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Motivated by the resistive switchings in transition-metal oxides (TMOs) induced by a voltage bias, we study
the far-from-equilibrium dynamics of an electric-field-driven strongly correlated model featuring a first-order
insulator-to-metal transition at equilibrium, namely the dimer-Hubbard model. We use a nonequilibrium imple-
mentation of the dynamical cluster approximation to access the steady-state spectral and transport properties.
We show that the electric field can drive both metal-to-insulator and insulator-to-metal transitions. While they
proceed by quite distinct mechanisms, specifically simple heating of the metal versus nonequilibrium effects
in the correlated charge gap, we show that both of these nonequilibrium transitions can be unified in a single
framework once the excitations are accounted for in terms of an effective temperature. This conceptual advance
brings together the two sides of the long-lasting debate over the origins of the electrically driven resistive
switching in TMOs.
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I. INTRODUCTION

Insulator-to-metal transitions (IMTs) in transition-metal
compounds are among the most abrupt first-order phase tran-
sitions in nature: temperature variations of a few Kelvins can
cause dramatic resistivity drops of three to six orders of mag-
nitude, on timescales of only tens of nanoseconds. For over
half a century, theories and experiments have examined the
different mechanisms behind these transitions, in particular
the role of strong correlation among the electrons [1–3]. These
resistive switchings can also be triggered electrically, at am-
bient temperature and pressure, with relatively small electric
fields, EIMT ∼ 102–103 kV/cm [4,5]. This makes them excel-
lent candidates for modern electronic switches with reduced
response time and power consumption suitable, in particular,
to neuromorphic computing [6–9]. They proceed with the
creation of metallic filaments; these heterogeneous dynam-
ics are a manifestation of a bistable phase where both the
insulator and the metal can coexist [10–12]. This bistability
also accounts for the hysteretic behavior by which the metal-
to-insulator transition (MIT) occurs at lower threshold fields
EMIT � EIMT.
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The colossal energy mismatch between the electronvolt
(eV) electronic scales and the meV scales corresponding to
the measured threshold fields has fuelled a long-standing de-
bate on whether electrically driven resistive switchings follow
the same mechanisms as in equilibrium, with a temperature
increase in the filament driven by Joule heating effects, or
whether intrinsically nonequilibrium electronic effects are at
play [13–15]. The case of vanadium oxides has been par-
ticularly scrutinized as their thermally driven IMT is often
presented as archetypal of the physics of strongly correlated
electrons. Experimental evidence seems to indicate that the
resistive switching in pristine vanadium dioxide (VO2) fol-
lows the Joule-heating scenario, whereas the one in vanadium
sesquioxide (V2O3) is thought to result from nonthermal ef-
fects [16–23]. However, the controversy is still fierce, and
elements of both scenarios could participate towards the tran-
sition.

From a theoretical perspective, it is a great challenge
to address the electrically driven resistive switchings in
these correlated insulators. On the one hand, we of-
ten start with a partial understanding of the equilibrium
IMT, and on the other hand, it requires solving far-from-
equilibrium dynamics of complex open quantum many-body
systems.

Conceptual progress has been made in the context of ele-
mentary correlated band insulators treated by means of static
mean-field techniques, allowing access to analytical solutions
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[24,25]. The ubiquity of nonequilibrium first-order switchings
was unveiled by showing that even when the equilibrium sys-
tem features a continuous phase transition, such as in V3O5,
a finite electric field can open a bistable regime between
the metal and the insulator, and turn the resistive switching
into a nonequilibrium first-order transition. Moreover, it was
proposed to unify the two competing scenarios of resistive
switching in a single framework. The pivotal concept that
has been put forward is the notion of effective temperature,
Teff , which quantifies the number of electronic excitations
irrespective of their thermal or purely nonequilibrium ori-
gin [26]. In that view, IMTs and MITs may proceed by
distinct mechanisms, at much different threshold fields, but
one should recover the equilibrium phase diagram once the
nonequilibrium phase diagram is parameterized in terms of
Teff .

The past decade has also seen methodological progress
with the development of nonequilibrium formulations of dy-
namical mean-field theory (DMFT) allowing to treat both
the finite electronic interaction in driven-dissipative correlated
lattices and their distance to equilibrium in a nonperturbative
fashion [27–30]. In particular, nonequilibrium steady-state
(NESS) implementations offer to bypass time-dependent tran-
sient regimes that are otherwise numerically intensive to
resolve [31–35].

Several scenarios of nonequilibrium resistive switching
have been studied in the context of the Hubbard model, such
as the dielectric breakdown of the Mott insulator by an intense
electric field [36,37], the role of a finite-sized sample [38],
the role of filament formation and heterogeneities [39], the
role of the nature of the dissipative environment [40–42], the
role of Hund’s coupling [43], photoinduced resistive switch-
ing [44], etc. Notably, all the DMFT studies were performed
with models featuring a thermally driven MIT at equilibrium
rather than the more common IMT, excluding, e.g., the case of
VO2.

In this manuscript, we harness those techniques to study
the electric-field-driven resistive switching of a correlated in-
sulator that features a thermally driven first-order IMT. Our
particular model is inspired by the physics of VO2, with
strong intraorbital correlation and dimerization. We devise a
nonequilibrium version of a two-site cluster-DMFT approach
to solve for its NESS. We study the nonequilibrium spectral
and transport properties as the electric field is varied. We
identify the mechanisms behind both MITs and IMTs, dis-
cussing in particular how the self-heating effects are strongly
suppressed in the insulator, giving way to truly nonequilib-
rium electronic mechanisms. Importantly, we establish that
the effective temperature is a fruitful concept that serves as
a Rosetta stone between the equilibrium phase diagram and
its nonequilibrium counterpart.

The paper is organized as follows. The driven-dissipative
model is introduced in Sec. II, and its equilibrium phase
diagram is discussed along Fig. 1. Section III is devoted to
describing the nonequilibrium steady-state DMFT methodol-
ogy we use to solve the Schwinger-Keldysh Green’s functions.
The results are presented in Sec. IV. In particular, the nonequi-
librium phase diagram parametrized in terms of the effective
temperature Teff is displayed in Fig. 10. We discuss the out-
looks and conclude in Sec. V.

FIG. 1. Equilibrium phase diagram in the U -T plane of (a) the
paramagnetic single-orbital Hubbard model (SOHM, t⊥ = 0), and
(b) the Dimer-Hubbard model (DHM, t⊥ = 0.3) in Eq. (1). The solid
first-order transition lines delimit the extent of the coexistence region
between the metal and the insulator. The dashed lines are the spinodal
curves. The SOHM paramagnet features a coexistence region whose
left-leaning tilt supports temperature-driven metal-to-insulator tran-
sitions (MITs). The opposite right-leaning tilt of the DHM
brings temperature-driven insulator-to-metal transitions (IMTs)
(� = 7.5 × 10−4).

II. MODEL

We consider a correlated insulator driven out of equilib-
rium by a dc electric field and coupled to a heat sink. The
total Hamiltonian of the electronic many-body system, its
nonequilibrium drive, and its dissipative environment reads

H = HDHM + HE + H�. (1)

The electronic system is inspired by the physics of VO2. It
is given by the dimer-Hubbard model (DHM), which is a
variation on the standard Hubbard model incorporating two
ingredients that are now firmly established to be key to the
equilibrium IMT in VO2: strong electronic interaction and the
dimerization of the vanadium atoms [45,46]. The DHM was
first proposed in the context of the thermally driven IMT in
VO2 in Ref. [47], and it was recently studied in Refs. [48,63].
We should note that a quantitative description of the thermally
driven IMT in VO2 requires more sophisticated modeling
[45,49–52] whose out-of-equilibrium treatment is simply out
of reach in current state-of-the-art nonequilibrium methodolo-
gies. The DHM Hamiltonian is given by (we set h̄ = 1)

HDHM = − t
∑
〈i j〉aσ

(c†
iaσ c jaσ + H.c.) − U

2

∑
iaσ

c†
iaσ ciaσ

+ U
∑

ia

c†
ia↑cia↑c†

ia↓cia↓ − t⊥∑
iσ

(c†
i1σ ci2σ + H.c.).

(2)

The c†
iaσ (ciaσ ) are the creation (annihilation) operators of

electrons at the site i of a two-dimensional square lattice,
in the orbital a = 1, 2, with spin σ = ↑,↓. In two dimen-
sions, the DHM is also referred to as the bilayer-Hubbard
model [53–56]. t > 0 sets the hopping amplitude between
nearest-neighboring sites. U > 0 sets the strength of the lo-
cal electronic interaction originating from the intraorbital
Coulombic repulsion. t⊥ > 0 couples the two orbitals within
each dimer site. At t⊥ = 0, one recovers two uncoupled copies
of the standard single-orbital Hubbard model (SOHM). A
finite t⊥ tends to dimerize the overall system by favoring
the formation of local spin singlets at each site. This model
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is symmetric under orbital and spin permutations, 1 ↔ 2
and ↑ ↔ ↓, respectively. Furthermore, the presence of the
quadratic term in U/2 ensures the particle-hole symmetry of
the DHM. Below, we assume that these symmetries are not
spontaneously broken.

The electrons are driven out of equilibrium by a constant
and uniform external electric field E, which we choose to be
aligned along the x-axis of the square lattice: E = Eux. After
a transient regime, this is expected to generate a steady electric
current J = Jux. We work in the Coulomb gauge where the
electric field enters the problem as a ramp potential:

HE = −|q|E
∑
iaσ

xic
†
iaσ ciaσ , (3)

where xi is the spatial coordinate along the x-axis of the site i,
and −|q| is the charge of the electron. We set the interatomic
distance a = 1 and |q| = 1.

To allow for nontrivial steady states, it is crucial to include
an energy dissipation channel. Otherwise, the work performed
on the electronic system per unit of time and volume, W =
J · E > 0, would lead to a trivial infinite-temperature steady
state. In practice, we couple the orbitals to independent reser-
voirs of noninteracting electrons [33,42,57–62],

H� = γ
∑
iaσ l

c†
iaσ biaσ l +

∑
iaσ l

(εl − |q|Exi )b
†
iaσ l biaσ l , (4)

where γ sets the hopping amplitude to the reservoirs, and εl

are the many energy levels of the reservoirs. We impose that
the fermionic reservoirs act as a good thermal bath with no
backaction from the system: independently of the state of the
system, they are and stay in equilibrium at the temperature
T and chemical potential μ − |q|Exi. In practice, we take
reservoirs with a flat density of states,

∑
l δ(ω − εl ) = ρb,

providing dissipation channels at all energies. The electronic
reservoirs are controlling the electronic filling of the DHM:
we set μ = 0 to work at half-filling, i.e., with one electron
per orbital on average. Due to their noninteracting nature, the
reservoir degrees of freedom can be explicitly integrated out.
Eventually, this simple form of dissipation enters the problem
via two energy scales: the bath temperature T (we set kB = 1)
and � = πγ 2ρb, which sets the rate at which electrons are
exchanged with the environment. We stress that this choice of
a fermionic environment should be seen as a simple heuristic
way to single-handedly account for the different channels of
energy dissipation present in actual physical systems.

We work in units of 4t , which corresponds to the half-
bandwidth of the system at t⊥ = U = 0. Incidentally, this
roughly corresponds to working in units of eV. In Table I,
we collect the typical values of the model parameters that
are experimentally pertinent and that we use throughout this
manuscript. The dissipative rate � was estimated using exper-
imental data; see Appendix A for more details.

The equilibrium phase diagram (at E = 0 and � = 0) of
the DHM has been mapped out in Refs. [48,55,63,65,66] by
means of dynamical mean-field theory methods. At U = 0,
the noninteracting Hamiltonian can be diagonalized exactly.
For small values of t⊥, the noninteracting system is a metal.
For large t⊥ > 4t , the system experiences a Peierls transition
from a metal to an insulator with the opening of band gap

TABLE I. Typical values (in units of eV) of the parameters of
the Dimer-Hubbard model (DHM) in Eq. (1), which are pertinent
to a description of vanadium dioxide (VO2) [63]. EIMT values were
extracted from Refs. [17,20] and converted to eV using the potential
drop between neighboring sites, |q|Ea, and the interatomic distance
a = 4.5 Å [64].

t t⊥ U � TIMT(VO2) EIMT(VO2)

0.25 0.3 2.5 10−3 2.9 × 10−2 10−3–10−2


⊥ = 2t⊥ − 8t . In this work, following the typical parameter
values collected in Table I, we stay below this transition.

In Fig. 1, we report the U -T equilibrium phase diagrams of
the SOHM (t⊥ = 0) and of the DHM (0 < t⊥ < 4t) computed
by means of single-site DMFT utilizing a simple impurity
solver (namely iterated perturbation theory), where short-
range correlations are neglected (see details below). Directly
relevant to resistive switching is the MIT driven by a finite
electronic repulsion U . The corresponding Mott transition
proceeds as a first-order phase transition at low temperatures,
with the opening of a correlated gap in the density of states.
Uc1 marks the IMT below which the system is a stable metal,
while Uc2 > Uc1 marks the MIT above which the system is
a stable insulator. In the intermediate region, Uc1 < U < Uc2,
both the metal and the insulator may coexist. This is illustrated
in Fig. 2, where we display the local density of states of the
coexisting metal and insulator. This coexistence region sub-
sists until a critical temperature T ∗, where Uc1 = Uc2 = U ∗.
For temperatures T > T ∗, the electronic interaction drives a
smooth crossover between a (bad) metal and a (dirty) insula-
tor.

Importantly, within single-site DMFT, the shape and the
nature of the coexistence region depend crucially on whether
t⊥ = 0 or t⊥ is finite. The resulting qualitative picture has

FIG. 2. Metal/insulator coexistence: equilibrium local density
of states (DOS) of the DHM in Eq. (1) for a set of parameters
corresponding to the coexistence region. In red: the metallic solution.
In black: the insulating solution, characterized by a Mott pseudogap
controlled by the electronic interaction U which features a cleaner
gap 
 controlled by t⊥; see the closeup in Fig. 3(a). The parameters
are U = 3, t⊥ = 0.3, T = 2.5 × 10−3, and � = 7.5 × 10−4.
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FIG. 3. (a) Closeup of the gapped local density of states (DOS)
of the SOHM (t⊥ = 0) and of the DHM (t⊥ = 0.3) at equilibrium for
the same U = 3.5. The level of the local DOS at the Fermi energy
of the DHM is 25 times smaller than for the SOHM. (b) Width of
the gap 
 as a function of t⊥. The solid lines are linear fits. The
parameters are T = 2.5 × 10−3 and � = 7.5 × 10−4.

been confirmed using a more sophisticated single-site solver
[48]. At t⊥ = 0, the overall triangular shape of the coexis-
tence region in the U -T plane allows for metal-to-insulator
transitions: a metal prepared in the metastable region can be
heated up to experience an MIT. At finite t⊥, the overall tilt
of the coexistence region is reversed: an insulator prepared
in the metastable region can be heated up so as to cross the
IMT line. This presence of a thermally driven first-order IMT
corresponds to the equilibrium physics of VO2.

The difference in the overall tilt of the coexistence region
between the (half-filled) paramagnetic SOHM at t⊥ = 0 and
the DHM at t⊥ > 0 is related to the different nature of their
respective insulating ground state [67,68]. In the SOHM, ne-
glecting short-range correlations, the paramagnetic insulator
consists of a collection of independent spins at every site. This
is responsible for a macroscopic zero-temperature residual
entropy (of value log 2 per site). Comparing the free energies
as the temperature T is increased, this favors the insulating so-
lution against the metallic solution for which the Fermi-liquid
entropy only grows linearly in T . In the DHM, the insulating
ground state corresponds to a collection of pairs of spins
locked in spin singlets at every site. This corresponds to a zero
entropy state, as for the metal. However, as the temperature T
is increased, the entropy of the Mott insulator increases slower
than that of the metal because excitations require tunneling
through the charge gap. Hence, the free energy of the metal is
favored and the DHM undergoes a thermally driven IMT.

This difference in the nature of the insulating state between
the paramagnetic SOHM and the DHM has also important
consequences on their spectral features. While both insulators
exhibit a residual in-gap density of states due to the dissipation
� > 0, the one of the DHM is smaller by at least one order
of magnitude. This difference can be understood as follows.
The in-gap states of the SOHM are predominantly caused by
the dissipative leaking of the Hubbard lobes inside the Mott
gap: ρ(ω = 0) ∼ �/U 2 [37]. In the DHM case, the local spin
singlets are bound tighter as t⊥ increases, and this results in
the opening of an additional gap of width 
 within the cor-
related gap. This gap is illustrated in Fig. 3(a), and we report
the linear dependence of 
 with respect to t⊥ in Fig. 3(b).
The residual in-gap density of states is now controlled by
the local coupling of the singlets to the dissipative reservoirs,
ρ(ω = 0) ∼ t⊥2

�/U 4, which makes the gap much cleaner
than in the SOHM case. See Appendix C for more details.

In turn, the extremely low density of states of the DHM
insulator makes it impervious to perturbations around the
Fermi energy, such as the microcurrents driven by an external
electric field. Joule heating is therefore expected to be much
less effective than in the case of the SOHM insulator.

III. METHODS

We solve the electric-field-driven many-body problem
directly in the nonequilibrium steady state (NESS), bypass-
ing the transient dynamics. In practice, the nonequilibrium
Green’s functions are obtained by solving a Schwinger-
Keldysh formulation of the Schwinger-Dyson equations,
assuming that the dynamics reach a well-defined NESS with
time and space translation symmetries. Such a functional ap-
proach allows us to tackle nonequilibrium regimes far from
the linear-response theory and to properly treat the quantum
fluctuations of the system and its dissipative environment.

We account for the finite electronic interaction U by means
of nonequilibrium DMFT. This mean-field approximation
simplifies the task of solving the original extended lattice
model by mapping it to a self-consistently determined local
impurity model. In our case, the impurity model consists of a
dimer site (with two orbitals) coupled to an out-of-equilibrium
fermionic bath. This constitutes a nonequilibrium implemen-
tation of cluster-DMFT [69–71] with a cluster of size two.

Given the permutation symmetry between the orbitals 1
and 2 of the DHM Hamiltonian in Eq. (2), it is simpler to
work in the bonding (B)-antibonding (A) basis, which diago-
nalizes the noninteracting problem. In terms of the original
orbital degrees of freedom, this amounts to working with
the creation operators c†

iBσ = (c†
i1σ + c†

i2σ )/
√

2 and c†
iAσ =

(c†
i1σ − c†

i2σ )/
√

2. The real-time retarded and Keldysh Green’s
functions are defined as

GR
i j m(t, t ′) = − i

2
〈[cimσ (t ), c†

jmσ (t ′)]〉�(t − t ′),

GK
i j m(t, t ′) = − i

2
〈{cimσ (t ), c†

jmσ (t ′)}〉, (5)

respectively, where m = B, A is the band index and �(t ) is the
Heaviside step function. Assuming paramagnetic solutions,
and to simplify notations, we dropped the spin index.

The DHM Hamiltonian is invariant under translations in
the directions perpendicular to the electric field E = Eux.
This ensures that the spatial extent of the problem in the y-
direction can be simply accounted for by the quantum number
ky. However, our choice to work with the Coulomb gauge im-
plies that the translational invariance is formally broken along
ux. This prompts us to work with Green’s functions that are
evaluated at equal coordinates along the electric field direc-
tion: GR/K(ω, ky; xi = x j ). Because we are targeting spatially
homogeneous steady states, all sites are assumed physically
equivalent and, for convenience, we pick xi = x j = 0. These
Green’s functions obey the following Dyson’s equations on
the lattice [29,35]:

GR
m(ω, ky)−1 = ω − ε⊥

m (ky) − �R
m (ω) − t2F R

m (ω, ky),

GK
m(ω, ky) = ∣∣GR

m(ω)
∣∣2[

�K
m (ω) + t2F K

m (ω, ky)
]
. (6)

195148-4



ELECTRICALLY DRIVEN INSULATOR-TO-METAL … PHYSICAL REVIEW B 107, 195148 (2023)

ε⊥
A (ky) = −2t cos(ky) + t⊥ and ε⊥

B (ky) = −2t cos(ky) − t⊥
are the band dispersion relations in the sublattice correspond-
ing to the directions perpendicular to the electric field. We
introduced the quantities F R/K

m (ω, ky) = F R/K
m+ (ω + E , ky) +

F R/K
m− (ω − E , ky ), which stem from the hybridization of a

given site to the semi-infinite chains of its neighbors along
±ux. They obey the self-consistent equations

F R
m±(ω, ky)−1 = ω − ε⊥

m (ky) − �R
m (ω) − t2F R

m±(ω ± E , ky),

F K
m±(ω, ky) = ∣∣F R

m±(ω, ky)
∣∣2[

�K
m (ω) + t2F K

m±(ω ± E , ky)
]
.

(7)

The self-energies have contributions from the dissipative
environment and from the Hubbard U interaction: � = �� +
�U , where

�R
� (ω) = −i�,

�K
� (ω) = −2i� tanh

(
ω

2T

)
, (8)

and �U will be discussed below. The expression of �K
� is dic-

tated by the fluctuation-dissipation theorem (FDT), �K
� (ω) =

2i tanh ( ω
2T )Im �R

� (ω), which is applicable since the dissipa-
tive environment is assumed to be and remain in equilibrium.
In Eqs. (6) and (7) above, we already implemented the DMFT
approximation, which consists in assuming that �U is local,
namely that it does not depend on the momentum ky but only
on the frequency ω.

In the spirit of the DMFT, the local Green’s functions
GR/K

m (ω) = ∑
ky

GR/K
m (ω, ky) are identified as those of a quan-

tum impurity problem consisting of a single dimer site
coupled to an ad hoc noninteracting nonequilibrium environ-
ment. The noninteracting Green’s functions GR/K(ω) of the
impurity problem are determined by the following Schwinger-
Dyson’s equations:

GR
m (ω)−1 = GR

m(ω)−1 + �R
Um(ω),

GK
m (ω) = ∣∣GR

m (ω)
∣∣2

[
GK

m(ω)∣∣GR
m(ω)

∣∣2 − �K
Um(ω)

]
. (9)

Note that the Green’s functions and the self-energies are diag-
onal in both the spin and band index due to the original spin
and orbital permutation symmetries of the driven-dissipative
DHM.

The local self-energy �U is computed by means of iterated
perturbation theory (IPT) [27,72], which treats the electronic
interaction U to second order. IPT has already been used in
the context of the DHM in thermal equilibrium [63,65]. For
a compact expression in the nonequilibrium steady state, it is
convenient to go back to the original Kadanoff-Baym-Keldysh
contour (α, β = +,−), to real time, and to the orbital basis
(a, b = 1, 2). At half-filling, it reads

�
αβ

U ab(τ ) = −αβ U 2 Gαβ

ab (τ )2Gβα

ba (−τ ). (10)

The corresponding expression in the Keldysh basis is given in
Appendix B.

The IPT expressions are valid in the weakly interacting
regime U/t → 0, and they have also been shown to be exact
in the dimer limit t/U → 0 at half-filling in zero-temperature

equilibrium. For intermediate, finite, values of U/t , the IPT
provides a crude approximation to the exact impurity self-
energy which has already proven to be extremely effective
at capturing the qualitative aspects of the Mott equilibrium
phase transition of the paramagnetic SOHM [27,73]. It has
also been successfully used in similar nonequilibrium contexts
[33,35,37]. Notably, the electric-field-induced dimensional
crossover at strong fields also justifies the use IPT out of
equilibrium since it correctly reproduces the limit E/U → ∞
[33]. At finite temperatures, the IPT produces spurious in-gap
states in the insulating DOS of the DHM. However, we argue
in Appendix B that they have a very limited impact on the
equilibrium and nonequilibrium phase transitions discussed in
this manuscript.

Our NESS DMFT algorithm proceeds as follows. We
start from an educated guess for the self-energy kernels.
In the metallic side, we start from the noninteracting limit
�R

U (ω) = 0, and in the insulating side from the nondissipative
dimer limit at zero temperature, �R

U B/A(ω) = U 2

4
1

ω∓3t⊥+i0+ ;
see Appendix B. (i) The F R/K(ω, ky) are determined by solv-
ing self-consistently the set of Eqs. (7). (ii) The lattice Green’s
functions GR/K(ω, ky) are computed via Dyson’s Eqs. (6).
(iii) The impurity noninteracting Green’s functions GR/K(ω)
are determined via Dyson’s Eqs. (9). (iv) The self-energies
�

R/K
U (ω) are updated using the IPT expression in Eq. (10).

Steps (i)–(iv) are repeated until convergence is achieved.
When varying the electric field, we use the previously con-
verged solution as the educated guess for the self-energy
kernels.

IV. RESULTS

Let us now present the fate of the driven-dissipative DHM
when the electric field is varied by studying both its nonequi-
librium spectral and transport properties.

A. Nonequilibrium spectral features

We first discuss the local density of states of an or-
bital, ρloc(ω) = − 1

π

∑
ky

1
2

∑
m Im GR

m(ω, ky), when the elec-
tric field E is turned on. The electric field has little impact
on the density of states of the metal. However, it induces
distinctive features in the density of states of the insulator:
in-gap states are created within the correlated gap, sometimes
referred to as Bloch-Zener or Wannier-Stark side-bands. This
is illustrated in Fig. 4. The origin of these in-gap structures
is easily understood in the context of an electric-field-driven
noninteracting one-dimensional band insulator: distinct re-
gions of finite density of states appear beyond the edges of the
bands. They are distant in energy by multiples of the potential
drop |q|Ea and are exponentially suppressed in the gap on
a scale t1/3(|q|Ea)2/3 [74]. Notably, their spectral content is
inherited from the spectral content of the band insulator at
equilibrium but in lower dimensions: the dimensions perpen-
dicular to the electric field. A similar scenario was already
identified and described in the context of a correlated insulator
(SOHM) in Refs. [37,42,62]. In the case of the DHM with a
finite t⊥, the edges of the gap located at ±
/2 are respon-
sible for Bloch-Zener side-bands located at ±
/2 + n|q|Ea
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FIG. 4. Closeup of the gapped local density of states in the
nonequilibrium DHM insulator (note the semilog scale). At equi-
librium (E = 0, dashed line), t⊥ opens a clean gap of width 
 ≈
0.5 around the Fermi energy. In the presence of the electric field
(E = 0.1, solid line), the edges of the gap are replicated into Bloch-
Zener side-bands located at ±
/2 + n|q|Ea, n ∈ Z. The parameters
are t⊥ = 0.3, U = 2.5, � = 7.5 × 10−4, T = 2.5 × 10−3.

(n ∈ Z); see Fig. 4. Features corresponding to values of |n| >

2 are strongly suppressed.

B. Energy distribution function

Let us now discuss the local distribution function of an
electronic orbital

floc(ω) = 1

2

(
1 − 1

2

∑
m Im GK

m(ω)∑
m Im GR

m(ω)

)
, (11)

which informs on the nonequilibrium energy fluctuations.
Similarly to the DOS, the electric field has a mild impact
on the energy distribution function of the metal: it perfectly
matches the equilibrium Fermi-Dirac function albeit at a
higher temperature; see Fig. 5 and the discussion on effective
temperature below. On the other hand, the energy distribution
function of the insulator significantly departs from equilib-
rium: it features structures equally spaced by the energy

FIG. 5. Local distribution function floc(ω) of the electric-field-
driven DHM, defined in Eq. (11). (a) In the metallic phase, floc(ω)
(solid line) cannot be distinguished from a Fermi-Dirac distribution
(dashed line) at the temperature Teff = 0.38 determined via Eq. (13).
(b) In the insulating phase, floc(ω) corresponds to Teff = 9.3 × 10−3

but it markedly departs from a Fermi-Dirac distribution. Both exam-
ples were taken at the same bath temperature T = 2.5 × 10−3, and
parameters E = 0.1, t⊥ = 0.3, U = 2.5, and � = 7.5 × 10−4.

FIG. 6. Nonequilibrium phase diagram of the electric-field-
driven DHM in the U -E plane. The IMT (MIT) line is in blue
(green). The inset shows a larger region of the coexistence region.
The parameters are t⊥ = 0.3, T = 2.5 × 10−3, and � = 7.5 × 10−4.

|q|Ea. These structures have already been reported in studies
regarding the SOHM. They can be seen as a consequence of
the coupling of the impurity site to its neighboring sites in
the direction of the field, ±ux. These sites act as baths with
chemical potentials shifted by the potential drop ±|q|Ea [75].

C. Nonequilibrium phase diagram

Let us now present the nonequilibrium phase diagram of
the electric-field-driven DHM. It is computed in Fig. 6 in the
U -E plane for a fixed value of t⊥. The different phases are
determined depending on the presence of a gap at the Fermi
level in the local density of states, or the lack thereof. In
practice, we track the value of ρloc(ω = 0), which presents a
sharp variation of at least two orders of magnitude between
phases, as is shown in Fig. 7. Similarly to the equilibrium
phase diagram presented in Fig. 1, the solid lines delimit a
region (shaded blue) where both the metal and the insulator
coexist. However, while the IMT and MIT lines (blue and
green, respectively) have general trends that resemble their
equilibrium counterparts, the electric-field scales on which
they develop are drastically smaller on the MIT side than
on the IMT side: EIMT � EMIT. This results in a very wide

FIG. 7. Local density of states at the Fermi level as a function
of the electric field. Starting from an insulating solution at E = 0,
the sharp leap of two orders of magnitude is used to locate the
insulator-to-metal transition. The parameters are U = 2.5, t⊥ = 0.3,
T = 2.5 × 10−3, and � = 7.5 × 10−4.
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FIG. 8. Hysteretic I-V characteristics of the DMH (note the
semilog scale). (a) Starting from a metallic state in the coexistence
region at U = 3.25, the electric field is increased until the DHM
experiences an MIT at EMIT. Later, the electric field is decreased and
the DHM remains insulating. (b) Starting from an insulating state in
the coexistence region at U = 2.5, the electric field is increased until
the DMH experiences an IMT at EIMT � EMIT. The parameters are
t⊥ = 0.3 and � = 7.5 × 10−4.

coexistence region that extends to very large values of U and
E . For very large electric fields, outside of the ranges of Fig. 1,
the IMT and MIT become smooth crossovers between bad
metals and dirty insulators.

This is quite in contrast to the case of the electric-field-
driven SOHM whose corresponding nonequilibrium phase
diagram studied in Ref. [35] for T = 5 × 10−3 and � = 3.4 ×
10−3 was found to sport a closed coexistence region quali-
tatively similar to its equilibrium phase diagram in the U -T
plane; cf. the t⊥ = 0 case in Fig. 1.

D. Transport properties

Let us now discuss the far-from-equilibrium transport
properties of the electric-field-driven DHM. The electric field
generates an electric current per site and per spin J = Jux

which is computed as

J = t2

2

∑
m

∫
dω

2π

∑
ky

{
ImGR

m(ω, ky)ImF K
m (ω, ky)

−ImGK
m(ω, ky)ImF R

m (ω, ky)
}
, (12)

where the first summation is performed over the bonding
(m = B) and antibonding (m = A) bands.

In Fig. 8, we illustrate the I-V characteristics of the DHM
starting from low-temperature equilibrium states in the coex-
istence region and ramping up, and then down, the electric
field. The I-V curves display hysteresis both when starting
from the metal or the insulator. When starting from a metal-
lic state in the coexistence region, one first expects a linear
regime J = σdcE , where σdc is the dc conductivity. The latter
quickly renormalizes as the temperature of the sample in-
creases, relegating the linear regime down to extremely small
values of electric field which cannot be seen on the scale used
here [35]. At E = EMIT, the DHM experiences an MIT where
the current density drops by nine orders of magnitude. The
DHM remains an insulator after a subsequent decrease in the
electric field.

When starting from an insulating state in the coexistence
region, the applied electric field has little effect on the slowly
increasing current. Indeed, the very clean nature of the gap
opened by t⊥, as discussed above, makes J much suppressed

compared to the case of the SOHM. The Bloch-Zener struc-
tures described above have an impact on the current at finite
electric fields: the current is enhanced whenever they provide
a pathway through the gap. Indeed, states at the lower edge
of the gap can be excited by a sequence of electric-field
driven transitions of energy |q|Ea. This happens at values
|q|Ea = 
/m, where m is a small positive integer. In Fig. 8,
this is seen for m = 4 (corresponding to n = 2 in Fig. 4).
Smaller values of m � 3 correspond to field strengths that lay
outside the range of the figure and after the IMT. Larger values
of m � 5 correspond to exponentially suppressed BZ in-gap
structures and to smaller features in the I-V which are hard
to isolate. Note that these Bloch-Zener effects cannot be seen
in the MIT case given the much smaller values of the electric
field involved. As the electric field is furthermore increased,
the DHM experiences an IMT at E = EIMT � EMIT. Note
the violent drop of resistivity by four orders of magnitude.
The DHM remains metallic after a subsequent decrease in the
electric field.

E. Effective temperature

Let us now discuss the thermodynamic properties of the
electric-field-driven DHM. The concept of temperature is a
priori ill-defined for a nonequilibrium steady state. Indeed,
a single scalar quantity cannot in principle inform on the
full energy and momentum-dependent nonequilibrium distri-
bution function. In practice, however, the notion of effective
temperature has proven useful. In the long-lasting debate on
the microscopic origin of the resistive switching, a strong
advocate for a thermally driven scenario has been a series
of experiments where the effective temperature of the sample
was monitored in situ via the emission of a fluorescent par-
ticle acting as a local temperature probe [18]. Moreover, we
have already shown that the nonequilibrium local distribution
function of the metallic state is a Fermi-Dirac function with a
renormalized temperature (see Fig. 5). In that spirit, we adopt
a Sommerfeld-like definition for the local effective tempera-
ture [39]:

T 2
eff = 6

π2

∫
dω ω[ floc(ω) − �(−ω)], (13)

where the local orbital energy distribution function floc(ω)
has been defined in Eq. (11). The above definition of Teff

can be seen as a simple measure of the ability of the sys-
tem to create and sustain excitations above the Fermi level.
Naturally, Teff boils down to the thermodynamic temperature
in equilibrium, when floc(ω) is the Fermi-Dirac distribution
fFD(ω) = [1 + exp(ω/T )]−1. Note that other choices could
have been made to extract a Teff from floc(ω), such as fitting
it to a Fermi-Dirac distribution or using its slope at the Fermi
energy, −[∂ω f (ω)|ω=0]−1/4. We checked that our results are
qualitatively robust with respect to these alternative choices.
The strength of our definition lies in the fact that it does not
require any fitting parameter and it does not require floc(ω) to
be close to a Fermi-Dirac distribution.

In Fig. 9, we monitor the effective temperature of the DHM
starting from a low-temperature equilibrium state and ramping
up, and then down, the electric field. Similarly to Fig. 8, we
start from both a metallic state and an insulating state in the
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FIG. 9. Effective temperature Teff computed using Eq. (13) as
a function of the increasing and decreasing electric field (note the
semilog scale). (a) Starting from a metal with the same parame-
ters as in Fig. 8(a). (b) Starting from an insulator with the same
parameters as in Fig. 8(b). Both MIT and IMT take place once
Teff reaches the corresponding equilibrium transition temperature,
T eq

MIT(U = 3.25) = 0.017 and T eq
IMT(U = 2.5) = 0.023, marked by

horizontal dashed lines.

coexistence region. In both cases, Teff grows monotonously
with E , starting from the bath temperature T at E = 0. Nat-
urally, the stronger currents produced in the metallic states
are responsible for higher effective temperatures than in the
insulating states. This is reflected in the huge discontinuities
of Teff at the transitions. Moreover, the high Teff after the
IMT induces states known as “bad metals,” characterized by
a low (but not gapped) density of states around the Fermi
energy. A first outcome of Fig. 9 is the notion of state-
dependent effective temperature: similarly to the hysteretic
I-V curves, the effective temperature has a region of bista-
bility tied to the metastability of the state. In other words, for
the same system parameters and the same electric field, the
effective temperature greatly depends on the state the system,
whether insulating or metallic. A second outcome of Fig. 9 is
the fact that both nonequilibrium transitions, IMT and MIT,
occur whenever the effective temperature matches the corre-
sponding equilibrium transition temperature (represented with
dotted lines).

In Fig. 10, we repeat the previous analysis on the entire
nonequilibrium phase diagram. We prepare low-temperature
equilibrium metallic and insulating samples at all values of U
in the coexistence region, we increase the electric field, and
we report the effective temperatures T eq

MIT and T eq
IMT measured

exactly at MIT and the IMT, respectively. Remarkably, we
confirm the previous observations made in Fig. 9:

Teff (EIMT; insulator) ≈ T eq
IMT,

Teff (EMIT; metal) ≈ T eq
MIT. (14)

This matching is one of the main results of this manuscript.
Equations (14) account for the large difference in magnitude
of the threshold fields EIMT � EMIT even though T eq

IMT and
T eq

IMT are on the same order of magnitude. Notably, this is
in agreement with the experimental findings of Refs. [18,22]
where the resistivity of VO2 driven by a dc bias was found
to match the equilibrium resistivity once the voltage bias is
parametrized in terms of the local effective temperature of
the sample. It was already demonstrated numerically for the
MIT occurring in the electric-field-driven dissipative SOHM
[35], and it was given some analytical insight in the context

FIG. 10. Phase diagram of the electric-field-driven DHM in the
U -Teff plane. The effective temperatures Teff were computed using
Eq. (13). The blue (green) dots correspond to Teff computed just at
the IMT (MIT) induced by increasing the electric field. The magenta
crosses indicate instances of Teff at the transition computed by fitting
floc(ω) to a Fermi-Dirac distribution. The solid lines correspond to
the equilibrium IMT and MIT driven by increasing the temperature.
The parameters are t⊥ = 0.3, T = 2.5 × 10−3, and � = 7.5 × 10−4.

of a simplified one-dimensional model with a correlated gap
treated within mean-field theory [25]. This result articulates
both the thermal and the electronic scenarios for resistive
switching in a unified framework: once the nonequilibrium
electronic mechanisms are accounted for by an effective tem-
perature, the nonequilibrium phase transition reduces to the
thermally driven equilibrium phase transition.

V. DISCUSSION AND CONCLUSION

In this work, we investigated a driven-dissipative version
of the DHM in which both first-order MIT and IMT can be
driven by a dc electric field rather than temperature.

The field-driven MIT was found to follow a simple Joule-
heating scenario in which the driven metal essentially remains
in local thermal equilibrium despite the finite electronic cur-
rent and heat flow. The balance between the power injected
by the electric field and the heat released to the environment
brings the sample to its equilibrium transition temperature,
triggering the MIT at threshold fields controlled by the dis-
sipation rate, EMIT ∼ √

� [35], and corresponding to meV
energy scales.

The field-driven IMT was found to follow a different sce-
nario in which both the inter-orbital hopping and Bloch-Zener
(BZ) effect play a crucial role. Indeed, t⊥ is responsible for
opening a clean gap 
 within the pseudogap of the Mott insu-
lator. Such a clean gap provides a very good insulating ground
state where Joule-heating effects are strongly suppressed, au-
guring very large threshold fields to overcome the gap 
.
However, we found a substantial contribution of the BZ effect
to Joule-heating: the electric field is responsible for the for-
mation of in-gap states, located at energies given by multiple
values of the electric field, which can form a nonequilibrium
pathway to bridge the gap. Altogether, we found threshold
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fields controlled by fractions of the gap, EMIT ∼ 
/4. This
large 100 meV scale is at odds with the available experimental
data on threshold fields. This calls for further investigation in
the modeling of these driven-dissipative correlated materials.
A promising avenue is to explore the influence of a phononic
dissipative environment rather than the simple electronic dis-
sipation used here [40,42]. Notably, it was recently reported
that the interplay of the electric field with such a bosonic
bath could create a strong nonequilibrium pathway through
the gap resulting in electronic avalanches with fields at sub
meV scales [41].

Importantly, the study of the electric-field-driven SOHM
and DHM has shown that there are two key factors in building
up toward the electric-field-driven transition: the nature of
the insulating state, and its hybridization with a dissipative
environment. The MIT in both models proceeds with a simple
Joule heating mechanism involving excitations at the Fermi
level. The IMT in the SOHM proceeds similarly, but the in-
gap excitations are produced by the hybridization with the
dissipative bath. For the IMT in the DHM, the low-energy
insulating state is impervious to the bath hybridization, and
the destabilization of the insulator comes from a higher-
energy mechanism, namely the Bloch-Zener effect. The fact
that these three distinct nonequilibrium scenarios can be uni-
fied in a single equilibrium framework once their effects are
measured in terms of effective temperature is a nontrivial
observation. We believe this observation is not limited to the
particular model at hand and generalizes to other cases of
RS in correlated materials with possibly other microscopic
mechanisms at play.

Most experiments show IMTs with spatially heterogeneous
solutions in the form of metallic filaments, which were not
discussed in this manuscript. Since the insulating phase is
spatially homogeneous, it is reasonable to think that both
the mechanism driving the onset of the switching and the
value threshold field do not involve heterogeneous dynam-
ics. More generally, our homogeneous solutions can be seen
as mesoscopic building blocks for a larger sample with a
heterogeneous landscape. Relaxing the assumption of ho-
mogeneity would require the use of inhomogeneous DMFT
[29,76–79], which is computationally challenging. Let us
rather highlight the steps for developing an effective field
theory description for the electric-field-driven RS which lever-
ages the teachings of our microscopic analysis and operates at
a coarse-grained level. With our results in mind, this can sim-
ply be achieved by starting from the existing equilibrium field
theories and replacing the thermodynamic temperature by the
state-dependent effective temperature Teff . In the context of
the Hubbard model, we can therefore start from the results of
Refs. [80–83] and propose an effective free-energy functional
of the form

FNESS[φ] =
∫

dd x
1

2
(∇xφ)2 + 1

2
�μ · ( �K (φ) − �K∗)φ2

+ 1

4
λφ4 − �h · ( �K (φ) − �K∗)φ, (15)

where the field φ is the scalar order parameter, d is
the dimension of the space, �K (φ) − �K∗ = (Teff (φ; E ) − T ∗,
U − U ∗) is a two-component vector which measures the dis-
tance to criticality, �μ and �h are two-component parameters,

and λ > 0. In practice, the free energy has to be supplemented
with kinematic and geometric constraints on the fields such
as the Maxwell and Kirchhoff laws. Such a low-energy de-
scription, to be presented in Ref. [84], promises to bridge
the gap between the microscopic computations discussed in
this manuscript and the heuristic models of resistor networks
that have successfully been used to account for the filament
formation observed in experiments [85,86].
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APPENDIX A: ESTIMATION OF � FROM
EXPERIMENTAL DATA

Heat transfer to the electronic baths, controlled by the
single rate �, is the only dissipative mechanism included in
the driven-dissipative DHM given in Eq. (1). In reality, the
dissipative environment of the active electronic degrees of
freedom is more complex with, in particular, the coupling
to lattice phonons. Consequently, the heuristic parameter �

is to be understood as an effective dissipative rate that aims
to encompass the different dissipative processes that are not
explicitly included in our model. In this Appendix, we dis-
cuss how we estimated from experimental data the value
� = 7.5 × 10−4 eV used throughout this manuscript.

In a steady state, the electric field is constantly pumping
energy into the system, which is dissipated into the reservoirs.
The rate of heat exchange with the reservoir per unit volume
is computed as [61]

Q = 2�
∑

m

∫
dωρm(ω)[ fm(ω) − fth(ω)]ω. (A1)

Index m labels the bonding and antibonding bands B and
A, and ρm(ω), fm(ω) are the band-specific DOS and local
energy distribution functions. fth(ω) is the energy distribution
function of the bath, which is a Fermi-Dirac function at tem-
perature T .

According to the first law of thermodynamics, the heat and
work rates compensate in a steady state, W + Q = 0, and we
therefore can determine W through Eq. (A1).

In a metallic state, we can reasonably approximate
fm(ω) ≈ floc(ω) and ρm(ω) ≈ 1/8t for ω ∼ 0, where the inte-
grand on the right-hand side of (A1) is nonzero. Furthermore,
using the definition of Teff in Eq. (13), and reinstating the uni-
versal constants, we obtain an expression for the dissipative
rate � that can be used to match to experimental data:

� = 12

π2

h̄

k2
B

tW
T 2

eff − T 2
. (A2)

We extract the corresponding experimental values from
Ref. [19]. In this experiment, a thin film of VO2 of volume
6.0 × 10−21 m3, placed on a TiO2 substrate (which plays the
role of the bath), is driven through the transition by an external
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FIG. 11. Second-order Feynman diagrams contributing to the
IPT self-energy �

αβ

U m in the bonding-antibonding basis (m =
A, B; A = B, B = A) and in the Kadanoff-Baym-Keldysh contour
basis (α, β = +, −). The lines are the noninteracting impurity
Green’s function Gαβ

m . Spin indices were dropped for the sake of
compactness.

electric field. In the presence of this substrate, the critical
temperature is brought down to T eq

IMT = 270 K. Teff is shown to
reach this value at the electrically driven transition, which is
where we choose to evaluate the right-hand side of Eq. (A2).
The total power needed to bring the system to the transition
is measured to be W × Ns = 6 mW for the bath temperature
T = 230 K. Ns denotes the number of vanadium atoms in the
sample, which we estimated from the volume of the sample
and the lattice constant a = 4.5 Å (see the caption of Table I).

Replacing the experimental values above in Eq. (A2), we
compute an estimate for the dissipative rate � ∼ 10−3 eV.
In the main text, we use a slightly smaller value of 7.5 ×
10−4 eV. This ensures that � remains the smallest energy scale
in the system (below the bath temperature T ) and we stay
within the bounds of the iterated perturbation theory (IPT)
approximation (see Appendix B).

APPENDIX B: ITERATED PERTURBATION
THEORY FOR THE DHM

1. Practical expressions

In this Appendix, we provide an alternative expression for
the iterated perturbation theory (IPT) self-energy of the DHM,
useful for its numerical implementation.

Figure 11 displays the Feynman diagrams contributing to
the IPT self-energy. In Eq. (10), we reported its expression
at half-filling in the basis of the original Kadanoff-Baym-
Keldysh contour (α, β = +,−) and in the real-time domain.
In practice, we employ a more practical formulation, and we
work with the retarded and Keldysh components. Moreover,
it is most efficient to compute only the imaginary parts, since
they are compactly supported functions in Fourier space (fre-
quency domain). The real part of the retarded component
can eventually be recovered through the Kramers-Kronig re-
lations, and the Keldysh component as defined in Eq. (5)
is purely imaginary. Applying the particle-hole relations at
half-filling, given by

ImGR
ab(ω) = (2δab − 1)ImGR

ab(−ω),

ImGK
ab(ω) = −(2δab − 1)ImGK

ab(−ω), (B1)

we come to

Im�R
U ab(ω) = U 2

4

{ − 3GK
ab(ω) ◦ GK

ab(ω) ◦ ImGR
ab(ω)

+ 4ImGR
ab(ω) ◦ ImGR

ab(ω) ◦ ImGR
ab(ω)

}
× (2δab − 1) (B2)

and

�K
U ab(ω) = U 2

4

{
12GK

ab(ω) ◦ ImGR
ab(ω) ◦ ImGR

ab(ω)

− GK
ab(ω) ◦ GK

ab(ω) ◦ GK
ab(ω)

}
(2δab − 1), (B3)

where we have denoted the convolution between two func-
tions as ( f ◦ g)(ω) ≡ ∫

dω′
2π

f (ω − ω′)g(ω′), and a, b = 1, 2
are the orbital basis indices. Rotation to the bonding-
antibonding basis (m = B, A) used throughout the manuscript
can be made via the following dictionary:

GB = G11 + G12,

GA = G11 − G12, (B4)

which applies as well for the self-energies.

2. Dimer limit

Let us now discuss the range of validity of the IPT approx-
imation. To this end, we work in a limit where the system is
diagonalizable and we can derive exact expressions, in order
to compare them to the IPT scheme.

We consider the equilibrium DHM at half-filling, in the
dimer limit (t/U → 0, keeping t⊥ finite), and in the absence
of dissipation (� = 0). This defines the two-orbital, single-site
Hamiltonian,

Hdim = − t⊥ ∑
σ

(
c†

1σ c2σ + c†
2σ c1σ

) + U (n1↑n1↓ + n2↑n2↓)

− U

2

∑
σ

(n1σ + n2σ ), (B5)

which can be diagonalized exactly. This limit is usually re-
ferred to as the atomic limit when t⊥ = 0 (SOHM). The
energy spectrum and eigenstates are shown in Table II. We
can subsequently write the bonding retarded Green’s function
of the dimer, GR (dim)

B (ω), in the spectral representation

GR (dim)
B (ω) =

∑
σ, j,k

| 〈φ j | c†
Bσ |φk〉 |2

ω − (Ej − Ek ) + i0+ (B6)

× (e(Ej−EGS )/T + e(Ek−EGS )/T )

(T →0)=
∑
σ, j

| 〈φ j | c†
Bσ |φGS〉 |2

ω − (Ej − EGS) + i0+

+ | 〈φGS| cBσ |φ j〉 |2

ω − (EGS − Ej ) + i0+ (B7)

= 1

ω + t⊥ − U 2

4
1

ω−3t⊥+i0+
. (B8)

|φ j〉 are the eigenstates of Hat, Ej are the corresponding
energies, and “GS” labels the ground state of the system.
From the last line we extract the bonding self-energy at zero
temperature,

�
R (dim)
U B (ω) = U 2

4

1

ω − 3t⊥ + i0+ . (B9)

Let us now compare this expression to the self-energy
computed with IPT in the dimer limit. In this setting, the
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TABLE II. Eigensystem of the DHM Hamiltonian in the dimer limit. We use the shorthand notation |ψ, φ〉 ≡ c†
1ψc†

2φ |0〉, with ψ, φ ∈ {↑
, ↓, ↑↓}, c†

a↑↓ ≡ c†
a↑c†

a↓. The states are ordered from the highest excited state (top) to the ground state (bottom), and they are not normalized.
N denotes the number of particles in each state, which is a well-defined quantum number for all eigenstates since [H, N] = 0. The other good
quantum numbers are the total spin S2, the spin projection Sz, and the orbital permutation parity P12.

Energy level Eigenstate N

− U
2

(
1 −

√
1 + (

4t⊥
U

)2) (
1 −

√
1 + (

4t⊥
U

)2)
(|↑,↓〉 − |↓,↑〉) + 4t⊥

U (|↑↓, 0〉 + |0, ↑↓〉) 2

|↑↓, 0〉 − |0, ↑↓〉 2

0 |↑↓,↑↓〉 4

|0〉 0

t⊥ − U/2 |↑,↑↓〉 + |↑↓,↑〉 , |↓,↑↓〉 + |↑↓,↓〉 3

|↑, 0〉 − |0, ↑〉 , |↓, 0〉 − |0, ↓〉 1

− t⊥ − U/2 |↑,↑↓〉 − |↑↓,↑〉 , |↓,↑↓〉 − |↑↓,↓〉 3

|↑, 0〉 + |0, ↑〉 , |↓, 0〉 + |0, ↓〉 1

− U |↑, ↑〉 , |↓, ↓〉 , |↑,↓〉 + |↓, ↑〉 2

− U
2

(
1 +

√
1 + (

4t⊥
U

)2) |φGS〉 = (
1 +

√
1 + (

4t⊥
U

)2)
(|↑,↓〉 − |↓, ↑〉) + 4t⊥

U (|↑↓, 0〉 + |0, ↑↓〉) 2

noninteracting Green’s functions read

GR
B/A(ω) = 1

ω ± t⊥ + i0+ ,

GK
B/A = 2i tanh

(
ω

2T

)
ImGR

B/A(ω). (B10)

Replacing them in Eq. (B2), we obtain

�R
U B(ω) = U 2

16

([
1 + 3tanh2

(
t⊥

2T

)]
1

ω − 3t⊥ + i0+

+ 3

[
1 − tanh2

(
t⊥

2T

)]
1

ω + t⊥ + i0+

)
(B11)

(T →0)= U 2

4

1

ω − 3t⊥ + i0+ . (B12)

Note that the terms with a pole at 3t⊥ originate from the third
Feynman diagram in Fig. 11. The bonding retarded Green’s
function is

GR
B(ω) = 1

ω + t⊥ − �R
U B(ω)

. (B13)

Expression (B12) perfectly matches �
R (dim)
U B in Eq. (B9),

which implies that the IPT approximation at T = 0 is exact
in the limit t/U → 0. This is remarkable for a perturbative
approach, which is expected to be valid a priori only around
the opposite limit U/t → 0.

It is important to remark that the comparisons in this
Appendix are performed in the absence of a dissipative envi-
ronment (meaning � = 0). Once the bath degrees of freedom
are integrated out (see Sec. III), it is not possible to perform
exact spectral diagonalization. By keeping � as the smallest

scale of the system, we minimize any effect it may have on
the validity of the approximation.

The picture is different at finite temperature, where the
second term in Eq. (B11) becomes finite. The presence of
this term produces a second root in the denominator of GR

B
in Eq. (B13), yielding a secondary peak in the DOS located
at ω ∼ −t⊥. Comparing to the exact expression in Eq. (B6),
there is no peak located at a similar frequency: inspecting
Table II shows that |Ej − Ek| �= t⊥ ∀ j, k. Analogous rea-
soning applies for the antibonding component, producing a
secondary peak at ω ∼ t⊥. We note that these spurious peaks
are relatively small compared to the primary structures. To
keep this spurious effect under control, when t⊥ is finite we
make sure to work in regimes T � t⊥, where the second term
is suppressed.

This range of validity extends to all temperatures when t⊥
is zero or very small. Indeed, in the lattice model, the width of
the spectral features is controlled by t . If t⊥ � t , the spurious
peaks described above cannot be distinguished from the other
structures. This means that in this case, the approximation is
still valid at high temperatures. Furthermore, in the case of the
SOHM (t⊥ = 0), the matching is exact for all temperatures:
Eq. (B11) has only one term centered around ω ∼ 0, and
extracting a self-energy from Eq. (B6) yields the same result.

APPENDIX C: ESTIMATION OF THE IN-GAP
DENSITY OF STATES

In the following, we derive semianalytical expressions for
the in-gap density of states of the SOHM and the DHM. The
objective is to account for the large difference observed in
Fig. 3.

The density of states of each band m = B, A can be writ-
ten, in terms of the noninteracting Green’s functions of the
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impurity Gm(ω), as

ρm(ω) = 1

π

Im
(
GR

m
−1)(ω) − Im�R

U m(ω)[
Re

(
GR

m
−1)(ω) − Re�R

U m(ω)
]2 + [(

ImGR
m

−1)(ω) − Im�R
U m(ω)

]2 , (C1)

and the local DOS as ρloc(ω) = 1
2

∑
m ρm(ω).

In the SOHM, this simplifies as ρ(ω) = ρB(ω) = ρA(ω),
which holds in the DHM at ω = 0 due to the orbital permuta-
tion and particle-hole symmetries in Eq. (B1).

In the dimer limit and at T = 0, we can estimate the density
of states at ω = 0 by working with the expression (C1). In
this limit, we can explicitly write GR

m and �R
U m, using the

expressions given in Appendix B. The smallest energy scale
of the system is always � (see the typical values in Table I),
and we therefore include it as the regularizing term (replacing
i0+ → i�). In the SOHM (atomic limit), we have

Re�R
U m|ω=0 = Re(GR −1

m )|ω=0 = 0,

∣∣Im�R
U m

∣∣
ω=0 ∼ U 2

�
� Im

(
GR −1

m

)|ω=0 = �, (C2)

and therefore the gap density is given by

ρ(ω = 0) ∼ �/U 2. (C3)

For the DHM, the typical scales given in Table I lead
us to work in the regime U � t⊥ � �. In the dimer limit,
Re(GR

B
−1)|ω=0 = t⊥ and Im(GR

B
−1)|ω=0 = �. The real part

of the self-energy is given by Re�R
U B|ω=0 = −U 2

4
3t⊥

(3t⊥ )2+�2 ∼
−U 2/12t⊥, and numerical computations of Im�R

U B|ω=0 at
finite � show that Im�R

U B|ω=0 � �. The latter term can there-
fore be neglected from Eq. (C1). Consequently, the density of
states in the gap is given by

ρ(ω = 0) ∼ t⊥2
�

U 4
. (C4)

Comparing ρ(ω = 0) in the two models, we see that they dif-
fer by a factor of (U/t⊥)2, which accounts for the difference
observed in Fig. 3.
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