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Dynamical properties of uniform electron fluids are studied within a nonperturbative approach consisting
in the combination of the self-consistent version of the method of moments (SCMM) involving up to nine sum
rules and other exact relations, the two-parameter Shannon information entropy maximization procedure, and the
ab initio path integral Monte Carlo (PIMC) simulations of the imaginary-time intermediate scattering function.
The explicit dependence of the dynamic structure factor (DSF) on temperature and density is studied in a broad
realm of variation of the dimensionless parameters (2 � rs � 36 and 1 � θ � 8). When the coupling is strong
(rs � 16) we clearly observe a bimodal structure of the excitation spectrum with a lower-energy mode possessing
a well pronounced rotonlike feature (θ � 2) and an additional high-energy branch within the roton region which
evolves into the strongly overdamped high-frequency shoulder when the coupling decreases (rs � 10). We are
not aware of any reconstruction of the DSF at these conditions with the effects of dynamical correlations included
here via the intermediate scattering and the dynamical Nevanlinna parameter functions. The standard static-local-
field approach fails to reproduce this effect. The reliability of our method is confirmed by a detailed comparison
with the recent ab initio dynamic local field approach by T. Dornheim et al. [Phys. Rev. Lett. 121, 255001
(2018)] available for high/moderate densities (rs � 10). Moreover, within the SCMM we are able to construct
the modes’ dispersion equation in a closed analytical form and find the decrements (lifetimes) of the quasiparticle
excitations explicitly. The physical nature of the revealed modes is discussed. Mathematical details of the method
are complemented in Appendix. The proposed approach, due to its rigorous mathematical foundation, can find
numerous diverse applications in the physics of Fermi and Bose liquids.
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I. INTRODUCTION

Fermionic and bosonic three- and two-dimensional fluids
of charged or neutral particles (see Refs. [1–7] and references
therein) constitute an important class of one-component sys-
tems which serve to testify different theoretical models and
are of significant practical importance for the interpretation
and development of real experimental studies [8,9]. In this list,
uniform electron fluids and, in particular, the uniform electron
gas (UEG), an exotic, highly compressed neutral Coulomb
system between solid and plasma phases [10], is one of the
key models of the warm dense matter (WDM). This model
system is of importance for our understanding of planet inte-
riors [11,12], laser excited solids [13], or inertial confinement
fusion [14–17].

The most accurate results in the WDM regime, so far,
have been obtained via the first-principles methods of nu-
merical simulations such as the quantum Monte Carlo
(QMC) [18–26]. Despite quite accurate results for the static
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properties, the extraction of a similar quality QMC data for
the dynamical characteristics (dynamic conductivity, optical
absorption, collective excitations) is quite difficult and until
recently [27] has been realized within the linear response the-
ory. In particular, the dynamic structure factor (DSF), S(k, ω),
is the central quantity in the x-ray Thomson scattering di-
agnostics of the WDM realized nowadays at large research
facilities [28–30]. QMC simulations do not provide direct
access to this quantity but permit to obtain reliable results with
respect to the intermediate scattering function

F (q, τ ) = 〈ρq(0)ρ−q(τ )〉 =
∫ ∞

−∞
S(q, ω) e−h̄τω dω (1)

computed in the “imaginary” time h̄τ ∈ [0, h̄β], β being the
inverse temperature in energy units.

The inversion of the Laplace transform (1) for S(q, ω)
can be realized via the maximum entropy method [31] or
the stochastic and the generic optimizations [3,32,33]. Such
a reconstruction is, unfortunately, not unique and the space
of trial solutions expands with the increase of the statistical
noise in F (q, τ ). Nevertheless, a number of trial solutions
can be drastically reduced using a set of restrictions imposed
either by several frequency moments of the spectral density
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[5] or relying on the exact properties of the dynamic local
field correction (DLFC). This permits to reconstruct the most
accurate UEG DSF [34,35]. The stochastic sampling of the
trial solutions for the DLFC, however, is computationally ex-
pensive. Moreover, an accurate estimation of F (q, τ ) requires
time-consuming simulations and is limited to the temperature-
density realm where QMC is not disabled by the fermion sign
problem [36]. In addition, the lower boundary of accessible
wave numbers is limited by the system size, i.e., q � 2π/L
with L = (N/n)1/3. The algorithmic Matsubara diagrammatic
Monte Carlo technique seems to be even more computation-
ally involved [37].

As an alternative to the DLFC-based reconstruction [34,35]
with much lower computational demand and applicability
to a much broader class of physical systems, we present
here the nine-moment version of the original nonperturbative
self-consistent [38,39] method of moments [40–44] comple-
mented by the Shannon information entropy two-parameter
maximization technique and other exact requirements. Within
this approach the DSF sum rules known theoretically or
numerically are incorporated into the analytical form of
the spectral density automatically. Resulting DSF S(q, ω),
the (inverse) longitudinal dielectric function ε−1(q, ω), the
eigenmode spectrum and other dynamical characteristics are
constructed exclusively in terms of the static structure fac-
tor (SSF), S(q) = F (q, 0), and the static dielectric function,
ε(q, 0). These input data are provided here by the recent
fermionic QMC simulations [24].

The respective accuracy of our approach is demonstrated
and opens a path to further improvements and extensions
to a broader parameter domain. A simplified version of our
method was also validated against the QMC static data [45].
Preliminary steps to the creation of the present approach were
taken in [46,47].

In what follows we use the reduced temperature, θ =
kBT/EF with EF = (h̄2/2m)(3π2n)2/3, and the density
(Brueckner) parameter rs defined by na3

B = (4πr3
s /3)−1. Here,

n is the number density of charged particles, aB is the first
Bohr radius, and EF is the Fermi energy.

In the present paper, we concentrate first on the warm dense
matter regime [10] with the coupling (rs) and degeneracy (θ )
parameters varying around unity (θ, rs ∼ 1). Then we extend
our studies to the strongly coupled regime defined by 10 �
rs � 36.

The paper is organized as follows. In Sec. II, we describe
some details of the performed QMC simulations: we briefly
mention the manifestations of the fermion sign problem in
our simulations, demonstrate the convergence of main ther-
modynamic properties and the influence of the finite-size
effects. The generalized self-consistent method of moments
(SCMM) with the dynamical Nevanlinna function is presented
and discussed in detail in Sec. III. The UEG eigenmodes
and the dynamic structure factor at moderate densities (2 �
rs � 10) are obtained and compared to the local-field-based
data. Further, in Sec. IV, we present an improved version of
the method. It is based on the optimization of the dynamical
Nevanlinna function with an additional information contained
in the intermediate scattering function F (q, τ ) provided by
ab initio path-integral Monte Carlo (PIMC) simulations. This
new combined approach allows to study the influence of

multiple correlation effects on the dynamical response in the
UEG in the low-density phase (16 � rs � 36) for the first
time. Main conclusions and the outlook are drawn in Sec. V.

II. THE PATH-INTEGRAL MONTE CARLO
SIMULATION METHOD

A. Account of Fermi-Dirac statistics in QMC simulations

In this section, we briefly introduce the fermionic propa-
gator path integral (FP-PIMC) recently developed by Filinov
et al. [24] which provides the UEG ab initio static properties
which are further employed in the self-consistent method of
moments (Sec. III) to recover the dynamical response.

The FP-PIMC has demonstrated its efficiency in the anal-
ysis of the exchange correlation free energy for the UEG
jellium model in a broad realm of parameters: 0.1 � rs � 10
and 1 � θ � 2.

In contrast to the standard high-temperature decomposition
of the fermionic partition function ZF via the bosonic prop-
agators [48], the FP-PIMC employs the antisymmetric one,
in the form of many-body Slater determinants, which already
satisfy the required symmetry relations under an exchange of
identical fermions. The summation over different permutation
classes [48], {σs}, can be performed analytically in the kinetic
energy part of the N-body density matrix. As a result the
antisymmetric (fermionic) free-particle propagators (denoted
in the following as “FP”) between two adjacent time slices are
expressed as follows:

Ds
p−1,p =

∑
σs

(−1)δPπ̂σs
〈
Rp−1|e−εK̂ |π̂σs Rp

〉= det Ms
p−1,p

λDNs (2)

where Ms
p−1,p is the Ns × Ns diffusion matrix

Ms
p−1,p = ||mkl (p − 1, p)||, k, l = 1, . . . , Ns, (3)

mkl (p − 1, p) = exp

(
− π

λ2
ε

[
rs

l p − rs
k (p−1)

]2
)

. (4)

To shorten the notations, we introduced the total radius vector
for identical particles of the same type, Rs

p = (rs
1 p, . . . , rs

Ns p),
where the upper index denotes the spin state s = {↑,↓},
the first lower index counts the particle number indices
(1, . . . , Ns), and the second lower index denotes the imaginary
time argument, τp = pε, with ε = β/P and 0 � p � P. Next,
we can define the space-time variable, Xs = (Rs

1, . . . , Rs
P ),

which specifies a system microstate – a specific microscopic
configuration of particle trajectories. The resulting expression
for the partition function ZF thus contains the Slater deter-
minants, Ms

p−1,p, between each successive imaginary times
τp − τp−1 = ε, and, for practical applications in the Monte
Carlo methods can be rewritten in the equivalent form with
a new effective action SA(p − 1, p) which along with the stan-
dard potential energy term U contains an additional exchange
contribution Wx

ZF = 1

N↑!N↓!

∫
d X↑d X↓

P∏
p=1

Sgnp · e−SA(p−1,p), (5)

e−SA(p−1,p) = e−εU (R↑
p ,R↓

p ) · eWx(R↑
p ,R↓

p ), (6)

Wx = ln | det M↑
p−1,p| + ln | det M↓

p−1,p|. (7)
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Hence, the probability of microstates sampled with the new
action SA becomes proportional to the absolute value of the
Slater determinants. Their degeneracy in the microstates with
small spatial separations of the spinlike electrons correctly
recovers the Pauli blocking effect and increases the average
sign 〈S〉, Eq. (8), being crucial for the numerical accuracy of
the estimated physical observables (see below). The similar
idea has been employed by several authors in different physi-
cal applications [49–53] including the uniform electron gas at
warm dense matter conditions [10].

The change in the sign of Slater determinants evaluated
along the imaginary time, 0 � τp � β, is taken into account
by extra factors, Sgnp. Combined together they define the
average sign in the fermionic PIMC,

〈S〉 =
〈

P∏
p=1

sgn detM↑
p−1,p · sgn detM↓

p−1,p

〉
, (8)

and characterize the efficiency of simulations, as the statistical
error δA of the estimated thermodynamic observables, Ā =
〈A〉 ± δA, is scaled as δA ∼ 1/〈S(N, β )〉. The PIMC simula-
tions become hampered by the fermion sign problem [36,54]
once the statistical uncertainties are strongly enhanced due
to an exponential decay of the average sign 〈S(N, β )〉 with
the particle number N , the inverse temperature β = 1/kBT or
the degeneracy parameter, θ = T/TF (or χ = nλ3). The usage
of the fermionic propagators, Eq. (2), permits to partially
overcome the sign problem and make the UEG simulations
feasible up to the degeneracy factor nλ3 � 3 (λ being the
thermal de Broglie wavelength) with the average sign staying
above 〈S〉 � 10−2, see Ref. [24].

B. High-temperature factorization and the convergence tests

The next issue which strongly influences the efficiency of
PIMC simulations is the discretization time step ε = β/P.
The general problem is related with the inability to estimate
the exact value of the matrix elements of the density operator,
e−βĤ , due to the noncommutability of the kinetic and the
potential energy operators. This issue was elegantly solved by
R. Feymann [55], who proposed to map the original quantum
partition function to a quasiclassical one at a new effective
high temperature, T̃ = 1/ε = P · T , by employing the semi-
group property of the evolution operator, e−βĤ = (e−εĤ )P.
This idea renders to the high-temperature factorization rep-
resentation (5). In the fermionic simulations the use of a
larger time step ε (smaller P value) increases the 〈S〉 value
and extends the applicability range of the method to a higher
degeneracy [52].

To reduce a number of P factors in the DM, we implement
the fourth-order factorization scheme introduced by Chin et al.
[56] and Sakkos et al. [57]:

e−βĤ =
P∏

p=1

e−ε(K̂+V̂ )

≈
P∏

p=1

e−εŴ1 e−t1εK̂ e−εŴ2 e−t1εK̂ eεŴ1 e−t0εK̂ + O(ε4), (9)

(a)

(b)

(c)

FIG. 1. The P-convergence test for the UEG at rs = 16 and θ =
1. The FP-PIMC results are shown vs. the number of factorization
factors P in ZF , see Eq. (5). [(a) and (b)] The kinetic, εk , and the
potential energy, εp, per electron for 2 � P � 16. The employment
of the fourth-order propagators already delivers converged results
for P = 2 (the average value extrapolated to P 
 1 is shown by
the dashed black line). (c) The corresponding P-convergence for
the radial distribution function for the spin-unlike electrons, g↑↓(r).
Some noticeable deviations are mainly observed at smaller distances,
r � 10 aB, see the insert. The correct short range asymptotic behavior
in g(r) is reproduced only for P � 8. This result is expected as the
corresponding high-temperature factorization, Eq. (9), is optimized
to be accurate up to the higher order contributions, O(ε4), ε =
β/P � 1, only for the internal energy [57].

with the choice ε = β/P, (2t1 + t0 = 1), t0 = 1/6, and K̂ (V̂ )
being the kinetic (potential) energy operator.

In order to keep the systematic errors due to the neglected
high-order commutators smaller than the statistical QMC er-
rors, i.e., the terms of the order O(ε4) in Eq. (9) which can
be estimated from the Baker-Campbell-Hausdorff formula
[58], in Fig. 1, we present the P-convergence test for main
thermodynamic properties. The results for the internal en-
ergy components [see panels (a) and (b)] are well converged
already for P = 2 at temperature θ = 1 (the observed devia-
tions are within the statistical error bars). In contrast, some P
dependence is still observable in the short-range correlation
part of the radial distribution function [Fig. 1(c)]. The similar
analysis performed for the statistic structure factor S(q) (SSF),
being the central quantity for the estimation of the fourth
frequency moment C4(q) [Eq. (16)], has confirmed that the
factorization errors practically vanish for P � 4.

In summary, for the densities rs � 2 and the temperatures
1 � θ � 8 (θ = T/TF ), we end up with the optimal choice
P = 8. In particular, for the low density case (rs � 16) ana-
lyzed in Sec. IV C, the UEG degeneracy factor is relatively
small (nλ3 � 0.1) and the average sign (8) only has a weak
P dependence. For rs = 16 and N = 34, it varies within the
range 0.52|P=16 � 〈S(P)〉 � 0.63|P=2. In addition, we admit
that the simulations with a larger value of P are better suited
for reconstruction of the dynamical properties as they deliver a
more refined resolution of the intermediate scattering function
F (q, τ ) in the imaginary time, Eq. (1). The latter is used,
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FIG. 2. The static structure factor at rs = 22, 28, 36 and θ = 1.
The solid line demonstrates the spline interpolation Sint(q) over the
FP-PIMC data (solid dots) available for q � qmin (2π/L) and the
STLS results [59] which provide the long-wavelength asymptotic
behavior not accessible with the finite-size PIMC simulations (qmin =
0.627qF for N = 34). For the detailed analysis of the validity of the
STLS theoretical approach, see, e.g., Ref. [24].

in particular, for the accurate evaluation of the static density
response function χ (q, 0), see Eq. (20), and in the optimized
reconstruction procedure for the higher-order power moments
C6,C8 discussed in Sec. IV B. We obtained well-converged
results for χ (q, 0) for q � 6qF using both P = 8 and 16. The
integral in Eq. (20) was performed using the spline interpo-
lation between the values of F (q, τp) resolved at the discrete
argument values τp = pε.

A similar spline interpolation procedure is required in
the integral (16) applied to the static structure factor S(qn)
being defined only for the discrete set of momentum qn =
2πn/L (n = 0, 1, . . .) with N/L3 = ( 4

3πr3
s )−1 due to a finite

system size N and the periodic boundary conditions (PBC).
The values of S(q) below the minimum wave number, qmin =
2π/L, have been complemented by the STLS theory [59]
similar to the analysis presented in Ref. [24]. Some examples
are presented in Fig. 2.

Finally, notice that we employed the standard periodic
boundary conditions with the Ewald summation procedure
[60] to take into account the long-range nature of Coulomb
interaction. While this allows to significantly reduce the finite-
size effects in the static structural properties (or even make
them negligible, see below), for the most important thermo-
dynamic properties such as the internal energy and the free
energy the corresponding scaling analysis should be con-
ducted carefully [10,24].

C. Finite-size effects

The predictions on the system dynamical response dis-
cussed in the next sections are based on the general
expressions valid in the thermodynamic limit. However, the
self-consistent method of moments introduced below employs
as a crucial input the static properties evaluated in finite-size

(a)

(b)

(c)

FIG. 3. The finite-size dependence of the static structure factor
S(q) (a) and the static density density response function χ (q, 0)
(b) for N = 34, 40, and 50. The symbols corresponds to the allowed
discrete values of the wave number, qn = 2πn/LN (n = 1, 2, . . .)
due to the periodic boundary conditions. Simulations are performed
for rs = 16, θ = 1, and P = 8. (c) The lower density case: 22 �
rs � 36. The χ (q, 0) from the FP-PIMC (N = 34) is compared to the
effective static local field (ESA) result, χESA(q, 0), reconstructed via
the LFC factor using the neural-net representation [62]. For the ref-
erence, we include the expected long wavelength limiting asymptotic
form, limq→0 χ (q, 0) = q2/4π , due to a perfect screening condition
in the UEG (dashed gray line).

simulations. Therefore, their dependence on the system size N
has to be validated. This concerns, in the first place, the static
density response function χN (q, 0) and the static structure
factor SN (q) which enter explicitly in the moments C0(q) and
C4(q).

The results of simulations for both quantities are pre-
sented in Figs. 3(a) and 3(b) for N = 34, 40 and N = 50,
respectively. Up to the statistical errors we cannot resolve
any finite-size effects present in our data. Our results are in
agreement with the previous findings [61] for lower densities
(rs < 10). Next, for rs = 16, we validate our FP-PIMC data
for χ (q, 0) versus χESA(q, 0) evaluated via the static dielectric
function in the RPA-type representation with the static local
field correction taken from the neural-net representation [62].
The agreement is excellent up to q ∼ 3qF .

In Fig. 3(c), we perform a similar comparison but for
lower density case (rs � 22). Since the neural net was trained
only for 0.7 � rs � 20, we notice a very reasonable agree-
ment at rs = 22, and observe some systematic deviations for
larger rs. The effective static approximation (ESA) results,
in general, underestimate the amplitude of the main peak
in χ (q, 0), while both theoretical approaches converge to
the same asymptotic limit for small q given by the perfect
screening sum rule in the UEG. To conclude, even though
the ESA curves slightly deviate from the exact PIMC data,
the observed deviations are not large, and the ESA approach
is used further as a reference approximation where possible
dynamical correlation effects in the density response are ne-
glected. We note that this approach remains quite accurate at
least for rs � 6, see, e.g., Ref. [63].
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III. EXTENDED SELF-CONSISTENT METHOD OF
MOMENTS WITH DYNAMICAL CORRELATIONS

A. Spectral density and frequency power moments

From the mathematical point of view, the problem we
solve in this work, is the truncated Hamburger problem of
moments consisting in the reconstruction of a non-negative
distribution density from its power moments [41–43]. This
problem is solvable [41] if and only if the Hankel matrices
[43] constructed from the moments are all non-negative. Cer-
tainly, if the distribution (spectral) density is an even function
of frequency, the set of power moments and the orthogonal
polynomials which serve as the coefficients of the Nevanlinna
linear-fractional transformation [40,44] simplify significantly
[44].

For this reason, it is convenient to express all dynamical
characteristics in terms of the loss function

L(q, ω) = − Im ε−1(q, ω)

πω
, (10)

which is non-negative by virtue of the fluctuation-dissipation
theorem (FDT)

− Im ε−1(q, ω)

πω
= 4πne2

q2

[1 − exp (−β h̄ω)]

h̄ω
S(q, ω) (11)

and is an even function of frequency since Im ε−1(q, ω) is
an odd function of ω. The loss function frequency power
moments

C(q) =
∫ ∞

−∞
ω L(q, ω) dω,  = 0, 1, 2, . . . , 8, (12)

and the characteristic frequencies determined by the sequen-
tial ratios of the power moments

ω j (q) = √
C2 j/C2 j−2(q), j = 1, 2, 3, and 4, (13)

will be the only construction blocks of the present approach.
The odd-order moments vanish and the

set of moments we consider simplifies into
{C0(q), 0,C2, 0,C4(q), 0,C6(q), 0,C8(q)}. Notice that the
frequency integral in Lindhard’s formula for the polarizational
stopping power of a plasma is an incomplete second moment
of the above loss function.

The static dielectric function, due to the Kramers-Kronig
relations, is directly related to the zero-order moment,
C0(q) = 1 − ε−1(q, 0); and the plasma frequency enters via
the f-sum rule, C2 = ω2

p. The fourth moment by virtue of
the detailed balance condition [45] is effectively the third
moment of the DSF and can be explicitly derived from the
commutation relations [64] and expressed as follows:

C4(q) = 2n

h̄
�(q) ω0(q) · ω2

3(q) = ω2
p · ω2

3(q), (14)

ω2
3(q) = ω2

0(q) + 4ω0(q) · εk/h̄ + ω2
p[1 − CI (q)], (15)

CI (q) = 1

8π2n

∫ ∞

0
d k k2[1 − S(k)] · f (q, k) , (16)

where �(q) = 4πe2/q2 and ω0(q) = h̄q2/2m. The factor

f (q, k) = 5

3
− k2

q2
+ (k2 − q2)2

4k q3
ln

∣∣∣∣k + q

k − q

∣∣∣∣ (17)

FIG. 4. The dynamic structure factor S(q, ω) at three densities
{rs = 2, 6, 10} and temperature θ = 1. The frequency is normalized
to the plasma frequency, ω/ωp. The DSF plots are shifted by the
value of the dimensionless wave number q/qF (horizontal dotted
lines) with qF being the Fermi wave number, h̄qF = √

2mEF . Com-
pared are the results of the random-phase approximation (RPA), the
effective static approximation (ESA) [62], the dynamic local field
(DLFC) [34], and the present self-consistent method of moments
in the nine-moment (9MA) approximation. Qualitative discrepancies
observed for q ≈ 0.63qF are due the Shannon entropy maximization
which tends to smooth sharp energy resonances and is much better
suited for the description of a broad multiexcitation continuum. Red
vertical arrows indicate the frequencies �1(2)(q) for the set of wave
numbers, q/qF = {0.6269, 1.2538, 1.8808, 2.3457, 2.9405}, speci-
fied by the periodic boundary conditions for N = 34, i.e., q =√

q2
1 + q2

2 + q2
3 with qi = 2πni/L (ni = 1, 2, . . .).

reflects the angular averaging in the momentum vector.
The fourth moment contains two main contributions:

(i) the average kinetic energy per particle εk = 〈Ekin〉/N
[65] reduced in the case of a noninteracting system to the
Fermi integral I3/2(η): εideal

k = 3θ3/2I3/2(η)/2β, and (ii) the
exchange-correlation contribution CI (q) with S(q) provided,
e.g., by the ab initio QMC simulations [66]. In the present
work, in order to access the region of small wave numbers,
q � 0.6 qF , dominated by a sharp plasmon resonance (see
Fig. 5) and higher values of the coupling parameter, rs � 16,
we performed an independent evaluation of the SSF with the
fermionic propagator PIMC [24] and the system size such that
64 � N � 140.

B. The self-consistent solution of the five-moment problem

We start our analysis using a noncanonical solution of
the five-moment Hamburger problem {C0(q), 0,C2, 0,C4(q)}.
The Nevanlinna theorem [40–44] establishes the following
one-to-one linear-fractional transformation between the in-
verse dielectric function:

ε−1(q, ω; Q2) = 1 + ω2
p(ω + Q2)

ω
(
ω2 − ω2

2(q)
) + Q2

(
ω2 − ω2

1(q)
) ,

(18)
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FIG. 5. (Left) The intermediate scattering function, F (q, τ ),
for rs = 10 (θ = 1) and the wave numbers k = q/qF =
{0.3911, 0.4376, 0.5077, 0.5532, 0.6188}, corresponding to
q = 2πni/LN (ni = 1 and 2) from the PIMC simulations [24] for
different system sizes, N = 64, 100, and 140 (symbols with the
error bars). The function F (q, τ ) is symmetric with respect to τ0,
(τ0 = β/2 = 27.15 Ha−1) and its initial value (τ = 0) is defined
by the SSF, F (q, 0) = S(q). (Right) The reconstructed dynamic
structure factor S(q, ω) within several approximations: the RPA,
ESA [62], and present 9MA self-consistent method of moments. The
DSF plots are shifted by the value of q/qF (horizontal dotted lines).
The agreement of F (q, τ ) is evaluated via the Laplace transform
of S(q, ω) (from RPA, ESA, 9MA), see Eq. (1), with the ab initio
PIMC data provided on the left panel. The DLFC results [34,35]
(see Fig. 4) are not available for q < 0.63 (N > 34).

and a nonphenomenological Nevanlinna (response) function
Q2 = Q2(q, ω) such that limz→∞ Q2(q, z)/z = 0 (Imz > 0),
see Ref. [42]. These solutions have been extensively tested
against the molecular-dynamics simulations of classical one-
component Coulomb and Yukawa systems [38,39] with the
quantitative agreement achieved even within the static approx-
imation for Q2(q, z), i.e., when

Q2(q, z) = lim
z→0+

Q2(q, z) = ih2(q; ω1, ω2). (19)

Since in the DSF of the above classical systems a broad
extremum was observed at the zero frequency, the third
derivative test for even functions [38,39] was applied
to obtain the static Nevanlinna parameter h2(q; ω1, ω2) =
ω2

2(q)/(
√

2ω1(q)). Notice that the Nevanlinna function is di-
rectly related to the dynamic local field correction used to
extend the random-phase approximation (RPA) [67], see also
Ref. [39].

C. The dynamic (five-moment) Nevanlinna parameter function

This approach being very accurate for classical systems
proves to be insufficient for Fermi fluids, where the trimodal
structure of the spectrum [68] and a significant shift with
respect to the RPA plasmon [34] have been recently predicted.

It has long been known [69] that the trimodal spectrum
(the zero-frequency mode plus two “shifted” modes) presum-
ably should be attributed to the dynamical multipair effects

in electron fluids, and can be described only when the local
field becomes a complex dynamic function of the energy
transfer h̄ω, in other words, if we abandon the static ap-
proximation (19) for the five-moment Nevanlinna function
and specify the high-frequency asymptotic behavior of the
inverse dielectric function (IDF), which is a genuine response
(Nevanlinna) function [42]. To this end, we equalized the five-
moment expression for the IDF to the one stemming from the
nine-moment solution of the Hamburger problem taking into
consideration the sixth and the eighth frequency moments,
C6(8), or the frequencies ω3(4) defined in Eq. (13). Thus we
expressed the dynamic five-moment Nevanlinna function in
terms of the nine-moment one and, using the same physi-
cal considerations [38,39] employed for the latter the static
approximation similar to (19). This construction is presented
in detail in Appendix. Hence, the dynamic response problem
was reduced to the study of only two new static character-
istics which are the unknown frequencies ω3(4)(q). Notice
that the static nine-moment Nevanlinna parameter h4(q; ω̃)
with ω̃ = {ω1, ω2, ω3, ω4} is determined by the frequencies
ω3(4)(q), since the frequencies ω1(q) and ω2(q) are uniquely
defined by the SSF and by the static density response function,
which is directly accessible from the intermediate scattering
function:

χ (q, 0) = −n
∫ β

0
d τ F (q, τ ) = q2(ε−1(q, 0) − 1)

4πe2
. (20)

We understand that the frequencies ω3(4)(q), formally intro-
duced above, are determined by the three- and four-particle
static correlation functions. The ab initio QMC data for them
can be achieved though precise expressions for the higher-
order moments in terms of these correlation functions not
yet available. The precision of the latter seems to be a prob-
lem and, as we show, to achieve quantitative agreement with
the simulation data, we need to possess highly precise val-
ues of the sixth and the eighth moments. This is why we
determine their values by means of the Shannon informa-
tion entropy maximization (EM) procedure [70–73], see also
Ref. [44], or using the intermediate scattering function, see
below.

D. The Shannon entropy maximization technique

We introduce the two-parameter Shannon entropy func-
tional defined by the loss function spectral density:

E (q; ω̃) = −
∫ ∞

−∞
L(q, ω; ω̃) ln [L(q, ω; ω̃)]dω (21)

and resolve the corresponding maximization problem with
respect to ω3(4)(q), with ω1(2)(q) fixed by the known sum
rules. To solve the extremum conditions for two unknown
frequencies

∫ ∞

−∞

{
∂L(q, ω; ω̃)

∂ω3(4)
ln [eL(q, ω; ω̃)]

}
dω = 0, (22)

we employ the Newton-Raphson method. As the starting
points in the gradient descent method, the corresponding
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Fermi-Dirac distribution moments

ω30(q) =
√

I5/2(η)

I3/2(η)
�s(q; η) and ω40(q) =

√
I7/2(η)

I5/2(η)
�s(q; η),

have been chosen with

�s(q; η) =
√

I1/2(η)

I3/2(η)
ω2(q) .

The Hessian of the entropy (21) was studied to warrant the
satisfaction of the maximization condition.

E. The eigenmodes and the dynamic structure factor:
comparison to the local-field-based approach

Within our approach the properties of the eigenmodes can
be directly studied via the solution of the dispersion equation,
i.e., as the poles of the inverse dielectric function (18). The
corresponding algebraic equation is of the fifth order:

z
(
z2 − ω2

2(q)
) + Q2(q, z)

(
z2 − ω2

1(q)
) = 0. (23)

Hence, we obtain five complex frequencies

z0(q) = −i��0(q), �0 = Re(z0) = 0, (24)

z±1(±2)(q) = ±�1(2)(q) − i��1(2)(q), (25)

which correspond to three possible eigenmodes: the diffusion
(or Rayleigh) mode �0(q) and two shifted modes �1(2)(q).
The intrinsically negative imaginary parts of the solutions
are defined by the decrements of the corresponding modes,
��0(q) and ��1(2)(q).

We applied the present self-consistent method of moments
in the nine-moment approximation (9MA) to reconstruct
S(q, ω) for different sets of parameters {rs, θ}. The perfor-
mance of our approach in the WDM regime is demonstrated
in Fig. 4 where it is compared to the DLFC results [34,35].
Both methods are in a good quantitative agreement both
for weak (rs = 2) and moderate (rs = 6 and 10) coupling,
as they directly include the exchange-correlation contribu-
tion (16). The positions of the maxima and their broadening
due to the damping are reproduced very accurately. The
damping effects are intrinsically present in the 9MA solution
due to the dynamical nature of the five-moment Nevanlinna
function.

The only case when the DLFC results become qualitatively
different from the 9MA ones is q ≈ 0.63qF (rs = 6 and 10),
where only a single sharp plasmon resonance quite accu-
rately reproduced within the RPA and the ESA is present.
At these conditions, the Shannon EM provides a class of
solutions which are too smooth, and, hence, any sharp res-
onance features, if present in the spectrum, are artificially
broadened, though the spectral density still satisfies all im-
posed constrains including the five lower-order moments
{C0(q), 0,C2, 0,C4(q)}, which are known exactly from the
Monte Carlo data. To avoid such artefacts induced by the
unknown higher moments C6(8), we reevaluated the DSF with
the frequencies ω3(4) used as the fitting parameters to repro-
duce the decay of F (q, τ ), see Eq. (1), obtained within the
fermionic PIMC [24]. Thus we found a much better agree-
ment with the DLFC data at q ≈ 0.63qF . We applied this

idea for smaller wave numbers beyond the DLFC-generated
data. These new results are presented in Fig. 5 and clearly
demonstrate the applicability of our analytical expression
for the inverse dielectric function (18) even in the case of
a sharp resonance, see the DSF for q ≈ 0.39qF in Fig. 5.
The accuracy of the reconstructed S(q, ω) is justified by the
agreement with F (q, τ ). Among other approximations (RPA,
ESA) only the 9MA agrees with the intermediate scattering
function within the statistical error bars (see the left panel
in Fig. 5). The details of this approach will be discussed in
Sec. IV B.

To summarize, a simple combination of the fitting proce-
dure with only two parameters in the case of sharp energy
resonances (at lower q) and the dynamical approximation for
the Nevanlinna parameter function satisfying the Shannon
EM principle when the damping effects prevail allowed us
to reproduce the UEG DSF in a broad range of variation of
the momentum and at different densities with a high accu-
racy. The transition between both regimes can be physically
justified by a drastic variation of the decrement of the plas-
mon mode once it enters into the pair-continuum region [74].
In particular, for rs = 2, the lower dispersion curve �1(q)
obtained from the solution (25) at q ≈ 0.63qF (see the first
panel in Fig. 6) already lies at the edge of the pair continuum,
and the present approach provides a very accurate description.
Other theories (RPA, ESA) demonstrate here a similar accu-
racy. The ESA theory is based on the static LFC and for the
weak coupling (rs = 2) it leads to a nearly perfect agreement
with the DLFC data for all wave numbers. In contrast, the
RPA prediction becomes unreliable in a finite interval, 1.2 �
q/qF � 2.9, when the account of the static pair correlations
becomes necessary via the G(q, 0) factor, as demonstrated in
the STLS theory [75]. The validity of the RPA solution is
restored once the ESA LFC approaches unity for large wave
numbers.

Similar trends are observed for rs = 6(10). Omitting the
case of a sharp plasmon resonance, the best agreement with
the DLFC for q/qF � 1.88 is provided by the 9MA recon-
struction. The asymmetric form of the DSF and a noticeable
redshift of its maximum with respect to the RPA/ESA results
indicated by a vertical arrow (see the second (third) panel in
Fig. 4) are reproduced quite well.

On the contrary, we observe systematic deviations (more
pronounced for rs = 10) between the ESA and the DLFC
models. The onset for this discrepancy matches the charac-
teristic wave number qc when the dispersion curve, �1(q),
in the second (third) panel in Fig. 6 enters the pair excita-
tion region: qc ∼ 0.62qF (rs = 2), qc ∼ 0.9qF (rs = 6), and
qc ∼ 1.0qF (rs = 10). For q > qc, we observe that the recon-
struction with the dynamical Nevanlinna parameter function
starts to demonstrate a remarkable agreement with the DLFC
and the PIMC data for F (q, τ ). This testifies the importance
of the dynamical correlations and the need for the dynamical
local field theory in this regime substituting the static LFC
approximation used in the ESA.

These observations validate the physical consistency of
the applied Shannon EM technique at high/moderate den-
sities. Once the plasmon mode is strongly damped and
broadened, one observes that the spectral density is mainly
formed by the contribution of different combinations of
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FIG. 6. The wave number dependence of the solutions of the ex-
plicit dispersion equation, ε(q, z) = 0. Simulation parameters: θ = 1
and rs = 2, 6, and 10 [shown on the right most panel with a different
scaling]. Two solid curves denote the modes: �1(q) (red) and �2(q)
(green). The corresponding dashed lines �1(2)(q) − ��1(2)(q) and
�1(2)(q) + ��1(2)(q), where ��1(2)(q) are the decrements, delimit
the linewidths. For rs = 10 is shown, in addition, the dispersion for
q/qF ∈ [0.39, 0.62] as resolved from Fig. 5, where �2(q) nearly
coincides with the ESA prediction when the lower branch �1(q)
has a negligible spectral weight. Two dispersion equation solutions
exhibit significant broadening when they approach the pair excitation
continuum (the shaded area): h̄ω ∈ [εq+qF − εqF , εq−qF − εqF ] with
εq = h̄2q2/2m. Notice that the second solution �2(q) lies near the
edge of the pair excitation continuum and has a slightly reduced
decrement compared to the lower one, ��2 < ��1. The lower
solution �1 always stays within the pair continuum. In the range
q/qF ∈ [0.62, 0.94] a unique dispersion cannot be resolved as both
of the solutions, i.e., the F (q, τ ) fitting and the Shannon EM, repro-
duce the intermediate scattering function within the QMC error bars.
The positions of the DSF maxima deduced from the RPA/ESA (solid
blue/dashed black lines) are included for comparison.

quasiparticle excitations—the microstates in the sense of the
statistical ensemble. The most probable (degenerate) solu-
tion in this case should correspond to the entropy maximum.
This permits to determine the unknown frequencies ω3(4) by
means of the Shannon EM extrema conditions in a unique
way.

Furthermore, the frequencies of the eigenmodes, �1(2)(q),
found as the poles of the inverse dielectric function, are also
compared in Fig. 4 to the full DSF results. We observe a quite
good agreement between the low-frequency mode �1(q) and
the maximum of the spectral density (excluding q ≈ 0.63qF ).
The second solution �2(q) is shifted to higher frequencies,
and in our interpretation (see below), it is responsible for
the observed asymmetrical shape of the DSF. This effect be-
comes more pronounced at low densities (rs � 6), when we
can observe even a second local maximum predicted indepen-
dently (Fig. 4) both by the DLFC model at q/qF ≈ 2.35, 2.94
(rs = 10), and within the 9MA theory at q ≈ 2.94qF (rs =
2, 6, and 10) and q ≈ 1.25qF (rs = 6, 10). Both approaches
indicate the presence of two modes, distinguishable at low and

high frequencies, which, however, are difficult to resolve if
only a full DSF is available.

Recently, the dispersion relation, ε(q, z) = 0, has been
analyzed on the complex frequency plane within the ESA
approximation [76] based on ab initio QMC data for the static
LFC. Only a single solution (a plasmon) was found and only
outside the q-ω region corresponding to the pair continuum
(Fig. 6). In contrast, within the present approach the possi-
bility for a three-mode solution (including a diffusive mode)
and the mode-mixing effects are incorporated in the analytical
representation of the Nevanlinna parameter function and the
inverse dielectric function. Our solution for the dispersion
relations (25) of two shifted characteristic modes �1(2)(q)
is demonstrated in Fig. 6. In the WDM regime (rs = 2) the
�1(q) mode lies close to the center of the pair continuum.
A similar behavior is observed for the ESA/RPA but the
deviations increase with rs. For rs = 6(10), we clearly ob-
serve the negative dispersion and a local rotonlike feature in
the range 1.5 � q/qF � 2.5. The effect is more pronounced
compared to the ESA predictions and is in a good agreement
with the DLFC [34] results. Around q ∼ 1.9qF the strongly
damped �1(q) mode is responsible for the low-frequency DSF
maximum, while the upper branch �2(q) generates a broad
shoulder at higher frequencies. Moreover, around q ∼ qc this
shoulder is centered close to the RPA dispersion. A similar
behavior is captured quite well also by the DLFC for q/qF ≈
2.35, 2.94 (rs = 10) visible in Fig. 4. Our analysis performed
for small wave numbers (q < 0.63qF , see Fig. 5) has proved
that the upper branch �2(q) in the long-wavelength limit
coincides with the plasmon mode.

Furthermore, the lower branch, �1(q), was found to exist
only in the q-ω region spanned by the pair-continuum and has
a negligible spectral weight in the full DSF (see Fig. 5) when
the upper mode, �2(q), forms a sharp plasmon resonance.
However, with the increase of the plasmon damping with
the wave number q, the �1-mode contribution is systemat-
ically enhanced. In particular, the Shannon EM applied at
q ≈ 0.63qF predicts a nearly equal spectral weight of both
modes (see the DSF in the first row of Fig. 4). The interme-
diate scattering function F (q, τ ) reconstructed from the ESA,
the DLFC and the 9MA coincides with the PIMC data within
the statistical error bars, and, therefore, cannot be used as
a sufficient criteria to select a unique physical solution. For
larger q (q > 0.63qF ) all theoretical approaches, except RPA,
predict the DSF maximum being close to �1(q).

F. Intermediate analysis of the UEG eigenmodes

The above analysis of characteristic collective modes in
electronic fluids or the UEG at moderate densities (θ = 1,
rs = 2, 6, and 10) within the nine-moment approximation
complemented with the ab initio QMC data can be summa-
rized as follows. We clearly observe how the position of the
DSF peak undergoes a transition from the �2(q) plasmon for
q < qc (outside the pair continuum region) to the strongly
damped low-frequency branch �1(q) when the plasmon can
decay into pair excitations. The main effect introduced by
the exchange-correlation contribution CI (q) in the C4 moment
(16) is the formation of a rotonlike feature missing in the RPA
theory completely.
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For q > qc, our dispersion equation (23) predicts the pres-
ence of an additional second mode �2(q), evolved from the
plasmon for q < qc, but with a significantly enhanced decre-
ment ��2. We believe that due to a strong damping it is
not of the collective nature and can be viewed as a local
enhancement of the spectral density around the Fermi energy.
In addition, the upper edge of the pair continuum in Fig. 6
(shown at θ = 0) will be broadened at the simulated tem-
perature θ = 1. The presence of both characteristic modes is
practically indistinguishable in the full DSF as they strongly
overlap due to a rapid increase of the corresponding decre-
ments ��1(2)(q) whose role is represented in Fig. 6, see the
red (green) dashed curves.

As it will be demonstrated below, the role of the second
solution �2(q) interpreted here as a local maximum in the
multiexcitation continuum can change at different thermody-
namic conditions. In particular, at much lower densities (rs �
16) and temperatures, it can acquire a collective character
being a combination of a several quasiparticle excitations with
a significantly long lifetime. These new physical predictions
are discussed in detail in Sec. IV.

As to the possible physical interpretation of the �1(q)
mode when it is strongly overdamped (��1 ∼ �1), its true
physical origin has not yet been sufficiently clarified. The
red-shift in the DSF maximum around q ∼ 2qF at metallic
densities (rs ∼ 4) is a real physical effect and has been ob-
served experimentally in alkali metals [77] and aluminium
[78]. Takada [68,79] in his theoretical analysis attributed the
rotonlike feature to the excitonic mode dominant in the spec-
trum around q ∼ 2qF . The predicted excitonic mode has a
two-particle character (an electron-hole excitation) and, there-
fore, it is mostly pronounced in the wave number segment
spanned by the pair continuum. The idea of existence of such
a mode in UEG has been discussed in a number of papers
[80–82]. According to this concept, in order to conserve
charge and angular momentum, an exchange electron is added
to the exchange hole, forming a neutral exchange exciton.
Consequently, the pair correlation defining the exchange hole
is generalized to a three-fermion correlation. Certainly, this
effect does not exist in classical systems. Recently, Dornheim
et al. [83] provided an alternative microscopic explanation
of a roton feature in terms of an electronic pair alignment
model. It was qualitatively demonstrated that the maximum
of the RPA-based spectral density should get a shift to lower
frequencies due to the exchange-correlation correction in the
potential energy part of the quasiparticle excitation, ω(q) =
ωRPA(q) − α�WXC (q). Still, the presented model was not ca-
pable of predicting the explicit form of the DSF and how
it could be modified due to the quasiparticle interaction and
damping effects.

In summary, both theory trends underline the leading role
of short range correlations either in electron-hole pairs (ex-
citons) or electron pairs (two-particle alignment). Leaving the
physical interpretation of the “rotonization” of the spectrum as
a collateral question, in the following analysis we will concen-
trate on a physically reliable and accurate reconstruction of the
full DSF, and report a new evidence on even more pronounced
roton-feature observed in the low-density UEG in Sec. IV C,
IV D.

IV. CORRELATION EFFECTS IN THE
DYNAMICAL RESPONSE

As it is discussed earlier, with the introduction of the
dynamical Nevanlinna parameter function we are able (i) to
reproduce the dynamical correlations in the DSF on the same
level of accuracy as the dynamical local field [34,35,63] and
(ii) to observe a high-frequency mode, which generates a
high-frequency shoulder, most pronounced at lower densi-
ties, rs = 10. Moreover, the direct solution of the dispersion
equation, ε(q, z) = 0, permits to predict that the characteristic
frequency of this mode lies slightly above the double plasmon
frequency, i.e., �2(q) � 2ωp, see Fig. 4. However, a clear ob-
servation of this mode in the full DSF is difficult due to strong
damping effects in the density regime presented in Fig. 6: the
line widths of two modes, ��1(2)(q), overlap strongly.

Motivated by these observations, we extend our 9MA ap-
proach to lower densities, i.e., consider the UEG dynamical
characteristics at {rs = 16, 22, 28, 36}, where the Coulomb
correlations dominate. The use of the five-moment dynamical
Nevanlinna function allows for an ab initio reconstruction of
the DSF of electron fluids including dynamical correlations at
these conditions for the first time.

Since the existing results employing the dynamic local field
are limited to intermediate coupling, rs � 10, for a valuable
comparison we use the simulation data based on the effective
static local-field correction (ESA) reconstructed at the same
thermodynamic conditions {rs, θ} using the neural network
representation [62]. The corresponding static local-field factor
G(q), proceeding from the ab initio QMC data contains full
information of the static correlations in the system.

For these new studies we have performed the fermionic
PIMC simulations [24] with the temperature varied in the
range, 1 � θ � 8. Notice that due to the definitions, θ =
T/TF and TF = (h̄2/2m)(3π2n)2/3 ∼ r−2

s , by increasing the
coupling parameter from rs ∼ 10 to rs ∼ 36 we achieve to
diminish the physical temperature by a factor of 13. Hence,
the DSF results presented below at θ = 1 demonstrate a low-
temperature counterpart of the excitation spectrum in Fig. 4
with significantly suppressed thermal effects. The physical
temperature becomes comparable with that in Fig. 4 for
θ ∼ 2.5 (rs = 16), θ ∼ 5 (rs = 22) and θ ∼ 8 (rs = 28). The
plasmon frequency is reduced with the density as well, how-
ever, the corresponding reduction is weaker since ωp ∼ r−3/2

s .
Hence, the thermal contribution to the damping will be scaled
as, kBT/h̄ωp ∼ r−1/2

s .

A. Static properties of uniform electron fluids

The power moments, C0(q; rs, θ ) and C4(q; rs, θ ), along
with the f -sum rule C2(rs) = ω2

p, are the input of the 9MA
model. This permits to express the DSF and the dynamical
dielectric function in terms of the characteristic frequen-
cies ω̃(q) = {ω1(q), ω2(q), ω3(q), ω4(q)} [see Eq. (13)] with
the additional parameters {ω3(q), ω4(q)} being determined
at given thermodynamic conditions from the first two char-
acteristic frequencies by the Shannon entropy maximization
procedure or from the intermediate scattering function as it is
described below in Sec. IV B.

The results of our PIMC simulations for the low-density
phase of the UEG are presented in Fig. 7 and clearly
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FIG. 7. The static structure factor S(q) = F (q, 0) (obtained by
the spline-interpolation, see Fig. 2) and the first characteristic
frequency, ω1(q) = √

C2(q)/C0(q) = ωp/
√

C0(q) of UEG at rs =
10, 16, 22, 28, and 36 and temperatures θ = 1, 2, and 4. Solid
dots correspond to ω1(q)/ωp evaluated independently from the ESA
model. The presence of the second excitation branch in the spectrum
(see Fig. 11) is correlated with the observation of a local maximum
in the SSF (i.e., S(q) � 1) for the wave numbers 1.8 � q/qF � 2.9.

demonstrate the interplay of both correlations and temperature
effects. The static structure factor (SSF), S(q), and the first
characteristic frequency

ω1(q) = (C2/C0)1/2 = ωp(1 − ε−1(q, 0))−1/2 (26)

directly related to the static inverse dielectric function (IDF),
ε−1(q, 0), are shown as a function of the density parameter
rs and the temperature. It is important that Eq. (26) follows
from the Kramers-Kronig relation for the IDF, which is a
genuine response function. Thus the static IDF and the SSF
are the real physical input quantities in our model. In the lower
panels, the characteristic frequency ω1(q) is evaluated within
the ESA model independently. These results are indicated by
the solid dots (only for the lowest and highest rs values) and
demonstrate a nice agreement with our present data.

From Fig. 7, we can unambiguously conclude that ω1(q) <

1 in a certain wave-number interval for rs � 16 and θ � 2,
which is equivalent to negative values of the static dielectric
function

ε−1(k, 0) = 1/ε(k, 0) < 0 (27)

for such conditions. The possibility and validity of this
inequality is well-known as the overscreening effect, see
Refs. [84,85] and references therein. It is directly related to the
analyticity of the direct dielectric function ε(q, z) in the upper
half-plane of the complex frequency plane, but this topic is
beyond the scope of the present work.

B. Reconstruction of the higher-order moments C6(8)

The virtually unknown higher-order power moments C6(8)

introduced above in Sec. II constitute a very important

ingredient in the dynamical Nevanlinna parameter function.
As it was demonstrated in Sec. II D, their reconstruction
based on the maximization of the Shannon entropy func-
tional leads to a nearly perfect agreement with the results
based on the dynamical local field. The main advantage of
the present approach is that we employ only a limited set
of static characteristics {S(q), χ (q, 0)}. On the contrary, the
DLFC reconstruction is mainly relied on a high-quality QMC
data obtained for the density-density response function in
the imaginary time. It is a peculiar decay of F PIMC(q, τi ),
(1 � i � M ), obtained with the fermionic PIMC, that has
allowed to reconstruct ab initio UEG DSF in the high and
moderate density regime (rs � 10). The 9MA demonstrates
in this regime a similar accurate predictive power for the
dynamical response, however, with much less computational
effort.

The main drawback of the Shannon-entropy approach, as
it is already discussed in Sec. II E, is the artificial smoothing
of the sharp energy resonances, in particular, in the q range
spanned by the plasmon resonance. Additional information
on the intermediate scattering function (ISF) available from
the QMC data can be used to specify the results of the entropy
approach for any wave number q. As a quantitative criterion,
similar to the one used in the stochastic and the generic opti-
mization techniques [3,32,33], we suggest to use to this end
the relative deviation from the QMC data,

δF trial
r (q) = �τ

β

M∑
i=1

|F trail(q, τi ) − F QMC(q, τi )|
F QMC(q, τi )

(28)

integrated along the imaginary time 0 � h̄τi � h̄β, with M
being the number of high-temperatures propagators and �τ =
τi+1 − τi = β/M.

In addition, we introduce a natural measure of the statisti-
cal noise present in the QMC data

δF QMC
r (q) = �τ

β

M∑
i=1

δF QMC(q, τi )

F QMC(q, τi )
, (29)

where δF QMC(PIMC)(q, τi ) is the statistical uncertainty in the
evaluation of ISF.

For the wave numbers q such that the Shannon-
entropy-based solution leads to the reconstructed ISF, i.e.,
Strial(q, ω) ⇒ F trial(q, ω), which satisfies the criterion

δF trial
r (q) � δF QMC

r (q), (30)

this solution can be accepted as a plausible physical solution,
which in addition satisfies the set of involved power moments
exactly. In the q segment where such condition is violated,
a refinement of a trial entropy-based solution is necessary.
This approach has been successfully used in the reconstruc-
tion of the plasmon feature as presented in Fig. 5, where the
higher-order moments C6(8) (or ω3(4)) were used as the fitting
parameters to satisfy the acceptance criterion (30).

In the analysis of the low-density regime (16 � rs � 36),
discussed below in detail in Secs. III C and III D, we have
followed a similar strategy:

(1) the Shannon EM solution, SSH(q, ω), and {ωSH
3(4)} is

obtained in the full range of wave numbers;

195143-10



DYNAMICAL RESPONSE IN STRONGLY COUPLED … PHYSICAL REVIEW B 107, 195143 (2023)

FIG. 8. (From left to right) The dynamic structure factor S(qi, ω)
for rs = 22 (θ = 1) and selected wave numbers ki = qi/qF from
the three models: the ESA and the method of moments with the
frequencies ω3(4) (moments C6,C8) reconstructed with the Shan-
non entropy (”SHAN”) and as the fit to the intermediate scattering
function F (q, τ ) (“9MA”) [the optimized solution in ω3(4)], along
the relative deviation measure δFr (q) [in percentage points] of
two of these models (“SHAN” and “9MA”) from F PIMC(q, τ ). The
dashed black line ”PIMC” stands for the statistical uncertainty in
the PIMC data, Eq. (29). The normalized ISF from the three models
(“ESA”, “SHAN”, and “9MA”) vs ab initio PIMC data are repre-
sented by black symbols with error bars. The ISF is shown only up
to τ = β/2 due to the symmetry, F (q, τ ) = F (q, β − τ ), provided
by the DSF detailed balance condition, S(q, −ω) = e−β h̄ωS(q, ω).

(2) the trial entropy-based solution for the ISF, i.e.,
F SHAN(q, τ ), is constructed and verified against the accep-
tance condition (30);

(3) the Shannon frequencies are considered as the initial
parameters, ω

(0)
3(4) = ωSH

3(4)(q) for the solution of the optimiza-
tion problem

min
{ω3(4) (q)}

δF trial
r (q; ω3, ω4), (31)

∂F trial
r (q; ω3, ω4)

∂ω3(4)
= 0 (32)

via the Newton-Raphson method. In the sequence of iter-
ations, {ω(n−1)

3(4) → ω
(n)
3(4)}, at every step n the corresponding

quantities are reevaluated:

(a)
{
ω1(2); ω

(n)
3(4)

} → S(n)
(
q, ω1(2); ω

(n)
3(4)

)
→ F (n)

(
q, τ ; ω1(2), ω

(n)
3(4)

)
→ δF (n)

r

(
q; ω1(2), ω

(n)
3(4)

)
(4) for the wave number values with δF SH

r (q) >

δF QMC
r (q) and δF trial

r (q; ω3, ω4) < δF SH
r (q; ωSH

3 , ωSH
4 ) the

initial Shannon frequencies are substituted by the optimised
solutions.

An example of the optimization procedure for rs = 22 and
θ = 1 is presented in Fig. 8. The left-hand panel shows three
model DSFs for the selected values of q. The 9MA solution
with the Shannon and the optimized frequencies (denoted as

“SHAN” and “9MA”) are shown along with the ESA solution.
For each case, the corresponding ISF was evaluated (see the
right-hand panel) and the qualifying deviation measure δFr (q)
(the central panel) was estimated to confirm the acceptance
condition (30). The measure of the statistical noise δF PIMC

r (q)
in the PIMC data is demonstrated by the dashed black line
(the central panel). As one can see, among three models only
the 9MA solution with the dynamical Nevanlinna parameter
function and the optimized frequencies ω3(4) satisfies the ac-
ceptance condition for all q � 3.2qF , and predicts new energy
resonances around q ∼ 2.2qF (for a full DSF see Sec. III C).
The corresponding q segment with this new feature is close
to the position of the broad maximum in the SSF, see Fig. 7.
Both ESA and SHAN models fail to predict a high-energy
eigenmode for the selected wave numbers (q4 = 2.08qF , q5 =
2.17qF and q6 = 2.51qF ) and reproduce a broad distribution
with a high-frequency shoulder. Next, we observe that the
low-frequency DSF maximum in the SHAN and the 9MA
solutions nearly coincide, while the ESA peak position is
always shifted to higher frequencies. The same trend was al-
ready observed in the moderate density regime (rs = 6; 10, see
Fig. 4), where both solutions with the dynamical correlations
(SHAN and DLFC) demonstrate a very good agreement and a
redshift with respect to the predictions of the ESA model.

This fact is reflected in the asymptotic behavior of the
intermediate scattering function F (q, τ ) as τ → β/2, see the
right-hand panel in Fig. 8. Here, we observe that the 9MA
and SHAN solutions are in a very good agreement with ab
initio PIMC data (symbols with the error bars), while the ESA
ISF, F ESA(q, τ ) (dotted black curves), demonstrate systematic
and significant deviations with some acceptable agreement
with the PIMC data being achieved only for the smallest
wave numbers {q1, q2} when only a single plasmon resonance
(ω(q) ∼ ωp) dominates in the full spectral density. Notice,
however, that even in this case the plasmon width (decrement)
is underestimated by the ESA model and leads to small but
noticeable deviations in the asymptotic value F ESA(q, β/2).
Similar observations apply to the SHAN solution at q2. Here,
in contrast, the plasmon feature is smoothed by the maximiza-
tion of the entropy functional and leads to the overestimation
of the plasmon decrement against the optimized solution:
compare the DSF plots SSH(q2, ω), S9MA(q2, ω) on the left-
hand panel.

In summary, we can qualify different trial DSF solutions
based on the deviation measure introduced above and pre-
sented in the central panel of Fig. 8. The deviations δF ESA

r (q)
exceed 2% and are not shown. The SHAN model allows to
reduce the deviation measure, δF SH

r (q), by an order of magni-
tude but it still significantly exceeds the upper bound specified
by the statistical noise, δF QMC

r (q). Hence, only the optimized
solution 9MA is acceptable at these conditions.

Similar analysis has been performed for {rs =
16; 22; 28; 36} and {θ = 1; 1.5; 2; 4; 8}. More examples
are presented in Figs. 9 and 10 and lead us to several
important conclusions. First, the double-peak DSF structure
is reproduced at all analysed densities (16 � rs � 36) and
low temperatures (θ � 2) but only in a finite range of wave
numbers, 1.77 � q/qF � 2.9. Both ESA and SHAN models
are missing this important spectral feature and violate in
this part of the spectrum the acceptance condition (30). The

195143-11



A. V. FILINOV, J. ARA, AND I. M. TKACHENKO PHYSICAL REVIEW B 107, 195143 (2023)

FIG. 9. As in Fig. 8 but for rs = 16 and θ = 1.

deviation measure of the entropy-based solution (SHAN) is
significantly reduced with increasing temperature so that at
θ � 4, it becomes comparable to the optimized solution, i.e.,
δF SHAN

r (q) ∼ δF 9MA
r (q). Even, at θ = 2, as it is demonstrated

in the central and the right-hand panels of Fig. 10, the SHAN
solution already reproduces the ISF, F PIMC(q, τ ), within
the error bars, except for the interval k3 < k < k8, where
some reminder of the second shifted mode is still visible.
Notice that the integrated deviation measure, δF SH

r (q), at this
temperature does not exceed 0.2% while at θ = 1 it might
reach 1%, (Fig. 9). The suppression of the high-frequency
resonances with θ , cf. Figs. 9 and 10 observed here is analysed
in detail in Sec. III D.

Finally, the above analysis supports our previous conclu-
sion with respect to the applicability of the Shannon-entropy
approach at high and moderate densities (rs � 10). Once the
interaction and decay processes of the quasiparticle excita-
tions result in a smooth and slow varying spectral density, the
entropy principle applies and already leads to an optimized
DSF form related to a physically relevant solution. Moreover,

FIG. 10. As in Fig. 8 but for rs = 16 and θ = 2.

FIG. 11. The dynamic structure factor S(q, ω) for rs = 36 and
θ = 1, 2, and 4. A clear signature of the second harmonic is ob-
served for θ � 2. The temperature increase results in the smoothing
of this feature.

the entropy maximization permits to reconstruct a physically
reliable model of the dynamical Nevanlinna function using
the compact representation based on only two optimization
parameters {ω3(4)(q)}. This fact is proved by the present de-
tailed analysis and, in our opinion, has a clear advantage over
the complex and not physically transparent representation of
the DLFC function of [34,35] which followed the idea of
Dabrowski [86] motivated by exact DLFC limiting forms by
introducing an “extended” Padé-type expression for the imag-
inary part of the DLFC with six “random” parameters.

C. Dynamical structure factor: observation of the second
excitation branch and temperature effects

Here we provide some graphical representations of the
UEG excitation spectrum in the low-density regime (16 �
rs � 36) based on the accurate reconstruction recipe presented
in the previous section. Three temperature cases are shown
in Figs. 11–14 with a pronounced emergence of the high-
frequency mode starting at q � 1.77qF and ω � 2ωp, which,
at first sight, can be attributed to the double plasmon excita-
tion. Comparing different density cases, the sharpest energy
resonances are observed at the lowest density rs = 36 and
the lowest physical temperature, θ = T/TF = 1, due to the
scaling TF ∼ r−2

s . By decreasing the electron gas density from
rs = 36 (θ = 1) to rs = 16 (θ = 1) we demonstrate a sys-
tematic shift of the high-energy branch to higher frequencies
along with the damping enhancement. For all density cases at
θ = 1, the upper mode can be observed only up to q ∼ 2.9qF ,
and for larger wave number values it transforms the DSF into
a broad distribution with a single maximum. Simultaneously,
in the same wave-number interval (1.77 � q/qF � 2.9) a well
defined low-frequency mode is present possessing a rotonlike
feature in the dispersion curve. Similar effect has already been
observed at higher densities, cf. rs = 10 in Fig. 6.

Next, the central and right-hand panels in Figs. 11–14
demonstrate the redistribution of the spectral weight and the
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FIG. 12. The dynamic structure factor S(q, ω) for rs = 28 and
θ = 1, 2, and 4. A clear signature of the second harmonic is ob-
served for θ � 2. The temperature increase effectively eliminates this
feature.

damping of both modes when the temperature increases. At
θ = 2, there is some reminiscence of the second branch, while
at θ = 4, we can only observe a high-frequency shoulder
observed previously for rs = 6 and rs = 10 (cf. Fig. 4). Thus,
when θ = 4, both modes become overdamped and cannot be
well separated in the DSF. This result is found to be in full
agreement with our previous discussion in Sec. III F.

The explicit temperature dependence of the DSF at three
different wave number values corresponding to the plasmon,
roton, and beyond the roton segments of the spectrum is pre-
sented in Figs. 15–17. The two-mode structure is clearly seen
in the spectrum within the roton segment which evolves into
the pattern with the high-frequency shoulder when the higher
mode becomes strongly overdamped.

FIG. 13. The dynamic structure factor S(q, ω) for rs = 22 and
θ = 1, 2, and 4. A clear signature of the second harmonic is ob-
served for θ � 2. The influence of the temperature increase is
confirmed.

FIG. 14. The dynamic structure factor S(q, ω) for rs = 16 and
θ = 1, 2, and 4. A clear signature of the second harmonic is ob-
served for θ � 2. The temperature increase leads to the smearing out
of the second harmonic feature.

D. Dispersion relations: confirmation of the high-energy
quasiparticle branch

In this section, we present our results with respect to the so-
lutions of the explicit dispersion equation, ε(q, z) = 0, z being
the complex frequency. The dispersion relations of both char-
acteristic modes, �1(2)(q), and their respective decrements,
��1(2)(q), are found within the 9MA approximation and are
displayed in Figs. 18–20. The positions of the DSF maxima
obtained from the RPA and the ESA models is provided for
comparison. The results are presented for three values of
the coupling parameter, rs = {16; 22; 36}, and three different
temperatures, θ = {1; 2; 4}.

Let us, first, discuss the plasmon segment of the spectrum
(q � qc) well characterized by the DSF displayed in Fig. 15.

FIG. 15. The θ dependence (θ = 1, 2, 4, and 8) of S(q, ω) for
rs = 16, 22, 28, and 36. The wave number q = 0.887qF corre-
sponds to the plasmon region.
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FIG. 16. The θ dependence (θ = 1, 2, 4, and 8) of S(q, ω) for
rs = 16, 22, 28, and 36. The wave number q = 2.17qF corresponds
to the roton region.

In this segment, both ESA and 9MA dispersion relations in
Figs. 18 and 19 predict very similar positions of the plasmon
resonances and exhibit a noticeable redshift with respect to
the RPA result. However, as it is discussed in Sec. III E and
IV B, at least for the densities with rs � 10, the decrement
of the ESA plasmon (with the static LFC) is always under-
estimated (cf. Fig. 5) compared to the 9MA plasmon �1(q)
with the dynamical correlations included via the Nevanlinna
parameter function Q2(q, z). Next, with the reconstruction of
the dielectric function on the complex frequency plane within
the 9MA approach, we can explicitly analyze the behavior
of the plasmon decrement as it approaches the pair excita-
tion continuum (grey shaded area). The corresponding dashed
red lines, �1(q) ± ��1(q), in Figs. 18 and 19, specify the
wave number dependence of the half-width of the lower mode

FIG. 17. The θ dependence (θ = 1, 2, 4, and 8) of S(q, ω) for
rs = 16, 22, 28, and 36. The specified wave number q = 2.80qF is
beyond the roton region.

FIG. 18. The wave number dependence of the solutions of the ex-
plicit dispersion equation, ε(q, z) = 0. Simulation parameters: θ = 1
and rs = 16, 22, and 36. Absolute physical temperatures/densities
for UEG are included in the figure panels. Two sets of sym-
bols denote the modes in the three (plasmon/roton/free particle)
wave-number segments: �1(q) (red/black/blue dots) and �2(q)
(grey/green/grey dots). The dashed lines standing for �1(2)(q) −
��1(2)(q) and �1(2)(q) + ��1(2)(q), where ��1(2)(q) are the decre-
ments, represent the widths of the spectral lines. The position of the
DSF maxima in the RPA/ESA solutions (solid blue/dashed black
lines) are included for comparison. The red crosses, 2�1(q) + ωp,
represent the combination of three quasiparticle excitations within
the roton segment (1.5 � q/qF � 3): two quasiparticle with a roton
dispersion, 2�1(q), plus a plasmon with the frequency ωp.

�1(q) (the red dots) which represents in this wave number
segment the plasmon excitation.

In addition, the dispersion equation, ε(q, z) = 0, predicts
here a second solution �2(q) (the grey dots with a solid
line). In our opinion, this additional solution should be con-
sidered for these wave numbers as a virtual mode, since its
decrement is found to be comparable to the excitation en-
ergy, i.e., ��2(q) � �2(q). Physically, the presence of such

FIG. 19. As in Fig. 18 but for θ = 2.

195143-14



DYNAMICAL RESPONSE IN STRONGLY COUPLED … PHYSICAL REVIEW B 107, 195143 (2023)

FIG. 20. As in Fig. 18 but for θ = 4. The frequencies ω3(4)(q)
are found within the 9MA model as a best fit to F (q, τ ). Notice
that due to the weak dependence of F (q, τ ) on slight variations
in ω3(4)(q) at temperatures θ � 4 the solutions of the dispersion
equation, �1(2)(q) have uncertainties similar to those of the input
values ω3(4)(q) and, hence, we obtain nonsmooth dispersion curves
(mostly in the plasmon region). This problem is not present at lower
temperatures (θ = 1; 2) and can be partially subdued by the em-
ployment of the Shannon frequencies ωSHAN

3(4) (q) resolved using the
entropy maximization principle being applicable beyond the plasmon
region (q > qc) and higher temperatures as discussed in Sec. III E.
The improved dispersion is presented in Fig. 21.

a solution for q � 0.5qF can indicate that the main plasmon
mode is superimposed on a broad multiexcitation continuum
with the center of mass and the characteristic half-width char-
acterized by the resolved parameters {�2(q),��2(q)}. This
interpretation applies equally in the considered spectral do-
main (q � qc) to all density and temperature cases presented
in Figs. 18–20. Next, a close inspection of the DSF in Fig. 15
(for θ � 4) implies that the �2(q) solution in the frequency
range 1.5 � ω/ωp � 3 has a significantly reduced spectral
weight compared to the plasmon mode and does not lead to
the DSF structure with two shifted modes. It is also interesting
to observe that the �2(q) dispersion converges to the plasmon
mode �1(q) for q ∼ qc with qc ∼ 1.5qF , which can indicate
that the physical nature of excitations changes for q � qc.

Indeed, for q > qc, the short wavelength segment with
the negative plasmon dispersion is followed by the rotonlike
minimum. Besides, exactly in this region we observed a dis-
continuity in the resolved dispersion relation �1(q), which
is preceded by the divergence of the plasmon decrement by
approaching q ∼ 1.5qc (cf. the shaded red area bounded by
�1(q) ± ��1(q) in Fig. 18). A similar discontinuity but now
for the visually well resolved two-mode solution is clearly
observed near q ∼ 3qF (∼2qc). It is also preceded by the di-
vergence of the modes’ decrements ��1(2). Finally, for larger
wave numbers, q > 3.4qF , the lower mode �1(q) (indicated
now by blue dots) shifts closer to the position of the parabolic
RPA-dispersion centered in the pair excitation continuum,
while the upper mode �2(q) (shown here by a grey solid line
with dots) possesses a very large decrement, and physically,
due to the interaction effects, represents the multiexcitation

FIG. 21. As in Fig. 18 but for θ = 4. The frequencies ωSH
3(4)(q) are

found by the Shannon entropy maximization procedure. This choice
is physically substantiated as in Fig. 20 since both options reproduce
F (q, τ ) within the statistical error bars.

contributions beyond the upper bound of the ideal Fermi gas,
h̄ω � εq+qF − εqF .

In summary, the performed detailed analysis of the disper-
sion relations and the q-dependence of the modes’ decrements
permits us to clearly distinguish three characteristic wave-
number segments with quasiexcitations of different nature,
confirming the physically expected result. First, the dispersion
equation predicts the usual plasmon which is followed by
the roton feature observed for 1.8qF � q � 3qF . The roton
segment is always revealed in the dispersion relation of the
first mode �1(q) and is accompanied by the higher-frequency
branch �2(q), however, only in the same roton wave number
domain, and approaching a lower bound specified by the dou-
ble plasmon excitation, 2 ωp(q) (cf. Fig. 16), when the density
is diminished (rs = 36).

A clear distinction of the transition point between the roton
and single-particle segments becomes more difficult at higher
temperatures and densities. At an intermediate temperature
(cf. θ = 2 in Fig. 19), the roton segment is still observable
when 2qF � q � 3qF , but the lower mode �1(q) is signifi-
cantly damped due to the decay into particle-hole excitations.
In contrast, the upper mode is not influenced by this de-
cay channel being well above the pair excitation continuum,
and has a significantly smaller decrement. The right-hand
boundary of the roton-segment around q ∼ 3qF again can be
identified by a steep increase in ��1,2(q), in particular, in the
strong-coupling case (rs = 36).

For higher densities/temperatures such that rs � 16 or θ �
4, the decrement ��1(q) of the main mode is drastically en-
hanced and overlaps with the high-frequency solution �2(q),
cf. θ = 4 in Fig. 20. At these conditions, both modes become
virtual.

The ESA and RPA models do not describe such a compli-
cated spectrum structure though the roton feature is seen in
the unique ESA eigenmode.

Finally, in Fig. 21, we demonstrate that at higher tem-
peratures the Shannon EM approach, once used for the
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reconstruction of the higher characteristic frequencies
ω3(4)(q), does not qualitatively influence the physical results
for the observed roton feature and the supplemental high-
frequency shoulder due to multiexcitations as compared to the
optimized solution (9MA) presented in Fig. 20.

A comparative discussion of the high-energy branch is
provided in the next section.

V. DISCUSSION AND OUTLOOK

A. Comparative discussion of the dispersion relation

It is natural now to compare our approach to the analysis
of the dynamical properties of Fermi fluids of charged parti-
cles within existing standard methods of quantum statistical
physics, in particular, those based on the calculation of the
Feynman diagrams. Traditionally, these calculations are re-
duced to the evaluation of the leading corrections to the RPA
bubble, i.e., to the evaluation of the DLFC G(q, ω) function
in a certain approximation and under certain conditions. In
particular, the role of the short-range dynamical correlations
in the density response of the homogeneous electron gas in
the high-density limit corresponding to some simple metals
was studied in detail in Refs. [87–95]. By “short range”
we mean any physical correlation mechanism other than the
collective plasma oscillation, whose macroscopic Coulomb
origin is well understood through the random-phase approx-
imation. These efforts were driven by the observation of the
DSF shape presenting either a double peak or a main peak
with shoulders, the shape which could not be described within
the unextended RPA. First, the correlated-basis-functions the-
oretical method was employed whose advantage was that it
provided a clear physical insight into the physical processes
leading to the observable characteristics like S(q, ω) and the
inverse longitudinal dielectric function ε−1(q, ω) interrelated
by the fluctuation-dissipation theorem. Computations of the
leading proper polarization Feynman diagrams outside the
particle-hole continuum performed by Sturm and Gusarov
[89] permitted to go beyond the RPA and to describe (in the
high-density limit and at zero temperature) the DSF structure
attributed to the correlation-induced double-plasmon excita-
tions. Further on, an even better agreement with the observed
complicated DSF structure with the second harmonic of the
original plasmon excitation in a significantly broader realm
of variation of density and temperature was achieved within a
complete dynamic theory for the electron gas at high to metal-
lic densities. This theory (valid for large and small momentum
transfers and at high to metallic electron densities) was com-
bining the dominant features of the shielded-interaction and
the T-matrix approximations with the conservation sum rules
[93–95]. It was found within this theory that the dynamic
properties of the resulting polarization function and the dy-
namic structure factor could not be adequately approximated
by the local-field constructions. In particular, the nonlocal
effects were demonstrated to be important for the dynamic
properties of the electron gas, see [27,96–99]. In addition,
the higher harmonic generation in strongly coupled classical
plasmas was earlier observed using the method of molecular
dynamics and described [100] in terms of the nonlinear gen-
eralization of the quasilocalized-charge approximation [101].

On the other hand, there is a formal nonlinear algebraic
relation between the DLFC and the dynamical Nevanlinna
function Q2(q, z), see Ref. [67], constructed here to satisfy
nine sum rules and thus involving three- and four-particle cor-
relations. Though the present extended self-consistent method
of moments based on this Nevanlinna function is completely
within the linear response theory, it has permitted us to ob-
serve a clear sign of the dynamical correlation effects in
the strongly coupled UEG (rs � 16, θ ∼ 1). They manifest
themselves as the observed bi-modal structure of the DSF, in
a finite momentum range qc � q � 2qc, with the sharp high-
frequency resonances (cf. Fig. 16) at the position predicted
by the second solution of the dispersion equation, �2(q),
see Fig. 18. The critical momentum qc can be estimated
as the crossing point of the plasmon dispersion curve with
the upper bound of the pair excitation continuum, h̄ωp ≈
(h̄2/2m)(q2

c + 2qcqF ).
For the wave numbers q > qc we can, following Ref. [102],

assume that a high-energy branch is formed due to the in-
teraction of several quasiparticle excitations. To observe this
multiexcitation as a distinct spectral feature, their combined
energy should be above the parabolic upper bound of the
pair continuum, and, the constituting quasiparticles should
have a sufficiently long lifetime. Such criteria, in the case
of strongly coupled UEG can be satisfied by two possible
combinations: two plasmons + roton (2P+R) or two rotons
+ plasmon (2R+P). Since for rs � 16 the roton minimum
lies well below the plasmon frequency, the (2P+R) states
most probably will decay into the lower energy (2R+P) states,
and only the contribution from the latter will dominate in the
spectral density. Moreover, the integrated density of quasipar-
ticles is scaled proportionally to S(q) which indicates their
high population near the roton minimum, and, consequently, a
higher probability of the 2R-excitation over a double plasmon.
This simple considerations lead us to a qualitative explanation
the position of the higher-energy branch in Figs. 18 and 19,
where the second solution of the dispersion equation �2(q) is
seen as a combination of the 2R state, 2�1(q), and a plasmon
of the energy ωp.

We wish to mention here a few details more. The moment
approach permits to construct an analytical expression for
the dielectric function ε(q, ω) and to analyze the intrinsic
discrepancies between the locations of the broad peaks in the
DSF spectrum and the explicit solutions of the corresponding
dispersion equation. Another advantage of the method of mo-
ments is that the involved sum rules for any mathematically
correct Nevanlinna function are satisfied automatically so that
even in the static approximation for the latter, the emerging
local field due to the intimate link with conservation prin-
ciples, is still a qualitatively correct dynamic characteristic
permitting to go beyond the relaxation-style modifications of
the RPA similar to the Mermin theory [67]. On the other hand,
static approximations to the local field [62] only modify the
static potential in the RPA and lead to no qualitative change in
the shape of S(q, ω).

B. Conclusions and outlook

The predicted new shape of the UEG spectrum at low
density/strong-coupling (rs � 16) of the electrons, constitutes
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the main result of the present work achieved, in addition,
with a significantly lower computational effort and with much
lower complexity in comparison to the quantum Monte-
Carlo path-integral method based on the DLFC reconstruction
[34,35]. The relative simplicity of the method of moments
for theoretical and numerical calculations allows to carry out
the on fly reconstruction of the dynamical characteristics of
warm and dense uniform electron fluids of variable density
and coupling.

The interrelation between the PIMC-generated dynamic lo-
cal field correction and the nine-moment Nevanlinna function
is to be studied in detail elsewhere.

Our results testify the importance of the dynamical cor-
relation effects in terms of multiple excitations beyond the
particle-hole band. The single particle-hole excitations alone
are presumably not sufficient to explain the obtained ab initio
results for the intermediate scattering function and the inter-
related high-frequency tail of the dynamical structure factor.

The predictions of the present results, as well as the de-
scription of the position and magnitude of the observed high-
frequency branch, deserve, in our opinion, future experimental
investigations which will provide deeper understanding of the
collective excitations in the UEG in the low-density/strong-
coupling regime.

The input required by the suggested approach is reduced to
that of a limited set of frequency moments and the simulation
data on only two static characteristics, the static structure
factor S(q) and the static value of the system dielectric func-
tion. Both quantities can be accurately estimated from the
first-principle PIMC simulations [24,34]. For an approximate
evaluation of S(q), a broad list of methods is available, e.g.,
the effective static local-field (ESA) parametrization [62], the
hypernetted-chain method [103], and the STLS scheme [59].

On the other hand, the observation of new details in the
system spectrum is directly related to the incorporation to the
model of four higher-order sum rules not taken into account in
earlier models. The values of these sum rules are determined
here using the Shannon entropy maximization procedure opti-
mized, where necessary, by the PIMC calculations of the ISF.
Their direct determination in terms of the three- and four-
particle static correlation functions found using the PIMC
approach could be a difficult but interesting work to do. In
one-component electron liquids, but not, e.g., in hydrogen-
like two-component plasmas [104–108], even more frequency
moments/sum rules converge and it might be curious to inves-
tigate their influence on the eigenmodes. The SCMM permits
to carry out such a development but it remains to be seen
whether it would lead to observable new details of the system
dynamical properties.

The obtained algebraic expressions for the inverse di-
electric function and other dynamical quantities can be also
employed in a variety of WDM applications and beyond, e.g.,
in the interpretation of XRTS experiments [8], analysis of the
ion stopping power models [[109],[110]], or to evaluate the
ionization potential depression in dense plasmas [9,111].
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APPENDIX: CONSTRUCTION OF DYNAMICAL
NEVANLINNA FUNCTION

Some mathematical aspects of the moment approach are
provided along the mathematical details of the nine- and five-
moment versions of the self-consistent method of moments.

Frequency power moments. With the spectral density cho-
sen as the loss function, see Eq. (10) in the main text, it stems
from the detailed-balance condition,

S(q,−ω) = exp (−β h̄ω)S(q, ω), (A1)

that

Cν (q) = 4πne2

h̄q2
[1 + (−1)ν]μν−1, (A2)

where

μν =
∫ ∞

−∞
ωνS(q, ω)dω, ν = −1, 1, 3, 5, 7 (A3)

are the moments of the dynamic structure factor. The fact
that we account for the vanishing moments {Cν (q) = 0}, ν =
1, 3, 5, and 7, is reflected in the relatively simple five- and
nine-moment forms of the Nevanlinna formula [42] employed
in the main text and besides we have that

ω2
j (q) = μ2 j−1

μ2 j−3
, j = 1, 2, 3, and 4. (A4)

Due to the Cauchy-Schwarz-Bunyakovsky inequalities, the
conditions

0 < ω1(q) < ω2(q) < ω3(q) < ω4(q) (A5)

should be satisfied to warrant the fulfillment of the required
mathematical properties of the Nevanlinna and the inverse
dielectric functions.

To mention that Nevanlinna’s theorem can be proven on
the basis of the technique of generalized resolvents of M.G.
Krein, see Refs. [112,113]. Further details of the method of
moments can be found in Ref. [114].

The dynamical Nevanlinna function. Nevanlinna’s for-
mula [41] establishes a one-to-one linear-fractional trans-
formation between all solutions of the Hamburger prob-
lem and all Nevanlinna functions Qn(q, z) such that
limz→∞ Qn(q, z)/z = 0:∫ ∞

−∞

dL(q, ω)

z − ω
= En+1(z; q) + Qn(q, z)En(z; q)

Dn+1(z; q) + Qn(q, z)Dn(z; q)
,

n = 0, 1, 2, . . . (A6)

The coefficients of this transformation are polynomials
Dn(z; q) orthogonal with the weight L(q, ω), which can be
easily constructed using the standard Gram-Schmidt proce-
dure, while the polynomials En(z; q) are their conjugate [44].
In the main text, we consider the five- and nine-moment
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Hamburger problems so that we need only the following poly-
nomials:

D2(z; q) = (
z2 − ω2

1

)
, D3(z; q) = z

(
z2 − ω2

2

)
,

D2(z; q) = (
z2 − ω2

1

)
, D3(z; q) = z

(
z2 − ω2

2

)
,

E2(z; q) = C0z, E3(z; q) = C0
(
z2 − [

ω2
2 − ω2

1

])
,

E4(z; q) = C0
(
z3 + b1z

)
, E5(z; q) = C0

(
z4 + d2z2 + d0

)
.

(A7)

Here,

b1 = ω4
1 − 2ω2

1ω
2
2 + ω2

2ω
2
3

ω2
1 − ω2

2

,

d2 = ω2
1

(
ω2

2 − ω2
3

) + ω2
3

(
ω2

4 − ω2
2

)
ω2

2 − ω2
3

,

d0 = ω2
1ω

2
2 + ω2

3

ω2
1

(
ω2

4 − ω2
2

) + ω2
2

(
ω2

3 − ω2
4

)
ω2

2 − ω2
3

.

In the case of 5 = 2n + 1 moments, by virtue of the Kramers-
Kronig relations, we arrive at the expression for the inverse
dielectric function provided in Eq. (18) in the main text. In
quantum systems, we abandon the static approximation for
the Nevanlinna function

h2(q) = Q2(q, 0) = ω2
2(q)/(

√
2ω1(q)), (A8)

and reconstruct the dynamic five-moment Nevanlinna func-
tion by equalizing the right-hand side of Eq. (A6) with n = 2
to the same with n = 4:

E3 + Q2E2

D3 + Q2D2
= E5 + Q4E4

D5 + Q4D4
, (A9)

wherefrom we express the five-moment Nevanlinna function
in terms of the nine-moment one:

Q2 = −D3E5 − E3D5 + (D3E4 − D4E3)Q4

D2E5 − E2D5 + (D2E4 − E2D4)Q4
. (A10)

Then, we applied to the loss function, which is obviously
proportional to the imaginary part of the right-hand side of
Eq. (A9), the procedure employed in Refs. [38,39] to de-
termine the five-moment parameter (A8), and obtained the
zero-frequency value of the nine-moment Nevanlinna func-
tion:

Q4(q, 0) = ih4(q, ω̃) = iω2
3

(
ω2

2 − ω2
1

)(
ω2

4 − ω2
3

)
ω1

√
2
(
ω2

3 − ω2
2

)3(
ω2

3 − ω2
1

) .

(A11)

This approximation turned to be sufficient not only for the
reliable analytical description of the UEG-DSF QMC data,
but for the direct observation of the two-mode structure of the
system spectrum. Moreover, the above nine-moment expres-
sions simplify into the previous five-moment solution (A8)
as soon as we consider two successive limiting transitions:
ω4(q) → ∞ and ω3(q) → ∞.
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(1985).

[96] J. M. Rommel and G. Kalman, Phys. Rev. E 54, 3518 (1996).
[97] H. Rostami, M. I. Katsnelson, and M. Polini, Phys. Rev. B 95,

035416 (2017).
[98] C. D. Hu and E. Zaremba, Phys. Rev. B 37, 9268 (1988).
[99] A. Bergara, J. M. Pitarke, and P. M. Echenique, Phys. Rev. B

59, 10145 (1999).
[100] P. Hartmann, Z. Donkó, K. P. Tierney, C. J. Lee, and G. J.

Kalman, J. Phys. A: Math. Theor. 42, 214040 (2009).
[101] K. I. Golden and G. J. Kalman, Phys. Plasmas 7, 14 (2000).
[102] L. P. Pitaevskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1168

(1959) [Sov. Phys. JETP 36, 830 (1959)].
[103] S. Tanaka, J. Chem. Phys. 145, 214104 (2016).
[104] V. I. Perel’ and G. M. Eliashberg, J. Exptl. Theoret. Phys.

(U.S.S.R.) 41, 886 (1961) [Sov. Phys. JETP 14, 633 (1962)].
[105] H. Reinholz, R. Redmer, G. Röpke, and A. Wierling, Phys.

Rev. E 62, 5648 (2000).
[106] A. Selchow, G. Röpke, A. Wierling, H. Reinholz, T. Pschiwul,

and G. Zwicknagel, Phys. Rev. E 64, 056410 (2001).
[107] Y. V. Arkhipov, A. B. Ashikbayeva, A. Askaruly, A. E.

Davletov, and I. M. Tkachenko, Phys. Rev. E 90, 053102
(2014).

[108] Y. V. Arkhipov, A. B. Ashikbayeva, A. Askaruly, A. E.
Davletov, and I. M. Tkachenko, Phys. Rev. E 91, 019903(E)
(2015).

[109] W. Cayzac et al., Nat. Commun. 8, 15693 (2017).
[110] Z.-G. Fu, Z. Wang, and P. Zhang, Phys. Plasmas 24, 112710

(2017).
[111] X. Zan, C. Lin, Y. Hou, and J. Yuan, Phys. Rev. E 104, 025203

(2021).
[112] M. Krein, Rec. Math. [Mat. Sbornik] N.S. 20(62), 431 (1947).
[113] M. Krein, Rec. Math. [Mat. Sbornik] N.S. 21(63), 365 (1947).
[114] D. Varentsov, I. M. Tkachenko, and D. H. H. Hoffmann, Phys.

Rev. E 71, 066501 (2005).

195143-20

https://doi.org/10.1103/PhysRev.176.589
https://doi.org/10.1002/ctpp.202000147
https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1103/PhysRevLett.89.216402
https://doi.org/10.1007/s10948-005-0081-3
https://doi.org/10.1103/PhysRev.56.72
http://arxiv.org/abs/arXiv:1701.08080
https://doi.org/10.1063/5.0089836
https://doi.org/10.1038/s42005-022-01078-9
https://doi.org/10.1103/RevModPhys.53.81
https://doi.org/10.1103/PhysRevE.104.015202
https://doi.org/10.1103/PhysRevB.34.4989
https://doi.org/10.1139/p66-174
https://doi.org/10.1143/JPSJ.27.1393
https://doi.org/10.1103/PhysRevB.62.16474
https://doi.org/10.1103/PhysRevLett.95.157401
https://doi.org/10.1088/1751-8113/42/21/214036
https://doi.org/10.1103/PhysRevB.82.224505
https://doi.org/10.1103/PhysRevB.31.2779
https://doi.org/10.1103/PhysRevB.31.2796
https://doi.org/10.1103/PhysRevB.31.5837
https://doi.org/10.1103/PhysRevE.54.3518
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.37.9268
https://doi.org/10.1103/PhysRevB.59.10145
https://doi.org/10.1088/1751-8113/42/21/214040
https://doi.org/10.1063/1.873814
http://www.jetp.ras.ru/cgi-bin/e/index/e/9/4/p830?a=list
https://doi.org/10.1063/1.4969071
http://www.jetp.ras.ru/cgi-bin/e/index/e/14/3/p633?a=list
https://doi.org/10.1103/PhysRevE.62.5648
https://doi.org/10.1103/PhysRevE.64.056410
https://doi.org/10.1103/PhysRevE.90.053102
https://doi.org/10.1103/PhysRevE.91.019903
https://doi.org/10.1038/ncomms15693
https://doi.org/10.1063/1.5008581
https://doi.org/10.1103/PhysRevE.104.025203
https://doi.org/10.1103/PhysRevE.71.066501

