the band-edge resonance peaks in Fig. 2(a) in the
same direction as that in the standard Zeeman effect. The shift
inherits from the Zeeman field induced energy shift of the
spinon in the quasibound spinon chargon pairs and resembles
the standard Zeeman shift, so it is referred to as the naive
Zeeman shift. Such a naive Zeeman shift applies generally
to the resonance peaks formed from the spinon chargon pairs
inside the Hubbard bands. In the weak gauge-binding regime,
the spinon chargon pairs become quasibound, leading to the
band edge resonance peaks in the electronic DOS spectra.
In this case, the naive Zeeman shift becomes recognizable.
Importantly, the naive Zeeman shift is found to reduce in
magnitude from the standard Zeeman shift, and the reduction
gets stronger as the gauge-binding interaction increases. In
Fig. 2(b), the energy of the UHB edge resonance peak as a
function of the Zeeman field is plotted, given different gauge
binding interactions. The energy shift displays the expected
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FIG. 3. (a) A schematic illustration of the Zeeman field effect on
the binding. The upper left panel shows that in the Zeeman field,
more spinon states with parallel spin are available for injection than
those of antiparallel spin (the black and the purple arrows represent
the antiparallel and parallel spins, respectively). Since the Zeeman
field increases the number of spinon empty states with parallel spin,
the binding energy in the parallel spin species increases. Given a
sufficiently large Ub, the energy of the bound state with parallel spin
gets lowered by the Zeeman field. The green wavy line denotes the
binding between a spinon and a chargon. The arrows in the spinons
denote the spin orientations in the magnetic field. Here the spin
quantization axis is set to be along the in-plane direction. (b) The
susceptibility to bind a spin-up spinon at the Fermi surface with a
doublon in different Zeeman fields. The notation u.c. is short for unit
cell. Here ω, �, and B denote the energy, charge gap, and magnetic
field along the z direction, respectively.

linear dependence on μbB, but the slope decreases from 1 as
the gauge binding interaction increases. The deviation indi-
cates that even in the naive Zeeman shift, the gauge binding
gradually weakens the role of spinon Zeeman shift in deter-
mining the total energy of a spinon chargon pair.

IV. ANOMALOUS ZEEMAN SHIFT
OF THE BOUND STATES

Since the Zeeman shift of the band edge resonance peaks
is observed to get suppressed by the increasing gauge binding
in the range of 0.6 � Ubρ f (0) � 1, it becomes interesting
to check how the Zeeman shift evolves, given a sufficiently
large gauge binding. Surprisingly, in a strong gauge bind-
ing of Ubρ f (0) = 3.5, the gauge binding induced peaks in
Fig. 2(c) are observed to exhibit the Zeeman shift in the
opposite direction compared to that in the standard Zeeman
effect. In Fig. 2(d), the evolution of the UHB edge peak with
the Zeeman field has its slope continuously decrease to 0,
reverses signs, and continues to increase in magnitude as the
gauge binding increases in the range of 1 � Ubρ f (0) � 5. In
the strong gauge binding regime, such a Zeeman shift opposite
to that in the standard Zeeman effect is referred to as the
anomalous Zeeman shift.

The anomalous Zeeman shift in the strong gauge binding
regime is due to the interplay between the Zeeman field and
the gauge binding induced energy saving, which is schemat-
ically shown in Fig. 3(a). Given a sufficiently large gauge
binding, spinons and chargons are bound to form in-gap
bound states [34,36,37]. The in-gap bound states are mani-
fested as the in-gap peaks in the electronic DOS spectra shown
in Fig. 2(c). In the Zeeman field, due to the Pauli paramag-
netism, the spinon states with spins parallel to the magnetic
field are shifted up in energy, and there are more empty states

available to inject a spinon. This increases the binding energy,
resulting in a downward shift of the bound-state energy. Note
that this works only if a large fraction of the unoccupied states
up to the upper band edge participate in binding. It requires
a strong binding interaction comparable to the bandwidth,
which is indeed the case when the bound state is split off
below threshold.

Below we discuss more quantitatively how this anomalous
Zeeman shift comes about. Let us take the electronic bound
state below the UHB as an example and the case of the hole
bound state above the LHB can be found in the Supplemental
Material [33]. We define the susceptibility to bind a spinon
and a doublon, which is the real part of the bare electronic
Green’s function obtained by convolving the spinon and dou-
blon Green’s function [33],

χd,σ (k, ω) = − 1

N

∑

q

ReGR
d,σ (ω, k − q, q), (5)

with kF being the spinon Fermi wave vector. Here the form of
the bare Green’s function GR

d,σ (ω, k − q, q), which involves
no gauge binding, is given in Eq. (S9) in the Supplemental
Material [33]. In Fig. 3(b), χd,↑(kF, ω) is plotted, given differ-
ent Zeeman fields. We see that the susceptibility χd,↑(kF, ω)
is larger for the spinons of parallel spin compared with those
of antiparallel spin. When the gauge binding is sufficiently
large, the bound state is solved from the binding equation
Ubχd,σ (d, ω) = 1 [33]. This is solved graphically by finding
the intercept of χd,↑(kF, ω) plotted in Fig. 3(b) with 1/Ub.
For sufficiently large Ub, the intercept at ω < � gives the
bound-state energy. It is clear that the intercept gets a smaller
value for the spin parallel to the magnetic field.

V. CONCLUSIONS AND DISCUSSIONS

In the above sections, the QSL electronic DOS spectra in a
Zeeman field is found to exhibit zero shift for the threshold en-
ergy, naive shift for the quasibound spinon chargon pairs, and
anomalous shift for the in-gap bound states. In experiments
which inject unpolarized electrons, the Zeeman splitting of
the band edge resonance or the bound state will be smeared
out by the thermal fluctuations. Therefore, to see this effect it
will be best to inject electrons with one kind of spin via spin-
polarized STM [38,39]. To suppress the thermal smearing, it
is better to carry out the measurement in the low-temperature
kbT � μbB, where kb is the Boltzman constant. In practice,
one would focus on measuring the threshold, Hubbard band
widths, and the band edge resonance peaks. Observation of
the zero Zeeman shift of the threshold, Zeeman field induced
change of the Hubbard band widths, and naive Zeeman shift
of the band edge resonance peaks if any are evidence support-
ing the existence of the SFS. If the electronic DOS spectra
as a whole exhibits the anomalous Zeeman shift, then our
study indicates that the spectra is composed of the bounded
spinon chargon pairs. However, it is difficult to realize this
limit, because in this case the bound state will exhaust a large
fraction of the spectral weight, as seen in Fig. 2(c). The local
electronic DOS spectrum obtained by the STM measurements
[40–45] so far shows either no resonance or resonances with
relatively small spectral weight, therefore favoring the zero
gauge-binding case in Fig. 1(c) or the weak gauge-binding
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induced band-edge resonance scenario in Fig. 2(b). It is also
important to note that the zero Zeeman shift of the threshold
energy serves to distinguish between the QSL with SFS and
a gapped QSL which is expected to show a conventional
Zeeman shift.

Usually, the effect of magnetic field on materials is
twofold: One is the Zeeman effect and the other is the orbital
effect. The study of the orbital magnetic field effect on the
QSL with SFS is present in our companion paper [37]. The
effect of orbital magnetic field is to introduce the Landau
quantization, and the Landu quantizations in the QSL are
characterized by the Hubbard band edge steps and resonance
peaks in the electronic DOS [37]. Fortunately, owing to the
recent emerging two-dimensional Mott insulator 1T-TaSe2

[36,41,43], 1T-NbSe2 [46–49], and the surface of the lay-
ered 1T-TaS2 [44,45,50], one can apply an in-plane magnetic
field as shown in Fig. 3(a) to get rid of the orbital magnetic
field effect [37]. Therefore, two-dimensional QSL candidate
materials with an in-plane magnetic field are ideal platforms

to study the QSL electronic Zeeman response. Recently, a
clear UHB threshold along with a UHB edge resonance peak
has been observed in the STM spectra on the surface of the
layered 1T-TaS2 [45]. From our study, a further spin-polarized
STM measurement on the evolution of the DOS spectra with
an in-plane magnetic field would be helpful to identify the
ground state on the surface of 1T-TaS2. In many cases, a
strong in-plane magnetic field is not available for STM ex-
periments. In that case, it would be instructive to compare
spin injection from a STM tip with opposite spin polarization
to isolate the effect of the Zeeman field from the orbital
effect [51].
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