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Topological metals constructed by sliding quantum wire arrays
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A general strategy of alternated slide construction to craft topological metals is proposed, where there is a
relative slide between the odd and even chains in the trivial spinless quantum wire array. Firstly, taking the
three-leg ladder as an example, we find that alternated slide can induce a topological phase transition from the
normal metal to topological metal phases, which are protected by inversion symmetry. Remarkably, topological
metal without nontrivial edge states is found, and the bulk-boundary correspondence breaks down. Secondly,
the two-dimensional quantum wire array with alternated slide manifests similar physical behaviors. Two types
of topological metal phases emerge, where there are gapless bulk bands with and without nontrivial edge states.
These results could be confirmed by current experimental techniques.
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I. INTRODUCTION

Nowadays, identifying, classifying, and engineering topo-
logical quantum matters is of extensive interest in condensed
matter physics [1–6]. The topological insulators, topolog-
ical superconductors, and topological metals (semimetals)
are prototype examples of topological phases. For the elec-
tronic materials, based on symmetry-indicator theory [7,8]
and (magnetic) topological quantum chemistry [9,10], a myr-
iad of topological materials [11–15] have been predicted and
discovered. For the topological metals, there are many types
depending on the dimensionality, dispersion (slope and order),
and degeneracy of band crossing. For example, according to
the dimensionality of nodal gap closing, topological metals
can be divided into nodal-point, nodal-line, and nodal-surface
topological metals. Based on the slope of band dispersion
near the crossing, there are types I and II topological met-
als. Additionally, there is another topological metal, with
the topological localized states with eigenvalues embedded
in the continuum of extended states, dubbed topological
bound states in the continuum [16–29]. A variety of gapless
symmetry-protected topological phases [30–36] beyond the
topological metals have garnered much attention recently.

There are many theoretical and experimental tools for en-
gineering topological quantum matters. One of the flagships
is that the magnetic field induces the quantum Hall effect in
two-dimensional (2D) electron gas [37,38]. Combined with
the electron-electron interaction, the magnetic field can also
cause the fractional quantum Hall effect [39,40]. The mod-
ulated hoppings and potentials provide another approach to
realize different types of topological band phases. The Su-
Schrieffer-Heeger (SSH) model [41], Aubry-André-Harper
(AAH) model [42,43], and Kekulé distortion of graphenelike
structures [44] are representative examples. On the other hand,
the interplay of magnetic field and modulated hoppings could
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result in high-order topological insulators [45–47]. More
recently, by adjusting the twist angle, graphene moiré super-
lattices have been widely explored as platforms for exploring
correlated physics, energy band topology, and superconduc-
tivity [48,49].

In this paper, we propose a simple scheme to construct
topological metals by way of trivial spinless quantum wire
arrays sliding against each other. Firstly, for the simple three-
leg ladder, the center leg has a relative translation compared
with the bottom and top chains. The ladder showcases un-
conventional properties. By way of a unitary transformation,
the Hilbert space of the system could be separated into two
independent subspaces, where a trivial subspace and a topo-
logical nontrivial subspace coexist. Because of the different
nearest-neighbor interchain couplings (depending on inter-
chain distance), the system undergoes a topological phase
transition from normal metal to inversion symmetry-protected
topological metal phases, where for the topological metal,
the nontrivial edge states appear or not depending on the
strength of intrachain couplings. Second, for the 2D quantum
wire array with alternated slide, similar physical phases also
emerge.

II. MODEL

Now one can consider a 2D lattice system of trivial spin-
less quantum wire arrays [Fig. 1(a)]. Then the even quantum
wires have a gradual radial-direction translation relative to the
odd quantum wires, as shown in Fig. 1(b). For the nearest-
neighbor interchain coupling, there are two different strength
hoppings t1 and t2 (red thin and thick lines) depending on dis-
tance. As the translation of even quantum wires pushes ahead,
the coupling strength t1 (t2) decreases (increases). When
t1 < t2, one may intuitively think there is nothing happening.
However, a topological phase transition from normal metal
to topological metal takes place, which is an unexpected and
counterintuitive theoretical discovery. We unveil two types of
topological metals, where the nontrivial edge states can appear

2469-9950/2023/107(19)/195142(6) 195142-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3644-6007
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.195142&domain=pdf&date_stamp=2023-05-22
https://doi.org/10.1103/PhysRevB.107.195142


ZHENG-WEI ZUO, LINXI LV, AND DAWEI KANG PHYSICAL REVIEW B 107, 195142 (2023)

(a)

(c)

(b)(b)

FIG. 1. (a) Schematic picture of two-dimensional (2D) lattice
system (trivial quantum wires array). (b) The modified 2D lattice
system with quantum wires array sliding against each other. (c) The
three-leg (labeled A, B, and C) ladder. The hopping in quantum wires
is J; the coupling strengths between quantum wires are t1 and t2.

or not. For the strong intrachain coupling J , the system could
enter into the topological metal phase without nontrivial edge
states. When the even quantum wires are shifted from one
lattice constant, the system returns to the 2D normal quantum
wire array. Furthermore, these results could be confirmed ex-
perimentally in a photonic waveguide array, photonic crystals,
topoelectrical circuits, or coupled acoustic resonators. For
example, the coupled-waveguide arrays are manufactured by
the femtosecond laser direct-writing technique. The coupling
coefficients J , t1, and t2 are determined by the evanescent
mode coupling between adjacent waveguides, which can be
tailored by waveguide spacing.

A. Three-leg ladder

For simplicity, we use the three-leg ladder [Fig. 1(c)],
which serves as a starting point. We can write the tight-
binding model (set lattice constant a = 1) as

H =
L∑

j,α,β

Jc†
α, jcα, j+1 + t1c†

β, jcC, j + t2c†
β, j+1cC, j + H.c., (1)

where c†
α, j (cα, j) is the fermionic creation (annihilation) oper-

ator at lattice site j in the leg α. Here, α stands for the legs
A, B, or C, and β denotes the legs A or B. The J and t1 (t2) are
strengths of the intrachain coupling and interchain coupling,
respectively. The length of the chain is L.

Applying the Fourier transform, we can express the bulk
momentum-space Hamiltonian as [base (c†

A, c†
B, c†

C)]:

Ho =
⎛
⎝ 2J cos kx 0 t1 + t2eikx

0 2J cos kx t1 + t2eikx

t1 + t2e−ikx t1 + t2e−ikx 2J cos kx

⎞
⎠. (2)

If we use a unitary transformation HD = Q−1HoQ, the Hamil-
tonian can be block-diagonalized:

HD =
⎡
⎣2J cos kx 0 0

0 2J cos kx

√
2(t1 + t2eikx )

0
√

2(t1 + t2e−ikx ) 2J cos kx

⎤
⎦

(3)

where the unitary matrix

Q = 1√
2

⎛
⎝−1 1 0

1 1 0
0 0

√
2

⎞
⎠. (4)

The Hamiltonian divides into two independent blocks h1 =
2J cos kx and

h2 =
[

2J cos kx

√
2(t1 + t2eikx )√

2(t1 + t2e−ikx ) 2J cos kx

]
.

Thus, the Hilbert space becomes separable. We can diag-
onalize the Hamiltonian in Eq. (3) and obtain the energy
eigenvalues. The energy dispersions are

E1 = 2J cos kx, (5)

E± = 2J cos kx ±
√

2
(
t2
1 + t2

2 + 2t1t2 cos kx
)
. (6)

The lower 2 × 2 block h2 is equivalent to the SSH model
with next-nearest-neighbor (NNN) hopping [50–52], where
the chiral symmetry is broken and the inversion symmetry is
conserved. It means that the block-diagonalization separates
the Hilbert space of the system into two independently sub-
spaces, where a trivial subspace and a topological nontrivial
subspace coexist. The system can be viewed as a hybrid of a
trivial quantum wire and a virtual SSH model with NNN hop-
ping. Thus, the whole system could enter into the topological
metal phase, where the gapless bulk states with topological
bound edge states appear. Here, let us firstly investigate the
topological properties of the subspace h2. The system displays
the inversion symmetry I, where Ih2(kx )I−1 = h2(−kx ),
where the inversion symmetry operator I is defined by

I =
(

0 1
1 0

)
, (7)

and h2(kx ) commutes with I at inversion-invariant momenta
kx = (0, π ). Thus, eigenstates of h2(kx ) have a well-defined
parity ζi(kinv) = ±1 at those points. According to the parity
value of inversion symmetry I, we can calculate the topo-
logical invariant N [53] (the Zak/Berry phase [54] can also
characterize this topological phase transition):

N = |n1 − n2|, (8)

where n1, n2 are the number of negative parities at kx = 0
and kx = π , respectively. Thus, we get N = 1 (topological
phase, the Zak phase is π ) for t1 < t2, and the two degenerate
edge states would appear in a finite system. For t1 > t2, the
topological invariant N = 0, and the subspace h2 is trivial.

It is worthwhile noting that the topological phase transition
is independent of the intrachain hopping J . The intrachain
hopping J term in subspace h2 is proportional to the iden-
tity matrix and does not change the bulk eigenstates. The
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FIG. 2. (a) The phase diagram of the three-leg ladder with t2 = 1.
Region I (II) represents that the system is topological metal with
(without) bound end states. Other regions are trivial normal metal.
(b) Energy spectra as a function of hopping t1 with system size
L = 30, t2 = 1, and J = 0.5 under open boundary conditions. The
red dots indicate the topological bound end states identified by in-
verse participation ratio (IPR). (c) The spatial distribution of the two
topological bound end states; other parameters are L = 30, t2 = 1,
and t1 = J = 0.5.

eigenfunctions of h2 can be explicitly expressed as u± =
(1,±e−iφ )T (φ is the phase angle of complex number t1 +
t2eikx ), which is independent of intrachain hopping J . Thus,
the topological invariants (N , and Zak phase) are fixed for any
values of intrachain hopping. However, for strong intrachain
hopping J , the energy gap [see Hamiltonian h2 and Eq. (6)]
could close without band crossing owing to the indirect nature
of the gap (see Appendix A for more details). At the same
time, in a finite system, the two degenerate edge states would
assimilate into the bulk bands and become delocalize. Thus,
the conventional bulk-boundary correspondence breaks down.
The subsystem is still in the topological phase (without the
nontrivial edge states). For the entire system, the topological
bands (h2) coexist with the single trivial bulk band (h1). Thus,
there are two types of topological metals, where the nontrivial
edge states can appear or not.

B. Phase diagram

According to the behaviors of the edge states and topolog-
ical invariant N in h2 subspace, we can numerically obtain
the phase diagram of the whole system (set t2 = 1 here),
shown in Fig. 2(a). It shows that, as the interchain coupling
t1 decreases (the slide displacement increases), the system
changes from the normal metal to topological metal. When
the slide displacement is larger (smaller) than half of one
lattice constant, the system is in topological (normal) metal
states. For the interchain couplings t1 < t2, the system evolves
from the topological metal with nontrivial edge states to the
topological metal without edge states (region I to II) when the
hopping J increases (the critical value is ∼√

2/2 calculated by
the edge state energy curve and the energy dispersions E±).
For the interchain couplings t1 > t2, the system is in trivial
normal metal phase.

Next, let us investigate the topological phase transition.
The energy spectra under open boundary conditions are plot-
ted in Fig. 2(b) with regard to the hopping t1 when system size

FIG. 3. Single-particle quantum walks on the three-leg (labeled
A, B, and C) ladder with J = 1, t2 = 1, and L = 60 under open
boundary conditions. The quantum walker is initially positioned on
the center of leg C. (a) Topological metal phase case without the two
bound end states with hopping t1 = 0.5. (b) Normal metal case with
hopping t1 = 1.2. (c) Averaged mean density displacements for the
topological metal (red line) and normal metal (blue line) cases.

L = 30, t2 = 1, and J = 0.5. To identify the topological edge
(localized) states from bulk states, we use the inverse partici-
pation ratio (IPR), which is defined by IPRn = ∑3L

j=1 |ψ j (n)|4.
The IPR of an extended state scales as 1/3L, thereby vanish-
ing in the thermodynamic limit, while remaining finite for a
localized state. The red dots in Fig. 2(b) show the topological
bound end states identified by IPRn. Thus, the nontrivial edge
states coexist with gapless bulk states at the Fermi level. At
the same time, they do not couple with each other because
they belong to different subspaces, and the two subspaces are
orthogonal. As the hopping t1 increases, the system changes
from the topological metal with nontrivial edge states to nor-
mal metal. As shown in Fig. 2(c), the two nontrivial edge
states with L = 30, t2 = 1, and t1 = J = 0.5 are clearly local-
ized in the left and right boundaries. This type of topological
metal is also identified by other systems [17,26] (known for
topological bound states in the continuum).

For the topological metals without nontrivial edge bound
states, it is difficult to distinguish them from the nor-
mal metal because the bulk-boundary correspondence breaks
down. Here, we use the experimentally continuous-time quan-
tum walks [55] to decode the topological properties of
topological metal without the edge bound states. Firstly, a
single-particle state |�0〉 is initially located at the center of
leg C. The time-dependent density distribution of the single-
particle quantum walker is given by n(t ) = ∑

n n(|An(t )|2 +
|Bn(t )|2 + |Cn(t )|2), where An(t ) [Bn(t ) and Cn(t )] are the
occupation amplitudes of the dynamical evolution state |�(t )〉
in the nth unit cell of the leg A (B and C) sites, where |�(t )〉 =
e−iHt |�0〉. The time-averaged mean displacement in the time
interval (0, T ) can be calculated by n(t ) = ∫ T

0 n(t )dt/T . For
large T , n(t ) approaches a constant asymptotic value [50,52].
Figure 3(a) [3(b)] displays the numerically time-dependent
density distribution when the system is in topological (trivial)
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metal phase with t1 = 0.5(1.2), J = 1, t2 = 1, and L = 60
under open boundary conditions. The corresponding time-
averaged mean density displacements for the topological and
trivial phases are shown in Fig. 3(c). Numeral calculations
show that the time-averaged mean density displacement ap-
proaches the quantized value 0.5 (0.0) for a large system with
long T using the finite-size analysis, which is attributed to
the appearance of topological (trivial) states and indicates the
system is in the topological (normal) metal phase.

III. 2D TOPOLOGICAL METAL

Motivated and encouraged by the above-mentioned results,
we straightway apply a similar analysis for the 2D case.
Firstly, the real-space Hamiltonian can be written as

H =
Ly,Lx∑

i, j

J (A†
i, jAi, j+1 + B†

i, jBi, j+1) + t1A†
i, jBi, j

+ t1A†
i, jBi−1, j + t2A†

i, j+1(Bi, j + Bi−1, j ) + H.c., (9)

where A†
i, j (B†

i, j) and Ai, j (Bi, j) are the fermionic creation
and annihilation operators of the odd (even) quantum wire
i at lattice site j, respectively. The number of odd (even)
quantum wires is Ly, and the length of the quantum chain
is Lx. The primitive lattice vectors are defined as a1 =
(1, 0) and a2 = (0, 1). For the reciprocal lattice, the cor-
responding primitive lattice vectors are b1 = 2π (1, 0) and
b2 = 2π (0, 1). The Hamiltonian in momentum space can be
written as

H =
[

2J cos kx (1 + eiky )(t1 + t2eikx )
(1 + e−iky )(t1 + t2e−ikx ) 2J cos kx

]
.

(10)

The Hamiltonian obeys the inversion symmetry
IH (k)I−1 = H (−k) similar to the three-leg ladder case,
where inversion symmetry matrix I = σx in terms of Pauli
matrices. According to the values of the topological invariant
and behaviors of the topological edge states, the phase
diagram can be described as shown in Fig. 4(a). In region I
(II), the system is in topological metal phase with (without)
the topological edge states. For the interchain couplings
t1 > t2, the system enters the trivial normal metal phase.
To show the topological edge states in region I, we plot
the energy spectrum under open boundary conditions in the
x direction in Fig. 4(b). Clearly, the edge states (red dots)
appear in the energy band gap for some momentum. The
spatial distribution of a topological nontrivial edge state is
shown Fig. 4(c).

Like the three-leg ladder case, the intrachain hopping J
modifies the energy spectra but not the corresponding eigen-
functions of the bulk Hamiltonian in Eq. (10). Thus, the
topological property of topological metal is not changed, and
the energy gap closing could occur without bound touching
because of the indirect gap. However, in a finite system, the
amplitude of intrachain hopping could affect the spatial pro-
file of the topological nontrivial edge states, which become
delocalized for the strong intrachain hopping J . For the topo-
logical region II in Fig. 4(a), numerical calculations reveal
that the time-averaged mean displacement in the x direction

(a)

(c)

(b)

FIG. 4. (a) The phase diagram of two-dimensional (2D) quantum
wire array. Region I (II) represents that the system is topological
metal with (without) edge states. (b) Energy spectra with system size
Lx = 100, t2 = 1, and t1 = J = 0.5 under open boundary conditions
in the x direction and periodic boundary conditions in the y direction.
The red dots in the energy band gap represent the topological nontriv-
ial edge states. (c) The spatial distribution of a topological nontrivial
edge state under open boundary conditions in both directions. Other
parameters are Lx = 2Ly = 30, t2 = 1, and t1 = J = 0.5.

approaches the value 0.5, which indicates that the system
enters the topological metal phase without edge states.

IV. SUMMARY AND OUTLOOK

In short, we use a three-leg ladder and 2D lattice spin-
less quantum wire arrays sliding against each other as
paradigmatic examples and demonstrate that alternated slide
construction provides an elegant mechanism toward engineer-
ing topological metals. Remarkably, there is a topological
metal without nontrivial edge states. The strategy of alter-
nated slide construction could be experimentally confirmed
in different systems such as photonic waveguide arrays, pho-
tonic crystals, topoelectrical circuits, or coupled acoustic
resonators.

Finally, we would like to point out that the alternated slide
construction can be a specific way to realize other topological
phases of matters. For instance, the building blocks could be
extended to spin-orbit coupling (gap and gapless) systems and
topological chains (such as SSH model, Kitaev chain [56],
and AAH chain). Different types of topological insulators and
superconductors can be constructed. On the other hand, the
easily alternated slide construction also applies to multilayer
systems including graphene moiré superlattices.
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FIG. 5. Band structure of the three-leg ladder with intrachain
couplings t1 = 0.5, t2 = 1 under periodic boundary conditions. The
blue line indicates the energy band of Hamiltonian h1, and the red
lines stand for the two energy bands of Hamiltonian h2. (a) Intrachain
hopping J = 0.2 case. (b) J = 0.5. (c) J = 1.2.

APPENDIX: THE ENERGY DISPERSIONS
OF THREE-LEG LADDER

In this Appendix, we investigate the energy structure for a
three-leg ladder in topological metal phases. Figure 5 shows
the three energy dispersion curves E1 and E± [Eqs. (5) and (6)
for three different intrachain hoppings J vs the Bloch wave
number kx in momentum space when the interchain couplings
t1 = 0.5 and t2 = 1. The blue line indicates the energy band
E1 of subspace Hamiltonian h1, and the red lines stand for the
two energy bands E± of subspace Hamiltonian h2. When the
intrachain hopping J (<

√
2/2) is small, the energy gap of sub-

system h2 is open. The subsystem changes from a direct band
gap insulator to an indirect band gap insulator without phase
transition [see Figs. 5(a) and 5(b)]. The entire system is still a
topological metal with nontrivial edge states. As the intrachain
hopping J increases, the energy gap of Hamiltonian h2 could
be closed. However, the two energy bands of h2 do not touch
due to the indirect nature of the band gap [see Fig. 5(c)]. As a
consequence, in a finite system, the two degenerate edge states
of Hamiltonian h2 would assimilate into the bulk bands and
become delocalized. Thus, the conventional bulk-boundary
correspondence breaks down. The whole system enters into
the topological metal phase without the nontrivial edge states.
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