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The accurate computation of forces and other energy derivatives has been a long-standing challenge for
quantum Monte Carlo methods. A number of technical obstacles contribute to this challenge. We discuss how
these obstacles can be removed with the auxiliary-field quantum Monte Carlo (AFQMC) approach. AFQMC
is a general, high-accuracy, many-body total-energy method for molecules and solids. The implementation of
back-propagation for pure estimators allows direct calculation of gradients of the energy via the Hellmann-
Feynman theorem. A planewave basis with norm-conserving pseudopotentials is used for the study of periodic
bulk materials. Completeness of the planewave basis minimizes the effect of so-called Pulay terms. The ionic
pseudopotentials, which can be incorporated in AFQMC in exactly the same manner as in standard independent-
electron methods, regulate the force and stress estimators and eliminate any potential divergence of the Monte
Carlo variances. The resulting approach allows applications of full geometry optimizations in bulk materials. It
also paves the way for many-body computations of the phonon spectrum in solids.
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I. INTRODUCTION

Interatomic forces and stresses are two important struc-
tural properties of a solid-state system. As gradients of the
potential energy surface under distortion and deformation,
they determine the atomic structure and are crucial for ge-
ometry optimizations, molecular dynamics simulations, as
well as computations of phonon spectrum and thermodynamic
properties, each of which constitutes a large and rich set of
applications in physics and materials science.

Density functional theory (DFT) [1–4] has shown in-
credible success in computing a wide range of physical
properties, including interatomic forces and stresses. How-
ever, in many materials with stronger electron-correlation
effects, computations based on approximate DFT functionals
are sometimes not sufficiently accurate to determine structural
properties [5,6]. Many methods are being actively pursued
which can better describe electron correlations while allowing
systematic and realistic calculations to describe molecules and
bulk materials.

Quantum Monte Carlo (QMC) methods [7] are one class
of such methods, which often show a good balance of accu-
racy and computational scaling. Indeed QMC methods have
seen broad applications in molecules, liquids, and solids, and
are one of the primary modern tools for post-DFT calcula-
tions in electronic structure. However, while total energies are
straightforward to compute and have been the focal point of
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QMC methods, computations of observables and correlation
functions have been less common with QMC in electronic
structure. There have been growing recent efforts to compute
properties other than the total energy. Of crucial importance
among these are forces and stresses, without which the many-
body computations must often rely on DFT (or experiment, if
available) predictions of geometry, and thus cannot be truly
predictive in many strongly correlated systems. Of course one
could compute derivatives by finite difference of the total
energy, including the use of correlated sampling [8] and space
warp techniques [9,10] for acceleration. However, these have
not achieved the desired low computational scaling to allow
efficient structural optimization involving many parameters.
QMC methods are faced with varying degrees of technical
hurdles for direct, systematic computations of forces; to our
knowledge no computation of stress tensors has been per-
formed to date.

There are two main forms of QMC methods in electronic
structure which have algebraic scaling with system size. The
first includes diffusion Monte Carlo (DMC) [11] and the
closely related variational Monte Carlo (VMC) [12,13], which
treat the first-quantization Hamiltonian working in electron
coordinate space. In VMC, the many-body wave function is
often explicitly available, so forces and stresses can in princi-
ple be computed directly with a modified Hellmann-Feynman
estimator [14,15]. This has been applied to structural opti-
mizations [16,17] and estimations of vibrational properties in
small molecules [18] and simple solids [19,20]. The accuracy
of the computed forces are determined by the quality of the
variational wave function. To date the accuracy has not con-
sistently reached such a level as to make VMC by itself a
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routine post-DFT tool for structural optimization, especially
in strongly correlated systems, although this could change
with recent developments of more expressive forms of vari-
ational ansatz and better optimization techniques, including
with neural networks [21–23]. In DMC, the technical hurdles
for direct computation of forces and other energy derivatives
are more substantial. In principle evaluation of pure estima-
tors by forward walking is required, which has rarely been
performed except for light elements [24,25]. Systematic bias
in the mixed estimators, as well as statistical divergences,
must be dealt with before a general algorithm truly becomes
available for structural optimization. (For a more complete
discussion of current state of DMC computations of forces,
see for example, Ref. [26] and references therein.)

The other form of algebraic-scaling QMC methods in elec-
tron structure is phase-free auxiliary-field quantum Monte
Carlo (AFQMC) [27,28], which is the focus of the present
work. AFQMC works in second-quantization, using ran-
dom walks of nonorthogonal Slater determinants in orbital
space. This formalism provides a nonperturbative, post-DFT
method which shares the same Hamiltonian and uses much
of the same machinery [29] as in standard electronic struc-
ture. The method has had a shorter history of development,
but has seen growing applications in lattice models of in-
teracting fermions [30,31], quantum chemistry [32,33], and
solid-state physics [34–36]. In a number of recent benchmark
studies, AFQMC has demonstrated consistently high accu-
racy for total energies in both extended systems [37,38] and
molecules [39], including large transition metal systems [40].
In addition to total energies, expectation values of other
observables that do not commute with Hamiltonian can be
computed by a back-propagation (BP) technique [28,41,42].
For molecular systems, computations of forces using a
Gaussian basis set have been performed, with geometry op-
timization on small molecules [43]. In this work we present
the computation of forces and stress tensors in AFQMC us-
ing planewaves and pseudopotentials, to allow full structural
optimization of periodic bulk systems.

The remainder of this paper is organized as follows. In
Sec. II, we first briefly review the AFQMC method and the
back-propagation technique for the so-called pure estimators
to compute observables. We then describe the formulation
of the atomic forces and stress tensors within the planewave
AFQMC (PW-AFQMC) framework. Section III presents sys-
tematic benchmarks of the calculated forces and stresses
against explicit computations by finite differences, which val-
idates our method and further illustrates its characteristics.
In Sec. IV, we show applications in two different examples
of full structural optimization in solids, one a geometry opti-
mization of atomic positions in a fixed supercell using atomic
forces, and the other a structural optimization of the cell shape
and size using the stress tensors. We then conclude in Sec. V.

II. FORCES AND STRESSES IN PLANE-WAVE AFQMC

A. Basic formalism of AFQMC

AFQMC [27,28] approaches the many-body ground
state of a system with imaginary time propagation
limN→∞ e−N�τH |�T〉 → |�0〉, where H is the many-body

Hamiltonian whose ground state |�0〉 is targeted, |�T〉
is a trial wave function that is not orthogonal with |�0〉.
The propagation is separated into N steps, each of which
of imaginary time length �τ , making the propagation an
iterative process. The size of the time step �τ must be chosen
to be sufficiently small to minimize commutator errors,
known as Trotter errors. The algorithm takes the form of an
open-ended random walk, such that there is little restriction
on N , which typically takes very large values.

An interacting electronic Hamiltonian, such as the ones in
electronic structure under the Born-Oppenheimer approxima-
tion, contains one-body and two-body terms. Propagating with
the exponential of one-body terms takes a Slater determinant
to another Slater determinant [44]. Two-body propagators,
which do not preserve the form of a Slater determinant, are
treated in AFQMC via the Hubbard-Stratonovich transforma-
tion [45,46]:

e− �τ
2 λv̂2 = 1√

2π

∫ ∞

−∞
dxe− 1

2 x2
ex

√−�τλv̂. (1)

This formula rewrites the propagator of any two-body Hamil-
tonian term, after it has been expressed in the form of the
sum of squares of one-body operators: H2 = ∑

i aiv̂
2
i , into

an integral of one-body propagators. The integral over the
auxiliary fields, {xi}, can be then evaluated with Monte Carlo.

The iterative process of imaginary time propagation then
transforms into a random walk process of a population of
Slater determinants (walkers) {|�(n)

k 〉}, where n indicates the
imaginary-time-step count, and k is an index of the random
walker at each time n. Each walker |�(n)〉 is a Slater determi-
nant propagated from the initial determinant, and is dependent
on its specific path history in auxiliary-field (AF) space,
{{xi}(n), {xi}(n−1), · · · , {xi}(1)} (omitting the walker index k).
The wave function at each step is represented by a weighted
average of all the random walkers at that step, |� (n)〉 ∝∑

k |�(n)
k 〉/〈�T|�(n)

k 〉 and it approaches the ground state after
a sufficiently large number of steps n > neq. The value neq

depends on |�T〉 and the system, and is such that neq�τ allows
the imaginary-time projection from |�T〉 to reach |�0〉 within
the desired statistical accuracy. After convergence, both en-
semble and time averages together give a representation of
the ground-state wave function, |�0〉 ∝ ∑

n>neq
|� (n)〉, whose

statistical accuracy can be improved with increasing sample
size, following the behavior dictated by the central limit the-
orem. The actual AFQMC algorithm is augmented by several
additional ingredients, including importance sampling (which
is embedded in the form of |� (n)〉 we used above), and the use
of a force bias in proposing Monte Carlo moves to improve
efficiency [41], as well as the phaseless approximation to
control the phase problem [27].

The open-ended random walk scheme yields a form to
conveniently evaluate observables that commute with the
Hamiltonian, using the mixed estimator. For example, the total
energy can be computed through

〈H〉 = E = 〈�T|H |�0〉
〈�T|�0〉 , (2)

for which we only need to propagate one side in the estimator,
the ket. The numerator and the denominator can be computed
with the random walk averages, and the final estimator for the
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energy involves weighted averages of “local energies” of the
form EL(�(n)

k ) = 〈�T|H |�(n)
k 〉/〈�T|�(n)

k 〉.
For observables which do not commute with the Hamilto-

nian, computations with the mixed estimator in Eq. (2) will
incur a bias. A more accurate calculation will require propa-
gation of the bra 〈�T| to the ground state as well, the so-called
pure estimator. This is nominally not difficult to achieve. For
example, one could sample an entire path of AF for a fixed
length of imaginary time with the generalized Metropolis
algorithm [47]. However, this approach would cause ergod-
icity problems when a constraint needs to be imposed along
the path to control the sign or phase problem. In the open-
ended random walk formulation with importance sampling
and constraint, as mentioned above, the projection of the left-
side requires the back propagation (BP) scheme [28,41,42]
referred to earlier.

We observe that

〈O〉 � 〈�T|e−m�τH Ôe−n�τH |�T〉
〈�T|e−(m+n)�τH |�T〉 , (3)

where 〈O〉 approaches the ground-state expectation as m, n →
∞. The denominator can be viewed as an overlap of the trial
wave function with a propagation of (m + n) steps. If we
choose to remember the last m steps of the AFs and prop-
agate 〈�T| back with the corresponding one-body operators
in reverse order, we obtain an estimate of the propagated
bra 〈�0| � 〈�T|e−m�τH . This is the basic idea of BP in
AFQMC, which allows a seamless integration of the back-
ward projection with the importance sampling scheme applied
in the forward direction. The BP scheme has been applied
widely in calculations on lattice models of strong correla-
tions [30,31,48]. An additional bias arises in BP because of
the reversal of the direction in which the constraint is applied.
Such biases are generally much smaller than the mixed-
estimator bias for observables that do not commute with the
Hamiltonian, but can be larger than that of the purely vari-
ational estimator (which is often hard to compute) [41]. We
apply the recently proposed path-restoration technique [42],
which can further mitigate the BP bias. Our implementation
of the BP scheme in planewave AFQMC is discussed in more
detail in Ref. [34]. For the purpose of the present work, the
most important aspect to note is that Eq. (3) is reduced to
weighted averages of local estimators of the form

〈O〉BP
k ≡

〈
�̄

(m)
k

∣∣Ô∣∣�(n)
k

〉
〈
�̄

(m)
k

∣∣�(n)
k

〉 , (4)

where k labels a walker which survives through the (m + n)th
step of the random walk, |�(n)

k 〉 is the parent walker of k back
in the nth step, and 〈�̄(m)

k | is the back-propagated bra Slater
determinant. The weighted average over k yields the Monte
Carlo estimate of the expectation value of O given in Eq. (3).

Any one-body operator O = ∑
uv Auvc†

ucv or two-body op-
erator O = ∑

pqrs Vpqrsc†
pc†

qcscr , or their linear combinations,
can be computed with the above approach. The estimators
〈c†

ucv〉 and 〈c†
pc†

qcscr〉 are the one-body and two-body reduced
density matrices (1rdm, 2rdm) Guv and Gpqrs, respectively.
Computation of 〈O〉 can therefore be thought of as computing
the 1rdm’s and 2rdm’s (which can be obtained via Wick’s the-
orem [32,49]), and then multiply them with the corresponding

coefficients Auv and Vpqrs. This straightforward approach is
ineffective with the plane wave basis, where the number of
basis functions is much larger than with a localized basis
set choice. As such, naive implementations would lead to
large storage [O(N2

PW) for the 1rdm] and computational costs
[O(N3

PW) for operations like Tr(AuvGuv )].
Instead, we take a different approach in planewave

AFQMC. Recall

Guv = Tr[(�†� )−1�†Euv�] = [�(�†� )−1�†]vu, (5)

where � and � are the matrix form of the ket and bra Slater
determinants, and E is a matrix with only one nonzero element
Euv = 1. We store the intermediate matrix � = �(�†� )−1,
which only requires a memory of O(NPWNe). The 1rdm is
conveniently restored from � and the bra determinant:

Guv =
Ne∑

t=1

�vt (�
†)tu. (6)

The use of fast Fourier transforms (FFTs) and convolutions
lead to efficient evaluations. For example, the local part of the
electron-ion interaction (see next section for further details):

V L
ei =

∑
Q 
=0

vL
ei(Q)ρ(Q), (7)

with ρ(Q) ≡ ∑
G c†

GcG+Q the “density operator” in Q-space,
is given as

Tr
[
V L

ei G
] =

Ne∑
t=1

∑
G

�
†
tG

∑
Q

vL
ei(Q)�G+Q,t , (8)

which involves a convolution in the form of (A 
 B)q =∑
p ApB±p+q, that is conveniently computed with FFTs and

inverse FFTs on the plane-wave grid, and only has a com-
plexity of O(NeNPW log NPW). The sum on the outer layer also
only requires a complexity of O(N2

e NPW).

B. The computation of forces and stresses in planewave AFQMC

With BP and path restoration, pure expectation values of
observables can be computed. This allows us to then apply the
Hellmann-Feynman (HF) theorem to compute the expectation
values of the derivatives of the Hamiltonian directly. Compu-
tation of AFQMC forces and stresses are then available, which
are given via the HF theorem as expectations of the derivatives
of the Hamiltonian.

In the plane-wave basis, the second-quantized Born-
Oppenheimer Hamiltonian H can be written as a sum of
following components [50]:

H = K + Vei + γEwald + Vee, (9)

which are the kinetic energy, the electron-ion interaction
(represented by pseudopotentials), the Ewald energy (a
system-related constant coming from the interaction of the
ions, including with their images due to the periodic cell),
and the electron-electron interaction, respectively. A kinetic
energy cutoff |G|2 < Ecut is imposed on the plane waves,
limiting the total number of plane waves to a finite number
NPW. The pseudopotential can be separated into local (L) and
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nonlocal (NL) components [50]:

Vei =
∑
Q 
=0

vL
ei(Q, {�τ })ρ(Q) +

∑
G,G′

vNL
ei (G, G′, {�τ })c†

GcG′ ,

(10)
where G and G′ are planewaves within the cutoff Ecut,
Q ≡ G′ − G, the operator ρ is the Fourier transform of the
real-space electronic density, and �τ denotes the positions of
ions. We have omitted the spin index in the operators. The
electron-electron interaction is Vee = V C + Nξ , where the
constant second term (with N being the number of electrons)
is similar to the Ewald term from the ions and can be treated
together with the latter for convenience, and

V C ≡ 4π



∑
pqrs

∑
Q 
=0

1

|Q|2 c†
pc†

qcscr, (11)

where each of the indices p, q, r, s denotes a combination
of plane-wave vector G and spin σ . In Eq. (11), momentum
conservation Gr + Gs = Gp + Gq and spin invariance σr =
σp, σq = σs are imposed, and a sum over the spin indices is
implicit.

Interatomic forces are derivatives of the total energy with
respect to ion positions {�τ }, which are only present in the
pseudopotential and ion-ion Ewald energy. From Hellmann-
Feynman theorem:

Fia = − ∂E

∂τia
= 〈�0| − ∂H

∂τia
|�0〉 ≡ 〈�0|F̂ia|�0〉, (12)

where i marks each atom and a marks each of the three
Cartesian directions. The force observable that will replace Ô
in Eq. (4) is therefore written as

F̂ = FEwald + F̂ei, (13)

where the Ewald force FEwald is a constant [51]. For the
electron-ion contribution, the dependence on ion positions is
only in the coefficients vei, as seen in Eq. (10). The com-
putation of the electron-ion forces therefore requires only a
replacement of the coefficients vei in the total energy computa-
tions by −∂vei/∂τia. As all dependencies of {�τ } in vei are in the
form of structure factors (of the form eiG·�τ –see Appendix A),
computations of −∂vei/∂τia are straightforward. There is no
dependence of the ion positions in the plane-wave basis, hence
no Pulay terms from the basis set here.

The stress tensors σab are derivatives of total energy with
respect to a strain εab, which describes the deformation U of
any crystal point with respect to its (Cartesian) coordinates X,
εab = ∂Ua/∂Xb. The stress tensor is then defined as

σab = − 1



∂E

∂εab
, (14)

where  is the supercell volume. As the strain tensor is
transpose symmetric, so is the stress tensor. Because of sta-
tistical errors, this symmetry only holds in a statistical sense
in AFQMC. We apply an explicit symmetrization of the stress
tensor after the AFQMC calculation: σ̄ab ≡ (σab + σba)/2.

Unlike forces, the Hamiltonian terms are not directly de-
pendent on the strain tensor so a chain rule has to be applied
through all real-space and reciprocal-space vectors, as well as
the lattice volume. This is based on a list of transforms under
strain: ra → ∑

b(δab + εab)rb, ka → ∑
b(δab − εab)kb, and

 → (1 + �aεaa), where r and k represent, respectively,
any real- and reciprocal-space vectors in the Hamiltonian. The
observable to evaluate by Eq. (4) is therefore

σ̂ab = − 1



⎛
⎝∑

r,c

δacrb
∂Ĥ

∂rc
−

∑
k,c

δackb
∂Ĥ

∂kc
+ δab

∂Ĥ

∂

⎞
⎠.

(15)

Every term in the Hamiltonian in Eq. (9) is affected by the
change of the space metric, which means a derivative is
needed for each. We write it as

σ̂ = σ̂K + σ̂ei + σ̂Ewald + σ̂ee. (16)

The kinetic and Ewald terms are formally the same as in
the corresponding DFT calculations [51]. Dependencies on
G and Q arise in the electron-ion contribution in Eq. (10),
which result in derivatives of the pseudopotential function
and the spherical harmonics (see Appendix B for details.)
For the electron-electron interaction, the contribution to the
stress from the Ewald term is readily available (by setting
Zi → −1, �τ → 0 in Ref. [51]). The remaining contribution,
from Eq. (11), is

σ C
ab = δab


V C − 8π

2

∑
pqrs

∑
Q 
=0

QaQb

|Q|4 c†
pc†

qcscr, (17)

where the second term can be computed similarly to the first
term which is already present in the total energy calculation.

We comment on the computational cost of forces and
stresses, compared with a total-energy computation. BP is
performed occasionally in AFQMC, so it only adds a small
additional cost. The computational scaling of BP is also the
same as energy computations; in both cases the major cost
is in estimating 1rdms. The computational scaling for forces
and stresses is therefore the same as total-energy-only compu-
tations, with an additional prefactor (∼1.2× in the examples
we tested in this work).

C. Sources of errors and their mitigation

At the top level, the formalism we have presented for
computing atomic forces and stress tensors have two sources
of systematic errors. The first is from the phaseless constraint
of AFQMC, which controls the sign or phase problem. In
other words, the ground-state wave function sampled from
the AFQMC, |�̃0〉, deviates from the exact |�0〉. This bias
is reflected in the computed total energy (from the mixed
estimator), and is generally very small, as seen through many
studies and in the large body of benchmark results [37,40].
Additional reduction of the systematic errors can be achieved
by better trial wave functions or the use of self-consistent
constraints [52].

The other source of error is the BP bias. If |�̃0〉 can be
used on both sides to compute a variational estimate of 〈O〉,
then the result is expected to be of a quality consistent with the
total energy [41]. However, we cannot do this very efficiently
in general, and instead use the BP approach, in which the
backward walker paths in Eq. (3) do not satisfy the rigorous
constraining sign or gauge condition, which is imposed in
the forward-propagating direction [53]. This bias is mitigated
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(but not fully suppressed) by the path-restoration scheme, as
discussed and illustrated in Ref. [42]. The accuracy of the BP
result can still be below that expected from the total energy.
One very useful way to quantify this error is via explicit calcu-
lations of 〈O〉, by finite difference using multiple total energy
calculations. (This approach has seen many applications in
lattice models [31].) The benchmark results below in Sec. III
are precisely in this mode, and the excellent agreement be-
tween our direct results and the target finite-difference values
indicates negligible BP error.

Other sources of errors are present but can be system-
atically removed. These for example include Trotter errors,
population control bias (both of which are also present in
total-energy-only calculations), and BP equilibration time
bias, all of which can be handled in standard ways [32].

We comment on two other errors which require a bit
more attention for forces and especially stress tensors, namely
finite-size error and residual basis set error. First, AFQMC
computations are performed in finite systems, and the results
must be extrapolated to the thermodynamic limit for bulk
systems. This applies to the forces and stresses we com-
pute as well. To help reduce finite-size effects, we apply a
post-processing correction from a finite-size DFT functional
parameterized in Ref. [54] (referred to as KZK in the litera-
ture). The KZK finite-size correction is for the total energy.
Since forces and stress tensors are both energy derivatives,
we can in principle apply a post-processing to them in the
same way as to the total energy [54]. However, for the stress
tensors, coefficients appearing in the KZK finite-size func-
tional are dependent on the lattice volume, whose derivatives
must therefore be accounted for. A simple way to treat this
problem and avoiding additional Pulay terms is to use the
finite-difference KZK stress σKZK,ab = −�EKZK/(�εab).
After that, the usual way of finite-size correction σ∞

QMC =
σ FS

QMC − σKZK + σ∞
DFT can be applied.

The second point worth noting concerns finite basis set
errors, or rather the (lack of) balance between the plane wave
basis sets in different supercells. As mentioned, the plane-
wave basis set, which is independent of ionic positions in the
supercell, has essentially no finite basis error for force calcu-
lations within a fixed supercell. It does depend on the space
metric, and the number of plane waves varies with the super-
cell size. A Pulay term thus arises for stress tensors. We find
this Pulay term to be minimal (“kbar”-level) for a suitable PW
cutoff. If a higher accuracy is desired, then common solutions
from DFT, such as increasing or smoothing the cutoff [55],
can be adopted straightforwardly in PW-AFQMC and works
well. An even simpler scheme, in the spirit of KZK, is to
correct QMC results with the corresponding DFT cutoff error:
σ

Ecut=∞
QMC ≈ σ

Ecut
QMC − σ

Ecut
DFT + σ

Ecut=∞
DFT . Although approximate,

this scheme works well for moderately correlated materials.

III. BENCHMARK AND ILLUSTRATION

To validate our formalism and implementation, and test
the accuracy of force and stress computed with PW-AFQMC,
we performed a number of benchmark calculations. We
compare the forces and stress tensors computed directly by
the approach outlined in Sec. II B with the corresponding
finite difference results obtained from AFQMC total energies.

The comparison is made in a finite system under identical con-
ditions. The total energy calculations are fully converged with
respect to any systematic errors except for the phaseless error,
which is expected to be negligibly small in these systems [56].
We ensure that the error from finite difference is smaller than
the statistical error in the reference data. Trotter step sizes
are extrapolated to zero from three separate finite step-size
computations. As discussed in Sec. II C, this comparison thus
quantifies all the errors in the forces and stress tensors except
that from the phaseless constraint.

We consider a diamond-structured Si in the primitive face-
centered cubic (FCC) cell. To benchmark forces, we displace
one Si atom along the Cartesian x-axis of the cell. We compare
the directly computed forces with the reference result from
total energies across a range of displacement, from −1.5% to
1.5% of the experimental lattice constant (10.263 Bohr) with a
0.5% step interval. To obtain the reference data, we compute
the total energies with AFQMC across a wider range (−2%
to 2% of the lattice constant). We then fit the computed total
energy to the quadratic function E = 1

2 kx2 + E0. (We have
verified that this form is sufficient, as expected for the vicinity
of the equilibrium.) The fit is performed in a stochastic way
to account for the statistical error bars in the computed total
energy: a value is selected randomly at each data point from
a Gaussian distribution centered at the mean, with variance
given by the Monte Carlo error bar; the set of values for the
entire displacement range forms a “sample” which can be
fitted to obtain a {k, E0}; a large number of samples are used to
estimate the value and uncertainty of {k, E0} through the sam-
ple average and standard deviation. As a positional derivative
of the total energy, the fitted force is then given by F = −kx,
with statistical uncertainty from the value of k. [This is seen
in the linearly growing statistical uncertainty in the reference
data in the inset of Fig. 1(a)]. This reference force Ffit is then
compared with the force directly computed from AFQMC
using the algorithm in Sec. II B, Fdirect. As shown in Fig. 1(a),
excellent agreement is seen across the entire range.

To benchmark the computed stress tensors, we proceed
in a similar fashion, by deforming the lattice to vary the
cell volume and shape, and computing the derivatives of the
equation of state to obtain reference data. Here we show an
example on the diagonal stress terms, which are associated
with lattice volume changes. We use the same silicon struc-
ture, varying the lattice constant a around the experimental
equilibrium value and calculating the total energy for a range
of lattice constants (9.8 to 10.6 Bohr). Similar to the force
benchmark, this range is larger than that targeted in the direct
stress calculations, to obtain a reliable fit across the range
of the benchmark. We then fit the computed equation of
state with the Murnaghan equation [57] following the same
stochastic procedure described above, and obtain estimates of
the the four free parameters {E0,V0, K0, K ′

0} and their statisti-
cal uncertainties. Noting that

−3a



∂E

∂a
= −

3∑
i=1

1



∂E

∂εii
= Tr[σ ], (18)

we can evaluate the strain derivative in the middle by the
left-hand side from the Murnaghan equation with the fitted
parameters, and compare it with the trace of the directly
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(a) Fdirect − Ffit

Tr(σdirect − σfit)(b)

Lattice Constant a  [Bohr]

FIG. 1. Benchmark of the computed forces (top panel) and stress
tensors (bottom panel) in the Si diamond structure. Forces/stresses
directly computed by AFQMC are shown by blue diamonds with
error bars, and the reference data, from differentiating the AFQMC
total energies, are shown by the red solid curve with error bar as
shades. The insets show a zoomed view of the difference between
the two. In panel (a) the horizontal axis gives the displacement of
one atom along one direction. In panel (b) it is the lattice constant as
the cell is varied.

computed stress matrix on the right-hand side. The results are
presented in Fig. 1(b). In the main graph, Pulay corrections
have been applied to both sets of data. The position in a where
either result intercepts 0 shows a small discrepancy from the
experimental equilibrium lattice constant. This arises from
residual finite-size error (which should vanish when extrap-
olated to the thermodynamic limit) and has no effect for the
purpose here. Excellent agreement is again seen between the
computed stress and the benchmark data.

IV. APPLICATIONS IN GEOMETRY OPTIMIZATION

The ability to compute accurate force and stress from
AFQMC can potentially enable many applications. One of
these is geometry optimization. A full degree-of-freedom
(DOF) geometry optimization is possible when we have both
forces and stresses available. Interatomic forces allow for op-
timizations in atom positions, and the stress tensors allow for
optimizations of the lattice volume and shape. Here as a first
test, we apply these capabilities to two different bulk systems:
Si and aluminium nitride (AlN).

The computed forces and stresses can be fed into any
optimization routine for structural optimization. Here we use
an optimization algorithm that we recently developed [59],
called FSSD×SET (fixed step-size descent with staged error
targeting). In a series of tests, in which we emulated forces and

A

B

D

C D

A

B

Stage I

Stage II

C

FIG. 2. Optimization of all atomic positions in a supercell of
diamond Si. The starting structure (A) is a 50:50 mix of atomic
positions in diamond and β-tin structures, placed inside a supercell
of equilibrium volume of the diamond structure. The target is the
global minimum diamond structure (D). The X axis shows the SOAP
similarity kernel [58]. The Y axis shows the AFQMC total energy
per Si atom. The scale of statistical uncertainty in the energy is
indicated by the error bars at selected steps. The black dashed line
shows the energy computed at the target diamond structure, with the
gray shades indicating the statistical error. The insets (A–D) show the
atomic positions in the y-z plane for four steps along the optimization
trajectory, as indicated. Structures (C) and (D) are very close and are
shown as overlapping images.

stresses computed from QMC (or any other methods which
might contain stochastic noise) by adding synthetic noise to
the corresponding DFT results, we studied the efficiency and
effectiveness of commonly applied structural optimization
algorithms, including some of the latest machine learning op-
timization methods. We found that the FSSD×SET approach
consistently performed efficiently and robustly under realistic
conditions. In the test examples below, we thus apply this
algorithm in combination with forces or stresses computed
from AFQMC to realize fully ab initio many-body structural
optimizations.

We first perform a geometry optimization of atomic po-
sitions in bulk Si. We consider a cubic supercell with the
experimental equilibrium lattice constant of a = 10.263 Bohr.
The initial positions of the atoms are a 50:50 mix of their
fractional coordinates in the diamond structure and the β-tin
structure (under strain). Figure 2 illustrates how the system,
under PW-AFQMC optimization, transforms into the dia-
mond structure. Arrows connect subsequent steps, and in this
optimization run, the SET includes two stages, marked by
two different colors. At the beginning of the optimization
(the first stage), the total energy drops quickly and in a few
steps the atoms change from their initial positions [depicted
in Fig. 2(a)] to form a pattern that looks like a distorted
diamond structure [Fig. 2(b)]. The structure then converges
more slowly in the energy as the atoms move toward the
configuration in Fig. 2(c). At this step (step #13), the structure
resembles that of the diamond (mean absolute discrepancy of
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∼ 0.17 Bohr per DOF), and we obtain an AFQMC total energy
that is about 1 part in 3100 higher than the global minimum
at the diamond structure. Convergence is considered reached
at this step for the first stage, and the optimization undergoes
a few steps around this converged position, with a position
averaging performed among these converged steps [59] to
yield a new starting position for the next stage, as indicated
by the green oval and arrow. By refining the optimization in
a second stage of SET, with smaller targeted statistical error
in the AFQMC force computations and a reduced step size in
FSSD, we approach the correct minimum diamond structure
as depicted in Fig. 2(d). The SOAP similarity kernel [58]
(1 − KSOAP) is a measure of how similar the structure is to the
target. Our final structure in D has a SOAP similarity kernel
difference of 10−12 (mean absolute discrepancy of ∼ 0.011
Bohr per DOF), and a total energy within one statistical error
bar or one part in 106 000 of the energy of the ideal diamond
structure.

In the second example, we optimize the lattice volume
and shape in solid AlN in the wurtzite structure. Figure 3(a)
illustrates the setup. The fractional atomic positions in the cell
are fixed to be the values of the wurtzite (P63mc) structure.
The initial structure has a mismatch between the atom posi-
tions and the lattice structure, which is tetragonal supercell
of a cubic NaCl lattice (c = 7.64 Bohr, a = b = √

2c/2). The
target structure, which is the global minimum under ambient
condition, is the wurtzite lattice shown on the right. This
optimization procedure involves 6 degrees of freedom: the
lattice constants (a, b) and the lattice shape (c/a; α, β, γ ).
We again apply the FSSD × SET algorithm for the opti-
mization. Instead of the forces as in the example above,
this requires repeated computations of the stress tensors with
the PW-AFQMC algorithm outlined in the previous section.
Figures 3(b)–3(d) demonstrate how the lattice structure trans-
forms toward the global minimum. Convergence of all DOF is
seen at step #10 with one stage of FSSD × SET. The evolution
into a final structure of hexagonal wurtzite lattice is evident:
c/a increases from

√
2 to ∼1.60, and γ changes from 90◦ to

60◦. The averaged lattice parameters after convergence show
very good agreement with experimental results.

V. CONCLUSION AND OUTLOOK

We have presented a method for accurate computations
of interatomic forces and stress tensors in solid state sys-
tems, under the PW-AFQMC framework. The approach is
outlined in detail, with a discussion of the sources of errors.
Benchmark calculations were performed using accurate total
energies to test the formalism and implementation of the di-
rect computation under the Hellmann-Feynman scheme. The
approach is then applied in two simple solids as examples,
demonstrating fully ab initio structural optimizations of both
atomic positions and lattice structures.

The work paves the way for structural optimizations in
realistic materials with an accurate many-body method. This
opens exciting new opportunities for more predictive com-
putations in correlated materials. A number of questions
remain to be further explored to allow systematic applications,
including reducing finite-size effects, quantifying the accu-
racy in strongly correlated materials, improving computa-

(b)

(c)

(d)

expt.

(a)

optimize

a
b

c

FIG. 3. Optimization of the lattice volume and shape in solid
AlN. Panel (a) shows the initial and target structures. Panels (b, c, d)
show the lattice constant a, b, the ratio c/a, and the 3 lattice angles
α, β, γ , respectively. Convergence is reached at step 10. On the right
side of each plot, the average from step 10 to step 25 is shown with
the estimated statistical error bar. Experimental values are shown in
dotted lines for comparison.

tional efficiency in our formalism, exploring the BP approach
versus automatic differentiation, etc.

Interatomic forces are also key ingredients for computation
of the phonon spectrum. The availability of forces from the
approach we have presented thus makes possible many-body
computation of phonon spectra in solids. A crucial new ingre-
dient which enables systematic phonon calculations is the use
of correlated sampling [60], which allows estimates of small
differences of systems in proximity, or derivatives by finite-
difference. When combined with the approach presented in
this work, we can then efficiently compute the derivatives of
forces and stresses. A recent improvement of the correlated
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sampling algorithm has introduced population control [61],
which significantly improves its efficiency and effectiveness.
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APPENDIX A: THE ELECTRON-ION FORCE TERM

We provide some additional details on the differentiation
of the pseudopotential coefficients. The local pseudopotential
coefficient, vL

ei, is given by

vL
ei(Q) = 1



∑
i

VL
i (|Q|)e−i �τi·Q, (A1)

where i loops over atoms, VL(Q) is a function interpolated
from the pseudopotential (we use multiple-projector norm-
conserving pseudopotentials) and is the same for atoms of the
same species. Differentiating this with respect to an atomic
position �τμ involves multiplying iQδiμ to each term of the
sum. Since plane wave AFQMC uses convolutions instead of
matrix multiplications, an additional Fourier transform to real
space is performed and saved for repeated use.

The nonlocal pseudopotential coefficient, vNL
ei , is given by

the Kleinman-Bylander form [62]

vNL
ei (G, G′) =

∑
J

1

ηJ
u


J,GuJ,G′ , (A2)

where J loops over “projectors” and represents a combination
of {i, l, m}, i is the atom number and l, m are the azimuthal
and magnetic quantum numbers, ηJ is a constant for each J ,
and

uJ,G = 4π√


ei�τi ·GkVNL
J (|Gk|)Y ∗

l,m(Gk ), (A3)

where Gk is short hand for G + k (k is the twist angle for
a twisted boundary condition). Y ∗

l,m are complex-conjugated
spherical harmonics taking the polar coordinates angle (θ, ϕ)
of the input vector.

Differentiating vNL
ei creates two terms. In each of them, one

of the uJ,G is unchanged, while the other will be multiplied by
−iGkδi,μ:

− ∂vNL
ei (G, G′)
∂τμa

=
∑

J

iδiμ

ηJ
[(u


J,GGa)uJ,G′

−u

J,G(G′

auJ,G′ )],

(A4)

where τμa denotes the coordinate in the a-direction of the μth
atom.

Unlike the local electron-ion force, its nonlocal counterpart
is not computed with convolutions. However, by writing the
pseudopotential in the Kleinman-Bylander form, the dimen-
sion has already been drastically reduced. Using the notation
U to represent the matrix of uJ,G, and Ua to represent the
matrix of (GauJ,G), we group U † or U†

a with �†, and U or
Ua with �, and compute the matrix multiplication within each
group first. Sums on J and all electrons are then performed,
where δiμ takes effect. In summary, one computes

∑
t∈electrons

∑
J

iδiμ

ηJ
[(Ua�)†

tJ (U�)Jt − (U�)†
tJ (Ua�)Jt ], (A5)

where U and Ua are matrices of dimensions (J, G), � and �

are matrices of dimensions (G, t ).

APPENDIX B: THE ELECTRON-ION STRESS TERM

Based on the formulas in Appendix A, we can also com-
pute the electron-ion contribution to the stress, for which we
now have to consider the dependency on G, Q, as well. For
the local part:

− 1



∂vL
ei(Q)

∂εab
= 1

2

∑
i

[
V̇L

i (|Q|)QaQb

|Q| + δabVL
j (|Q|)

]
e−i�τi ·Q,

(B1)

where V̇L(Q) ≡ dVL(Q)/dQ is obtained by taking direct
derivative of the cubic spline function used for interpolation.
This entire object can be pre-computed and used to replace
vL

ei in the energy computation routine to obtain the local pseu-
dopotential stress contribution. For the nonlocal part,

− 1



∂vNL
ei (G, G′)

∂εab
=

∑
J,G,G′

1

ηJ
[(ūJ,G;ab)
uJ,G′

+ (uJ,G)
ūJ,G′;ab], (B2)

where ūJ,G;ab is a shorthand for (−1/)(∂uJ,G/∂εab), and
contains three terms:

(1) A contribution from −1/2, which is just (δab/2) ×
uJ,G.

(2) A contribution from the derivative of VNL
J (G):

4π

3/2
eixi ·Gk Gk

aGk
b

|Gk| [V ′
J (|Gk|) · Y ∗

l,m(Gk )]. (B3)

(3) A contribution from the derivative of the spherical
harmonics,

4π

3/2
eixi ·Gk

[
VJ (|Gk|) · ∂Y ∗

l,m

∂Gk
a

Gk
b

]
, (B4)

which is computed together with the spherical harmon-
ics themselves, and can be obtained with any library that
computes (∂Yl,m/∂θ ) and (∂Yl,m/∂ϕ), with a coordinate trans-
formation from (G, θ, ϕ) to (Gx, Gy, Gz ).

Written in full, for the nonlocal electron-ion stress, one
computes

∑
t∈electrons

∑
J

1

ηJ
[(Ūab�)†

tJ (U�)Jt + (U�)†
tJ (Ūab�)Jt ], (B5)

where Ūab represents the matrix of ūJ,G;ab.
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