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Spontaneous symmetry breaking without ground state degeneracy
in generalized N-state clock model
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Spontaneous symmetry breaking is a ubiquitous phenomenon in nature. One of the defining features of
symmetry-broken phases is that the large system size limit and the vanishing external field limit do not commute.
In this work, we study a family of extensions of the N-state clock model. We find that the exact symmetry and
the ground state degeneracy under the periodic boundary condition heavily depend on the system size, although
the model has the manifest translation symmetry. In particular, the ground state can be unique and all excitations
are gapped even when the phase exhibits noncommutativity of the two limits. Our model hence poses a question
on the standard understanding of spontaneous symmetry breaking.
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I. INTRODUCTION

Spontaneous breaking of symmetry is a phenomenon in
which the symmetry of the Hamiltonian or the Lagrangian
of the system is not respected by physical states. It underlies
many phases of matter such as crystals, magnets, and super-
fluids, and has been studied for a long time.

To review its basic understanding, let us consider a quan-
tum system at the zero temperature T = 0. For simplicity
here we consider a discrete symmetry group, not a continuous
one. Suppose that the symmetry of the system is sponta-
neously broken down to its subgroup. Empirically, such a
phase commonly exhibits the following features: (i) The M
lowest energy eigenstates in a finite system, which respect
all of the original symmetries, are given as superpositions of
M symmetry-breaking states. Here, M represents the number
of broken symmetry elements. (ii) The splitting of the M
lowest energy eigenvalues are exponentially suppressed with
the system size V , while the excitation gap to the next energy
level is O(1). (iii) When a symmetry-breaking field ε that
favors one of the symmetry-breaking states is introduced, the
large system size limit (V → ∞) and the vanishing field limit
(ε → +0) do not commute, as illustrated in Fig. 1. The first
two properties constitute the M-fold ground state degeneracy
in the symmetry-broken phase that is protected by the broken
symmetry of the system. The last feature implies the insta-
bility of the symmetric ground state toward an ordered state,
which explains why cat states [i.e., the symmetric superposi-
tions described in (i)] are fragile and never realized in nature.
Since property (iii) is sometimes taken as the definition of
spontaneous symmetry breaking [1–3], one may expect that
properties (i) and (ii) follow automatically as consequences of
(iii).

The transverse-field Ising model is a prototypical quantum
spin model that exhibits spontaneous breaking of Z2 sym-
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metry and quantum phase transition to a symmetry-unbroken
phase [4]. Its generalization to an N-level spin system with
ZN symmetry is called the N-state clock model. The N-state
clock models show all three features associated with sponta-
neous symmetry breaking summarized above, as we review in
Sec. III A below. The quantum phase transition in the N-state
clock model belongs to the same universality class as in a
recent experimental study [5] of the cold atom system [6].

In this work, we introduce a generalization of the N-
state clock model that shows several intriguing behaviors.
This model is hinted by a recent study [7] of generalized
ZN toric code [8,9], whose ground state was shown to be
unique for a sequence of system size despite its topological
order. Our model consists of at most two-spin interactions
and the nearest-neighbor interaction contains an integer pa-
rameter a = 1, 2, . . . , N . The standard N-state clock model
corresponds to the a = 1 case. When a �= 1, the exact sym-
metry and ground state degeneracy heavily depend on the
system size under the periodic boundary condition, although
the model has the translation symmetry. In particular, even
when a symmetry breaking occurs in the sense that the limits
of large system size and vanishing symmetry-breaking field do
not commute, the ground state can be unique and excitations
can be gapped, depending on the system size. Hence, this
model can be regarded as an example that exhibits feature (iii)
without (i) and (ii).

Some previous studies of the transverse-field Ising model
observed similar behaviors, but these models are different
from ours in an essential way. For example, in the anti-
ferromagnetic Ising model, the ground states are twofold
degenerate and excitations are gapped for even L and excita-
tions are gapless for odd L [10]. However, it cannot realize
a unique ground state with an excitation gap. In contrast,
if a symmetry-breaking external field is applied to the two
spins at the ends of an open ferromagnetic Ising chain, the
ground state can be unique and excitations are gapped even
in the ordered phase [11]. In fact, as we will see below,
our model can, in some cases, be mapped to the standard
N-state clock model with a twisted boundary condition, which
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FIG. 1. Illustration of the typical behavior of an order parameter
m(ε) as a function of symmetry-breaking field ε in an ordered phase.
Panel (a) is for a finite L and the curve is continuous, while (b) is
for the large L limit and the curve is discontinuous at ε = 0. In panel
(a), ε∗(L) represents the characteristic value of ε that separates the
linear-response regime [m(ε) ∝ ε] and the saturation regime. The
discontinuity in (b) can be rephrased as limL→∞ ε∗(L) = 0.

may be understood as an N-level version of the Ising chain
with symmetry-breaking boundary condition. However, such
a model lacks the translation symmetry unlike our model.

II. GENERALIZED N-STATE CLOCK MODEL

In this section, we present the definition of our generalized
N-state clock model and examine its symmetries.

A. Definitions

We consider a one-dimensional system consisting of L
spins. N-level (N � 2) spin operators are generalizations of
S = 1/2 spin operators, satisfying

ẐiX̂i′ = ωδi,i′ X̂i′ Ẑi, ω := e2π i/N , (1)

and ẐN
i = X̂ N

i = 1 for i, i′ = 0, 1, 2, . . . , L − 1. The basis
states {|ω�〉i}N−1

�=0 for the ith spin are defined by Ẑi|ω�〉i =
ω�|ω�〉i and X̂i|ω�〉i = |ω�+1〉i. The total Hilbert space dimen-
sion is NL.

The Hamiltonian of our model reads as

Ĥ := −1

2

L−1∑
i=0

[(
Ẑ−a

i Ẑi+1 + H.c.
)+ g(X̂i + H.c.)

]
, (2)

where a = 1, 2, . . . , N is an integer parameter that specifies
the nearest-neighbor interaction. The standard N-state clock
model corresponds to a = 1. The transverse field g is assumed
to be non-negative. The periodic boundary condition is im-
posed so that Ẑi+L = Ẑi and X̂i+L = X̂i. The energy eigenstate
of Ĥ is written as |�n〉 (n = 0, 1, 2, . . .) in the increasing
order of the energy eigenvalues E0 � E1 � E2 · · · .

When a = N , the first term becomes the longitudinal field
term

∑N
i=1(Ẑi + H.c.) and the model is trivial. When 2 �

a � N − 1, the properties of this model generally exhibit a
nontrivial dependence on the system size, as we shall see
below.

In our numerical study, exact diagonalization is performed
up to L = 23 for N = 2, L = 15 for N = 3, and L = 12 for
N = 4. Larger system sizes for N = 3 are handled by the
density matrix renormalization group (DMRG) method using
ITENSOR [12].

B. Symmetries

The symmetries of the generalized model can be divided
into two classes: those which always exist, and those which
might be absent depending on the system size L and the pa-
rameter a. For example, the model always has the translation
symmetry T̂ , defined by

T̂ ẐiT̂
−1 = Ẑi+1, T̂ X̂iT̂

−1 = X̂i+1, T̂ L = 1. (3)

The model also has the charge flip symmetry Ĉ [13,14] and
the time-reversal symmetry K̂ [6], defined by

ĈẐiĈ
−1 = Ẑ−1

i , ĈX̂iĈ
−1 = X̂ −1

i , Ĉ2 = 1, (4)

K̂ẐiK̂
−1 = Ẑ−1

i , K̂X̂iK̂
−1 = X̂i, K̂2 = 1. (5)

To be consistent with the spin algebra in Eq. (1), Ĉ is unitary
and K̂ is antiunitary. These symmetries all commute with each
other.

Furthermore, depending on L and a, the model has a dis-
crete spin-rotation symmetry generated by

X̂ :=
L−1∏
i=0

X̂ ai

i . (6)

We find X̂ N = 1 and

X̂ nĤ X̂ −n − Ĥ = 1 − ωn(aL−1)

2
Ẑ−a

L−1Ẑ0 + H.c. (7)

Therefore, if n is set to be

n := N

gcd(aL − 1, N )
, (8)

then n(aL − 1) = 0 mod N and [X̂ n, Ĥ ] = 0. Here,
gcd(p, q) represents the greatest common divisor of integers
p and q. Therefore, given N , a, and L, the exact spin-rotation
symmetry of the model is given by

Zgcd(aL−1,N ), (9)

implying that the ground state degeneracy in the ferromagnet-
ically ordered phase is

Ndeg = gcd(aL − 1, N ). (10)

The operator X̂ satisfies

ĈX̂Ĉ−1 = X̂ −1, K̂X̂ K̂−1 = X̂ , (11)

T̂ −1X̂ T̂ = X̂L−1

L−1∏
i=1

X̂ ai

i−1 = X̂ aX̂ 1−aL

L−1 . (12)

From the second relation, it follows that [X̂ n, T̂ ] �= 0, im-
plying that the spin-rotation symmetry X̂ n is not a genuine
internal symmetry unless a = 1.

When a = 1, N − 1, or N , the model also has the spatial
inversion symmetry

Î Ẑi Î
−1 = Ẑ−i, Î X̂i Î

−1 = X̂−i, Î2 = 1. (13)

which is explicitly broken for a = 2, 3, . . . , N − 2.
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C. Duality

As is well known (see, e.g., Ref. [6]), the standard N-state
clock model has a duality between g and 1/g, which persists
in the generalized model with a �= 1 as we shall see now. Dual
spin operators are defined by the nonlocal transformation

ˆ̃Zi :=
L−1∏
i′=i

X̂ ai′−i

i′ (i = 0, 1, 2, . . . , L − 1) (14)

and

ˆ̃Xi :=
{

Ẑa
i−1Ẑ−1

i (i = 1, 2, . . . , L − 1)

Ẑ−1
0 (i = 0)

(15)

which satisfy

ˆ̃ZN
i = ˆ̃X N

i = 1, ˆ̃Zi
ˆ̃Xi′ = ωδi,i′ ˆ̃Xi′

ˆ̃Zi (16)

for i, i′ = 0, 1, 2, . . . , L. This map converts Ĥ to

Ĥ := − g

2

L−2∑
i=0

[( ˆ̃Zi
ˆ̃Z−a

i+1 + H.c.
)+ (1/g)( ˆ̃Xi+1 + H.c.)

]

− 1

2

[
g( ˆ̃ZL−1 + H.c.) + ( ˆ̃X a ˆ̃X0 + H.c.)

]
, (17)

where ˆ̃X :=∏L−1
j=0

ˆ̃X −aL−1− j

j = ẐL−1. This expression coincides

with gĤ (1/g) except for the boundary terms and the spatial in-
version. In particular, the boundary term breaks the translation
invariance in terms of the dual spins even when a = 1. As a
consequence, only the bulk properties such as the presence of
an excitation gap are preserved in the duality transformation,
but the order of degeneracy may be modified.

III. EXAMPLES

In this section we study the properties of the generalized
models for several representative values of a.

A. a = 1

Let us begin by reviewing the standard N-state clock
model. When a = 1, X̂ in Eq. (6) has no position depen-
dence and commutes with Ĥ regardless of L, generating a
ZN symmetry [i.e., n = 1 in Eq. (8)]. When 1 	 g � 0, the
ZN symmetry is spontaneously broken, while no symmetries
are broken when g 	 1. A continuous phase transition occurs
at g = 1 for N = 2, 3, 4 [13,15]. There are two Berezinskii-
Kosterlitz-Thouless transitions at g = g1 (1 > g1 � 0) and
1/g1 for N � 5, as suggested by the aforementioned duality
[13,15].

1. Order parameter, long-range order, and finite-size splitting

To diagnose spontaneous breaking of ZN symmetry, let us
introduce an order parameter

ẑ := 1

L

L−1∑
i=0

Ẑi, (18)

which transforms linearly under X̂ :

X̂ †ẑX̂ = ωẑ. (19)

When g = 0, product states

|φ�〉 :=
L−1⊗
i=0

|ω�〉i = X̂ �|φ0〉 (20)

(� = 0, 1, 2, . . . , N − 1) are symmetry-breaking ground
states, characterized by the expectation value 〈φ�|ẑ|φ�〉 = ω�.
The N-fold degeneracy is guaranteed by the ZN symmetry:
[Ĥ , X̂ ] = 0. In addition to the time-reversal symmetry
K̂ and the translation symmetry T̂ , the Z2 symmetry
generated by Ĉ� := X̂ �ĈX̂ −� remains unbroken for each
� = 0, 1, 2, . . . , N − 1. The gap to the (N + 1)th state is
given by 2(1 − cos 2π

N ).
When g �= 0 but still in the range 1 	 g > 0, the N lowest-

energy eigenstates remain separated by other excited states
by an O(1) excitation gap. In particular, the ground state
|�0〉 in a finite system can be approximated by the linear
combination N−1/2∑N−1

�=0 |φ�〉 + O(g). This state is symmet-
ric, X̂ |�0〉 = |�0〉, and the expectation value of the order
parameter vanishes, 〈�0|ẑ|�0〉 = 0. Instead, this state has a
long-range correlation, which can be captured by the large L
limit of

m :=
√

〈�0|ẑ†ẑ|�0〉. (21)

For example, when N = 2, an analytic expression is known
[16]:

lim
L→∞

m = (1 − g2)1/8. (22)

A nonzero value of the long-range order m in the large system
size limit implies spontaneous breaking of the ZN symmetry
[17].

The finite-size splitting of energy eigenvalues of low-
est N eigenstates is typically the order of gL = e−L/ξ (ξ :=
−1/ ln g), which is exponentially suppressed with the system
size. This can be most easily understood by the perturbation
theory from the g = 0 point, since at least Lth-order pertur-
bation is needed to generate nonzero matrix elements among
|φ�〉 (� = 0, 1, 2, . . . , N − 1). For example, when N = 2, the
asymptotic behavior for a large L is given by [18]


1 := E1 − E0 � 2

√
1 − g2

πL
gL[1 + O(L−1)]. (23)

For reader’s convenience, we include the derivation of
Eqs. (22) and (23) in the Appendix. By exact diagonalization,
we confirm the validity of these analytic expressions by nu-
merics in Figs. 2(a)–2(c). For N � 3, such expressions are not
known but we numerically demonstrate that the N = 3 case
behaves similarly in Figs. 2(d)–2(f).

2. Symmetry-breaking field

Another way to detect spontaneous symmetry breaking is
to apply a symmetry-breaking field ε � 0 [3]. We replace the
Hamiltonian Ĥ with

Ĥ (�0 )(ε) := Ĥ − 1
2εL(ω−�0 ẑ + H.c.). (24)

The parameter �0 = 0, 1, . . . , N − 1 selects the symmetry-
breaking state favored by ε > 0. As far as the ZN symmetry
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FIG. 2. Exact-diagonalization results for the standard N-state
clock model with N = 2 (a)–(c) and N = 3 (d)–(f). (a),(d) The en-
ergy difference 
1 := E1 − E0 between the ground state and the first
excited state in a finite system, which decays exponentially with L in
the ordered phase (1 > g � 0) and stays constant in the disordered
phase (g > 1). (b),(e) The long-range order m :=

√
〈�0|ẑ†ẑ|�0〉,

which converges to a nonzero value in the ordered phase (1 > g � 0)
and decays with L in the disordered phase (g > 1). (c),(f) 
1/(2Lm)
(c) and 
1/(Lm) (f) that approximate ε∗(L). The insets in (a), (b),
(d), and (e) show the g dependence. The curves in (a)–(c) are the
analytic expressions in Eqs. (22), (23), and (27).

generated by X̂ is exact, all values of �0 are equivalent in the
sense that they are related by the ZN symmetry.

The effect of symmetry-breaking field can be understood
analytically based on the effective Hamiltonian that focuses
on the N low-energy states. For example, for N = 2, 3, 4, we
find

H (�0 )
eff (ε) = −cN
1

2
(X + H.c.) − εLm

2
(ω−�0 Z + H.c.) (25)

in the basis of symmetry-breaking states, where c2 = 1/2,
c3 = 2/3, and c4 = 1, and

X :=

⎛
⎜⎜⎝

1
1

. . .

1

⎞
⎟⎟⎠, Z :=

⎛
⎜⎜⎝

1
ω

. . .

ωN−1

⎞
⎟⎟⎠.

(26)

The first term describes the mixing due to g �= 0, and the
second term favors the symmetry-breaking state that matches
the applied field.

For a small ε, the order parameter Re[〈ω−�0 Z〉] exhibits the
linear response Re[〈ω−�0 Z〉] ∝ Lm2ε/
1, while it is saturated

FIG. 3. Exact-diagonalization results for the standard N-state
clock model with symmetry-breaking field ε for N = 2 (a)–(c) and
for N = 3 (d)–(f). Here we set �0 = 0 as an example. (a),(b),(d),(e)
The order parameter Re[〈�(0)

0 (ε)|ẑ|�(0)
0 (ε)〉] for g = 0.5 (a),(c) and

g = 1.5 (b),(e). (c),(f) The magnetic field ε∗(L) at the transition point,
which is determined by the crossing point of two fitting lines (gray
lines) in the log-log plot of Re[〈�(0)

0 (ε)|ẑ|�(0)
0 (ε)〉]. The curves in

(c) are the analytic expression in Eq. (27).

Re[〈ω−�0 Z〉] � m for a large ε. The transition occurs at ε =
ε∗(L) where the first term and second term balance. We find

εN=2
∗ (L) � 
1

2Lm
� (1 − g2)3/8

√
πL3/2

gL, (27)

εN=3,4
∗ (L) � 
1

Lm
. (28)

It follows that

lim
L→∞

ε∗(L) = 0, (29)

implying the discontinuity in the expectation value of the
order parameter as a function of ε in the thermodynamic limit.
This observation suggests that the small ε limit and the large
L limit do not commute:

lim
ε→+0

lim
L→∞

〈
�

(�0 )
0 (ε)

∣∣ẑ∣∣�(�0 )
0 (ε)

〉 �= 0, (30)

lim
L→∞

lim
ε→+0

〈
�

(�0 )
0 (ε)

∣∣ẑ∣∣�(�0 )
0 (ε)

〉 = 0, (31)

where |�(�0 )
0 (ε)〉 is the unique ground state of Ĥ (�0 )(ε).

We confirm this understanding by numerical calculations
in Fig. 3. Panels (a) and (c) for N = 2 and panels (b) and
(d) for N = 3 demonstrate that the expectation value of the
order parameter develops as the symmetry-breaking field ε

increases, and saturates around ε = ε∗(L). The system size de-
pendence is qualitatively different between the ordered phase
[Figs. 3(a) and 3(d)] and the disordered phase [Figs. 3(b) and
3(e)]. As shown in Figs. 3(c) and 3(f), the saturation field

195139-4



SPONTANEOUS SYMMETRY BREAKING WITHOUT … PHYSICAL REVIEW B 107, 195139 (2023)

ε∗(L) gets smaller and smaller as the system size increases
and vanishes in the large L limit in the ordered phase, while
it converges to a nonzero value in the disordered phase. As
explained in the caption of Fig. 1, this is the numerical demon-
stration of the noncommutative nature of the two limits in
Eqs. (30) and (31) in the symmetry-breaking phase of the
a = 1 model.

B. N is odd and a = N − 1

Next, let us study the simplest nontrivial case. When a =
N − 1, the Hamiltonian becomes

Ĥ := −1

2

L−1∑
i=0

[
(ẐiẐi+1 + H.c.) + g(X̂i + H.c.)

]
, (32)

which is still manifestly translation invariant.

1. L: Even

Let us first assume that L is even. In this case, the model
has a modified ZN symmetry generated by

X̂ :=
L−1∏
i=0

X̂ (−1)i

i = X̂0X̂ †
1 X̂2X̂ †

3 · · · X̂L−2X̂ †
L−1. (33)

In other words, n in Eq. (8) is 1. The corresponding order
parameter

ẑ := 1

L

L−1∑
i=0

Ẑ (−1)i

i

= 1

L
(Ẑ0 + Ẑ†

1 + Ẑ2 + Ẑ†
3 + · · · + ẐL−2 + Ẑ†

L−1) (34)

satisfies Eq. (19). This model can be mapped to the standard
one with a = +1 by the Ĉ transformation in Eq. (4) for spins
only on even sites. Therefore, as far as thermodynamic proper-
ties are concerned, the a = N − 1 model should be equivalent
to the standard a = +1 model. In particular, when N = 3, the
ZN symmetry of the model is spontaneously broken when
1 > g � 0 and a phase transition to the paramagnetic phase
occurs at g = 1.

When g = 0, the ferromagnetic state |φ0〉 :=⊗L−1
i=0 |1〉i is

a ground state. N distinct ground states can be generated as

|φ�〉 := X̂ �|φ0〉 =
L−1⊗
i=0

|ω�(−1)i〉i, (35)

whose expectation value of order parameter is 〈φ�|ẑ|φ�〉 = ω�

(� = 0, 1, 2, . . . , N − 1). Interestingly, |φ�〉 with � �= 0 is not
translation invariant, i.e., T̂ |φ�〉 = |φ−�〉. It is instead symmet-
ric under a modified translation symmetry T̂� := T̂ X̂ −2�.

2. L: Odd

Next let us assume that L is odd. In this case,

X̂ :=
L−1∏
i=0

X̂ (−1)i

i = X̂0X̂ †
1 X̂2X̂ †

3 · · · X̂ †
L−2X̂L−1 (36)

FIG. 4. Exact diagonalization results (a)–(e) and DMRG results
(f) for the (N, a) = (3, 2) case. (a) The energy difference 
1 = E1 −
E0. (b) The order parameter Re[〈�0|ẑ|�0〉]. The insets in (a) and
(b) show the g dependence. (c),(d) Re[〈�(1)

0 (ε)|ω∗ẑ|�(1)
0 (ε)〉] for g =

0.5 (c) and g = 1.5 (d). (e) The magnetic field ε∗(L) at the transition
point, which is determined by the crossing points of two fitting lines
in panel (c). (f) The same as (e) but for larger system size (17 � L �
101) computed by DMRG. The fitting lines have slope −1 with few
percent error, confirming the L−1 dependence of ε∗(L).

does not commute with Ĥ in Eq. (32):

X̂ †Ĥ X̂ − Ĥ = 1 − ω2

2
ẐL−1Ẑ0 + H.c. (37)

Furthermore, n in Eq. (8) is N and X̂ n becomes the identity
operator. As a consequence, the ground state is unique and
excitations are gapped even in the range 1 > g � 0. We show
our numerical results for N = 3 in Fig. 4(a).

Unlike the even L case, the unique ground state
has a nonzero expectation value of the order parameter
Re[〈�0|ẑ|�0〉] when 0 � g < 1 as shown in Fig. 4(b), where

ẑ := 1

L

L−1∑
i=0

Ẑ (−1)i

i

= 1

L
(Ẑ0 + Ẑ†

1 + Ẑ2 + Ẑ†
3 + · · · + Ẑ†

L−2 + ẐL−1). (38)

This nonzero expectation value is allowed by the absence of
an exact spin-rotation symmetry.

Despite the lack of symmetry, we observe that the energy
difference 
1 := E1 − E0 between the ground state and the
first excited state vanishes at g = 1, implying the presence of
a quantum phase transition of two phases at this point. See
the inset of Fig. 4(a). This is expected from our results for the
even L case, where a transition from the ordered phase (1 >

g � 0) to the disordered phase (g > 1) occurs at g = 1. The
thermodynamic behaviors, such as the presence or absence of
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a phase transition, must be insensitive to the detailed choice
of the system size.

Indeed, even in this case, one can still form the Hamilto-
nian Ĥ (�0=1)(ε) in Eq. (24) with a symmetry-breaking field,
where Ĥ is given by Eq. (32) and ẑ is given by Eq. (38). In
Figs. 4(c) and 4(d), we show our numerical results on the ex-
pectation value Re[〈�(�0=1)

0 (ε)|ω∗ẑ|�(�0=1)
0 (ε)〉]. The results

for 1 > g � 0 [Fig. 4(c)] and g > 1 [Fig. 4(d)] clearly show
qualitatively different behaviors. In particular, when 1 > g �
0, we observe that Re[〈�(1)

0 (ε)|ω∗ẑ|�(1)
0 (ε)〉] is negative for

0 � ε  ε∗(L) and jumps to a positive value at ε = ε∗(L). As
shown in Figs. 4(e) and 4(f), the transition field ε∗(L) vanishes
in the large L limit, implying that the large L limit and the
vanishing ε limit do not commute:

0 < lim
ε→+0

lim
L→∞

〈
�

(�0 )
0 (ε)

∣∣ẑ∣∣�(�0 )
0 (ε)

〉
�= lim

L→∞
lim

ε→+0

〈
�

(�0 )
0 (ε)

∣∣ẑ∣∣�(�0 )
0 (ε)

〉
< 0. (39)

Note that both limε→+0 limL→∞〈�(�0 )
0 (ε)|ẑ|�(�0 )

0 (ε)〉 and
limL→∞ limε→+0〈�(�0 )

0 (ε)|ẑ|�(�0 )
0 (ε)〉 are nonzero in this

case, unlike Eq. (31).
The scaling of ε∗(L) is qualitatively different depending

on the parity of L. As we saw in Sec. III A 2, ε∗(L) decays
exponentially with the system size in the standard model
(a = 1) and in the a = N − 1 model with even L, while it
only decays algebraically when the system size is odd for the
a = N − 1 case as shown in Figs. 4(e) and 4(f) for N = 3.
This behavior of ε∗(L) can also be explained by focusing on
low-energy states. Here we consider only two states, |�0〉 and
X̂ �0 |�0〉. At ε = 0, the energy expectation value of the latter
state is greater than the former one by an amount 
 ∼ O(1).
However, the latter state is favored by the symmetry-breaking
field. This suggests that the transition occurs at

ε∗(L) � 
[
1 − cos

( 2π�0
N

)]
Lm

∝ 1

L
(�0 �= 0). (40)

This is consistent with Fig. 4(f).

3. Avoiding gap closing

When the system size L is odd in the a = N − 1 case, no
exact symmetry of the model in Eq. (32) prohibits us from
adding the longitudinal magnetic field term

Ĥ (ε0) = Ĥ − ε0

2

L−1∑
i=0

(Ẑi + Ẑ†
i ). (41)

When ε0 �= 0, the unique ground state for g = 0 and g = 2 can
be smoothly connected without a gap closing, as demonstrated
numerically by Fig. 5 for N = 3.

This observation suggests that the gap closing and the
phase transition in odd system size were protected by the sym-
metry for the even system size. Namely, reference to the even
L system was mandatory for the discussion of odd L system.

FIG. 5. Exact-diagonalization results for the (N, a) = (3, 2)
case. (a) Paths in the (g, ε0 ) plane. When A: (0,0) is directly con-
nected to B: (2,0) (red arrow), a quantum phase transition occurs at
C: (1,0). However, when bypassed via P: (0,1) and Q: (1,1) (blue ar-
rows), the transition can be avoided. (b),(c) 
1 = E1 − E0 for the red
path (b) and the blue path (c) in panel (a). To check the convergence
as a function of the system size, the results for L = 5, 7, . . . , 15 are
shown.

C. a = 0 mod rad(N)

As the last example, let us discuss the case in which
the ground state for g = 0 and g = ∞ can be adiabatically
connected to each other without a gap closing, implying the
uniqueness of the phase and the absence of any sort of phase
transitions.

When N is factorized as N =∏ j p
r j

j , the radical of N
is defined as rad(N ) :=∏ j p j . For example, rad(N ) = 2 for
N = 4 = 22. When a is a multiple of rad(N ), the ZN symme-
try is absent [i.e., n in Eq. (8) is N] regardless of the system
size L. As a consequence, the ground state is unique and
excitations are gapped regardless of g.

The simplest example of this situation is when N = 4 and
a = 2. We show our numerical results in Fig. 6. Clearly, the
gap remains open as g is changed from 0 to 2 for any value
of L.

IV. CONCLUSION

In this work, we introduced a generalized N-state clock
model which contains an integer parameter a = 1, 2, . . . , N
[Eq. (2)]. The original N-state clock model corresponds to the
a = 1 case. When a �= 1, the spin-rotation symmetry [Eq. (7)]
and the ground state degeneracy in the ordered phase under
the periodic boundary condition [Eq. (10)] strongly depend
on the system size L.

In particular, when a is N − 1 and both N and L are odd,
the spin-rotation symmetry is absent [Eq. (37)] and the ground
state is unique even in the ordered phase [Fig. 4(a)], despite
the fact that a spontaneous “symmetry” breaking is suggested
by the noncommutativity of the large system size limit and the
vanishing external field limit [Eq. (39)]. In contrast, when L
is even, the same model has the ZN symmetry and exhibits

FIG. 6. Exact-diagonalization results for the (N, a) = (4, 2)
case. 
1 = E1 − E0 as a function of (a) g and (b) L.
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spontaneous symmetry breaking in the standard manner (see
Sec. III B 1). Since thermodynamic properties should be in-
sensitive to the details of the systems size or the boundary
condition, this model with odd L should be counted as an
example of spontaneous symmetry breaking without exact
symmetry or degeneracy. Indeed, we numerically found a gap
closing at g = 1.

The a = N − 1 model can be mapped to the standard
N-state clock model (a = +1) by the Ĉ transformation in
Eq. (4) for spins on even sites. When L is odd, this transfor-
mation introduces a defect for the spins at i = L and i = 1,
which may be viewed as a boundary condition Ẑ†

L = Ẑ0. This
defect breaks the translation symmetry and the ZN symme-
try, explaining the absence of the ground state degeneracy.
However, other values of a cannot be mapped to the a = 1
model and the degeneracy pattern cannot be understood in this
way.

Although our model itself might be difficult to be realized
in experiments, the importance of our example lies in the fact
that it exemplifies the coexistence of a spontaneous symmetry
breaking and a unique ground state with a finite excitation
gap in a translationally invariant spin model with short-
ranged interactions. The excitation gap closes at the transition
point to the disordered phase. Knowing this possibility is
particularly important when one investigates interacting spin
models numerically—one often concludes the absence of any
spontaneous symmetry breaking based on the uniqueness of
the ground state, but our example draws caution in such a
reasoning.
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APPENDIX: EXACT SOLUTION FOR N = 2

We review the exact solution of the transverse-field
Ising model via the Jordan-Wigner transformation following
Refs. [16,18–21].

1. Jordan-Wigner transformation

N = 2 level spins can be represented by fermion operators:

X̂i = ( f̂i + f̂ †
i )

i−1∏
i′=0

(−1) f̂ †
i′ f̂i′ , (A1)

Ẑi = (−1) f̂ †
i f̂i = 1 − 2 f̂ †

i f̂i = f̂i f̂ †
i − f̂ †

i f̂i, (A2)

where
∏i−1

i′=0(−1) f̂ †
i′ f̂i′ = 1 when i = 0. The product state

|�0〉 =⊗L−1
i=0 |1〉i is mapped to the Fock vacuum |0〉. The

definition of the Jordan-Wigner transformation here is slightly
different from the standard one [16,19–21] but we find that
this choice is more useful in that expressions in Eqs. (A9) and
(A11) below do not depend on the parity of L.

Interchanging the role of X̂i and Ẑi, we find

Ĥ = −
L−1∑
i=0

X̂i+1X̂i − g
L−1∑
i=0

Ẑi

= −
L−2∑
i=0

( f̂ †
i+1 + f̂i+1)( f̂i − f̂ †

i )

− [−(−1)N̂ ]( f̂ †
0 + f̂0)( f̂L−1 − f̂ †

L−1)

− g
L−1∑
i=0

(1 − 2 f̂ †
i f̂i ). (A3)

In the (−1)N̂ = +1 (−1) sector, we set the boundary condition
to be antiperiodic f̂L+i = − f̂i (periodic f̂L+i = f̂i). With this
understanding, the Hamiltonian can be rewritten as

Ĥ = −
L−1∑
i=0

( f̂ †
i+1 f̂i + f̂ †

i f̂i+1 + f̂i+1 f̂i + f̂ †
i f̂ †

i+1)

+ g
L−1∑
i=0

( f̂ †
i f̂i − f̂i f̂ †

i ). (A4)

Introducing the Fourier transformation f̂ †
j = L−1/2∑

k f̂ †
k

e−ik j , where k ∈ KAP = {(2 j + 1)π/L}L−1
j=0 for the antiperi-

odic case and k ∈ KP = {(2 j)π/L}L−1
j=0 for the periodic case,

we find

Ĥ =
∑

k

( f̂ †
k f̂−k )

(
g − cos k −i sin k

i sin k −g + cos k

)(
f̂k

f̂ †
−k

)

=
∑

k

ε(k)( f̂ †
k f̂−k )(cos 2φkσ3 + sin 2φkσ2)

(
f̂k

f̂ †
−k

)

=
∑

k

ε(k)(γ̂ †
k γ̂−k )σ3

(
γ̂k

γ̂
†
−k

)

=
∑

k

2εk γ̂
†
k γ̂k −

∑
k

εk . (A5)

In the derivation, we defined

ε(k) =
√

(g − cos k)2 + sin2 k =
√

1 + g2 − 2gcos k, (A6)

cos 2φk = g − cos k

εk
, sin 2φk = sin k

εk
, (A7)(

γ̂k

γ̂
†
−k

)
= e−iφkσ1

(
f̂k

f̂ †
−k

)
=
(

cos φk −i sin φk

−i sin φk cos φk

)(
f̂k

f̂ †
−k

)
.

(A8)

The last expression of Eq. (A5) implies that the ground states
are those annihilated by γ̂k for all k.

For k = π , g − cos k = g + 1 > 0 regardless of g � 0.
Hence, φk=π = 0 and γ̂k=π = f̂k=π . On the other hand, for
k = 0, g − cos k = g − 1 > 0 and φk=0 = 0 and γ̂k=0 = f̂k=0

only when g > 1. In contrast, when 1 > g � 0, φk=0 = π/2
and γ̂k=0 = f̂ †

k=0.
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2. Ground state energy

The state

|�0〉 =
∏

k∈KAP

(cos φk + i sin φk f̂ †
k f̂ †

−k )|0〉 (A9)

satisfies γ̂k|�0〉 = 0 for any k ∈ KAP and hence is the ground
state in the even fermion parity sector. The energy eigenvalue
is given by

E0(g) = −
∑

k∈KAP

εk = −
L−1∑
j=0

ε
( (2 j+1)π

L

)
. (A10)

This result is valid for any g � 0.
On the other hand, the state

|�1〉 = f̂ †
k=0

∏
k∈KP,k �=0

(cos φk + i sin φk f̂ †
k f̂ †

−k )|0〉 (A11)

is the ground state in the odd fermion parity sector. It satisfies
γ̂k|�1〉 = 0 for any k ∈ KP when 1 > g � 0. When 1 > g,
γk=0|�1〉 does not vanish but this state remains the ground
state in this sector because εk is the monotonically increasing
function of |k| in the range 0 � |k| � π . The energy eigen-
value is given by

E1(g) = −
∑
k∈KP

εk = −
L−1∑
j=0

ε
( 2π j

L

)
. (A12)

When 1 > g, 2(g − 1) should be added to E1(g).
Comparing E0(g) and E1(g), we find E1(g) > E0(g) when-

ever g > 0. Thus |�0〉 is the ground state in the finite system
and |�1〉 is the quasidegenerate first excited state in a finite
system. To evaluate the difference E1(g) − E0(g) for 1 > g �
0, we follow the prescription given in Ref. [22]. We first
perform Fourier transformation:

εn =
∫ 2π

0

dk

2π
ε(k)e−ink =

∫ 2π

0

dk

2π
ε(k) cos nk, (A13)

ε(k) =
∞∑

n=−∞
εneink = ε0 + 2

∞∑
n=1

εn cos nk. (A14)

In terms of these Fourier components, E0(g) and E1(g) can be
expressed as

E0(g) = −
∞∑

n=−∞
εnei(nπ/L)

L−1∑
j=0

ei(2nπ/L) j = −L
∞∑

n=−∞
εmL(−1)m

= −Lε0 − 2L
∞∑

m=1

εmL(−1)m (A15)

and

E1(g) = −
∞∑

n=−∞
εn

L−1∑
j=0

ei(2πn/L) j = −L
∞∑

m=−∞
εmL

= −Lε0 − 2L
∞∑

m=1

εmL. (A16)

Therefore, we get

E1(g) − E0(g) = −4L
∞∑

m=0

ε(1+2m)L

= −4L
∞∑

m=0

∫ 2π

0

dk

2π
ε(k)ei(1+2m)Lk . (A17)

To examine the asymptotic behavior of this integral, we intro-
duce λ > 0 by λ = − ln g (e−λ = g) so that

ei(k+iλ) = eikg, e−i(k+iλ) = e−ik/g. (A18)

It follows that

ε(k + iλ) =
√

(eik − 1)(e−ik − g2), (A19)

ei(1+2m)L(k+iλ) = ei(1+2m)Lkg(1+2m)L. (A20)

Since ε(z)ei(1+2m)Lz is analytic when |Imz| � λ, the integra-
tion path can be shifted from the real axis to k + iλ with
k ∈ [0, 2π ]. We find

E1(g) − E0(g) = 4L
∞∑

m=0

g(1+2m)LI(1+2m)L (g), (A21)

where

IL(g) := −
∫ 2π

0

dk

2π

√
(eik − 1)(e−ik − g2)eiLk

= �
(
L − 1

2

)
√

4π�(L + 1)
2F1

(
−1

2
, L − 1

2
; L + 1; g2

)
(A22)

and 2F1(a, b; c; z) is the hypergeometric function. The sum
over m in Eq. (A21) is clearly dominated by the m = 0 contri-
bution. Therefore, we obtain the asymptotic form for L → ∞:

E1(g) − E0(g)

� 2L �
(
L − 1

2

)
gL

√
π�(L + 1)

2F1

(
−1

2
, L − 1

2
; L + 1; g2

)
+ O(g3L )

�
(

1 + 3(1 + g2)

8(1 − g2)L
+ 5(5g4 − 22g2 + 5)

128(1 − g2)2L2

+ 105(1 + g2)3

1024(1 − g2)3L3
+ O(L−4)

)
2

√
1 − g2

πL
gL. (A23)

The leading term was previously derived in Ref. [18]. The
O(L−m) (m = 1, 2, 3) corrections were not found in literature,
and higher-order corrections can be computed in the same
way.

3. Long-range correlation

Next, let us investigate the correlation functions.

X̂iX̂i+n = ( f̂i + f̂ †
i )

i+n−1∏
j=i

(−1) f̂ †
j f̂ j ( f̂i+n + f̂ †

i+n)

= ( f̂ †
i − f̂i )

i+n−1∏
j=i+1

( f̂ †
j + f̂ j )( f̂ †

j − f̂ j )( f̂ †
i+n + f̂i+n)

= B̂iÂi+1B̂i+1Âi+2 · · · B̂i+n−1Âi+n, (A24)
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where Âi := f̂ †
i + f̂i and B̂i := f̂ †

i − f̂i, which satisfy
{Âi, B̂ j} = 0 and {Âi, Â j} = −{B̂i, B̂ j} = 2δi j .

We are interested in the correlation function with respect
to the ground state |�0〉. According to Wick’s theorem, the
correlation function can be decomposed into the sum of two
point functions:

〈X̂iX̂i+n〉 = 〈B̂iÂi+1B̂i+1Âi+2 · · · B̂i+n−1Âi+n〉

=
∑

σ

sgn(σ )
i+n−1∏

j=i

〈B̂ j Âσ ( j)+1〉. (A25)

Using

f̂i = 1√
L

∑
k∈KAP

eiki(cos φk γ̂k + i sin φk γ̂
†
−k ) (A26)

and γ̂k|�0〉 = 0, we get

〈 f̂ †
i f̂ †

j 〉 = −〈 f̂i f̂ j〉 = i

2L

∑
k∈KAP

eik(i− j) sin k

εk
, (A27)

〈 f̂i f̂ †
j 〉 = 〈 f̂ j f̂ †

i 〉 = 1

2L

∑
k∈KAP

eik(i− j)

(
1 + g − cos k

εk

)
,

(A28)

〈 f̂ †
i f̂ j〉 = 〈 f̂ †

j f̂i〉 = 1

2L

∑
k∈KAP

eik(i− j)

(
1 − g − cos k

εk

)
,

(A29)

from which we find

〈ÂiÂ j〉 = 〈 f̂ †
i f̂ †

j + f̂i f̂ j + f̂ †
i f̂ j + f̂i f̂ †

j 〉 = δi j, (A30)

〈B̂iB̂ j〉 = 〈 f̂ †
i f̂ †

j + f̂i f̂ j − f̂ †
i f̂ j − f̂i f̂ †

j 〉 = −δi j, (A31)

〈B̂iÂ j〉 = 〈 f̂ †
i f̂ †

j − f̂i f̂ j + f̂ †
i f̂ j − f̂i f̂ †

j 〉 = Gj−i−1. (A32)

Here we defined

Gm := 〈B̂iÂm+i+1〉 = 1

L

∑
k∈KAP

1 − geik

εk
eikm

= 1

L

∑
k∈KAP

√
1 − geik

1 − ge−ik
eikm �

∫ 2π

0

dk

2π
G(e−ik )eikm

(A33)

and

G(e−ik ) =
√

1 − geik

1 − ge−ik
. (A34)

Therefore, the correlation function in Eq. (A25) can be written
as the determinant of a Toeplitz matrix:

〈X̂iX̂i+n〉 �

∣∣∣∣∣∣∣∣∣∣

G0 G−1 G−2 · · · G1−n

G1 G0 G−1 · · · G2−n

G2 G1 G0 · · · G3−n
...

...
...

...

Gn−1 Gn−2 Gn−3 · · · G0

∣∣∣∣∣∣∣∣∣∣
, (A35)

whose asymptotic behavior is given by the strong Szegö limit
theorem [20,21].

〈X̂iX̂i+n〉 � (ed0 )ne
∑∞

n=1 ndnd−n = (1 − g2)1/4, (A36)

where

d0 =
∫ 2π

0

dk

2π
ln[G(e−ik )] = 0, (A37)

dn =
∫ 2π

0

dk

2π
ln[G(e−ik )]eikn = g|n|

2n
. (A38)

This result implies [16]

lim
L→∞

m(g) = (1 − g2)1/8. (A39)
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