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Strain-tuned quantum criticality in electronic Potts-nematic systems
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Motivated by recent observations of threefold rotational symmetry breaking in twisted moiré systems, cold-
atom optical lattices, quantum Hall systems, and triangular antiferromagnets, we phenomenologically investigate
the strain-temperature phase diagram of the electronic 3-state Potts-nematic order. While in the absence of strain
the quantum Potts-nematic transition is first order, quantum critical points (QCP) emerge when uniaxial strain is
applied, whose nature depends on whether the strain is compressive or tensile. In one case, the nematic amplitude
jumps between two nonzero values while the nematic director remains pinned, leading to a symmetry-preserving
metanematic transition that terminates at a quantum critical end point. For the other type of strain, the nematic
director unlocks from the strain direction and spontaneously breaks an in-plane twofold rotational symmetry,
which in twisted moiré superlattices triggers an electric polarization. Such a piezoelectric transition changes
from first to second order upon increasing strain, resulting in a quantum tricritical point. Using a Hertz-Millis
approach, we show that these QCPs share interesting similarities with the widely studied Ising-nematic QCP. The
existence of three minima in the nematic action also leaves fingerprints in the strain-nematic hysteresis curves,
which display multiple loops. At nonzero temperatures, because the upper critical dimension of the 3-state Potts
model is smaller than three, the Potts-nematic transition is expected to remain first order in three dimensions, but
to change to second order in two dimensions (2D). As a result, the 2D strain-temperature phase diagram displays
two first-order transition wings bounded by lines of critical end points or tricritical points, reminiscent of the
phase diagram of metallic ferromagnets. We discuss how our results can be used to unambiguously identify
spontaneous Potts-nematic order.
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I. INTRODUCTION

Electronic nematicity, which consists of the electronically
driven breaking of the discrete rotational symmetry of a sys-
tem [1], has been observed in various correlated electronic
materials, including three families of unconventional super-
conductors: cuprates [2–4], heavy-fermion compounds [5–7],
and iron-based materials [8–11]. In all those cases, the under-
lying tetragonal lattice renders the electronic nematic order
parameter Ising like [12], as the system must select between
two nearest-neighbor (or next-nearest-neighbor) bonds of the
square lattice, which are related by a 90◦ rotation. The selected
bond will either expand or contract since nematic order neces-
sarily triggers a lattice distortion [9]. Conversely, application
of uniaxial strain along one of the bond directions completely
lifts the degeneracy between the two bonds, leading to a
smearing of the nematic phase transition. The situation is
analogous to the case of an Ising ferromagnet in the pres-
ence of a longitudinal magnetic field since strain acts as a
conjugate field to the nematic order parameter. Due to the
ubiquitous presence of residual and random strain in crystals
[13–15], this property can make it experimentally challeng-
ing to distinguish whether an anisotropic property is due to
spontaneous nematic order, nematic order induced by strain
(perhaps associated with an enhanced nematic susceptibility),
or simply strain [16]. More broadly, the intrinsic coupling
between electronic nematicity and uniaxial strain gives rise
to a rich phenomenology [17–20].

Recently, electronic nematic order has also been observed
in systems whose underlying lattices have threefold rota-
tional symmetry (i.e., triangular, honeycomb, and kagome),
such as the hexagonal (111) surface of bismuth subjected to
large magnetic fields [21], the trigonal lattice of the doped
topological insulator Bi2Se3 [22,23], the triangular antiferro-
magnet Fe1/3NbS2 [24], a triangular optical lattice of cold
87Rb atoms [25], and the triangular moiré superlattices of
twisted bilayer graphene (TBG) [26–29], twisted double-
bilayer graphene (TDBG) [30], twisted trilayer graphene
[31], and heterobilayer transition metal dichalcogenides [32].
More broadly, Potts nematicity has been proposed to emerge
in diverse settings, from frustrated magnets [33–37] to in-
teracting moiré systems [38–50] and kagome metals [51].
In contrast to the case of lattices with fourfold rotational
symmetry, the nematic order parameter here has a 3-state
Potts character [52,53], corresponding to selecting one among
three nearest-neighbor bonds related by a 120◦ (or 60◦) ro-
tation. The linear coupling between such a Potts-nematic
order parameter and in-plane strain has been recently explored
in different contexts [24,29,42,52,54–58]. An interesting re-
sult is that application of uniaxial strain along one of
the bond directions may not fully lift the degeneracy be-
tween the three bonds. Consequently, unlike the case of
a tetragonal lattice, a nematic-related transition, dubbed
nematic-flop transition in Ref. [42], can take place in a tri-
angular lattice even in the presence of uniaxial strain. The
situation is analogous to a 3-state Potts ferromagnet in the
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presence of an external magnetic field that points along one
of the three allowed magnetic moment directions [59,60].
If a “positive” field is applied, i.e., a field that favors one
of the moment directions, no additional symmetries can be
spontaneously broken. However, if a “negative” field is ap-
plied, i.e., a field that penalizes one of the moment directions,
there is a residual Ising symmetry associated with the two
remaining moment directions. Such a symmetry is sponta-
neously broken in the vicinity of the zero-field ferromagnetic
transition.

Another peculiarity of the 3-state Potts model is that
its upper critical dimension is dPotts

u � 3 (for a review, see
Ref. [61]), whereas in the Ising model, d Ising

u = 4. Most
importantly, the character of the 3-state Potts transition is fun-
damentally different for dimensions above and below dPotts

u .
For d � 3, a mean-field description works and the transition
is first order, due to the existence of a cubic invariant in
the Landau free-energy expansion. However, for d = 2, the
3-state Potts transition is second order. This has important
consequences for two-dimensional systems subjected to a
3-state Potts nematic instability, such as twisted moiré sys-
tems. At high enough temperatures, d = 2 and one expects
a second-order nematic transition. However, at T = 0, since
d + z > dPotts

u for the expected values of the dynamic critical
exponent z (i.e., z = 1 for an insulator and z = 3 for a metal
[62]), the nematic transition should be first order. This not
only implies the absence of a Potts-nematic quantum critical
point (QCP), but it also indicates that, as the nematic transition
temperature is suppressed by a nonthermal tuning parameter,
a tricritical point should emerge.

In this paper, we use a phenomenological model to study
the Potts-nematic phase diagram in the presence of uni-
axial strain. The nematic order parameter is parametrized
as a two-component “vector” � = φ(cos 2θ, sin 2θ ), where
φ is the magnitude and the director angle θ is restricted
to three possible values. The tuning parameters are the
temperature T and a nonthermal control parameter a,
such as doping, which suppresses the Potts-nematic tran-
sition temperature to zero. Figure 1 summarizes our main
findings for a two-dimensional (2D) system whose under-
lying lattice has threefold rotational symmetry. At T = 0,
since the system is above the 3-state Potts upper criti-
cal dimension, it undergoes a first-order quantum nematic
phase transition upon changing the nonthermal parameter
a, where the threefold rotational symmetry C3z is bro-
ken. The fate of the transition upon application of uniaxial
strain along one of the nematic-bond directions depends
on the sign of ε̃, which is linearly proportional to the
strain ε, which in turn can be either compressive (ε < 0) or
tensile (ε > 0).

For ε̃ < 0, upon increasing the strain magnitude, a first-
order transition line transition extends to larger a values,
ending at a quantum critical end point (QCEP), analogously
to the case of the liquid-gas transition of water. The mag-
nitude of the nematic order parameter φ jumps across the
first-order transition line, whereas the nematic director an-
gle θ remains pinned by the strain direction, signaling a
symmetry-preserving quantum meta-nematic transition. Be-
yond the QCEP, there is only a crossover signaled by the
Widom line.

FIG. 1. Qualitative (ε̃, a, T ) phase diagram of a 2D Potts-
nematic system, displaying first-order transition wings (blue sur-
faces). Here, a is a nonthermal tuning parameter like doping or
pressure; ε̃ is linearly proportional to the uniaxial strain applied along
one of the high-symmetry directions of the threefold rotationally
symmetric lattice, but its sign depends on Landau coefficients of
the Potts-nematic action. For ε̃ < 0, the isolated wing of first-order
transitions is bounded by a line of classical end points that terminates
at a quantum critical end point (QCEP). No symmetries are broken
across this metanematic transition. For ε̃ > 0, the wing is bounded by
a line of classical tricritical points terminating at a quantum tricritical
point (QTCP), and is thus surrounded by a surface of continuous
transitions (red surface). The in-plane twofold rotational symmetry
is broken spontaneously across these transitions, giving rise to a
piezoelectric phase in twisted moiré systems.

For ε̃ > 0, while a first-order transition line extending to
larger values of a also appears upon increasing the strain
magnitude, the situation is completely different. The first key
difference is that the director angle θ spontaneously unpins
from the strain direction across the transition, selecting one
among two possible angles, which in turn are related by
twofold rotations with respect to in-plane axes (denoted by
C′

2). Therefore, across this first-order Ising transition, the C′
2

symmetry is broken, resulting in the emergence of an out-of-
plane ferroelectric polarization in the case of twisted moiré
systems. Because this ferroelectricity only appears in the pres-
ence of strain of a particular type (compressive or tensile),
we dub this a quantum piezoelectric transition. The second
key difference with respect to the case of ε̃ < 0 is that, upon
applying stronger strain, the first-order transition line ends at
a quantum tricritical point (QTCP), beyond which a line of
piezoelectric QCPs emerges. A Hertz-Millis type of calcu-
lation for both the piezoelectric QCPs and the metanematic
QCEP in the case of metallic systems reveals that they behave
very similarly to an Ising-nematic QCP [63–69], not only
possessing the same dynamical critical exponent z = 3, but
also cold spots at the Fermi surface.

We also compute the upper and lower spinodal lines asso-
ciated with the different first-order transition lines and employ
a generalized Stoner-Wohlfarth approach [70] to show that
the asymmetry between the effects of compressive and tensile
strains is manifested in the hysteresis curves of �(ε). In par-
ticular, because there are three action minima available, rather
than the usual two, the hysteresis curves can show multiple
loops depending on the initial conditions. These characteristic
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features of the hysteresis curves provide concrete criteria to
unambiguously determine experimentally whether a twofold
anisotropic signal observed in a system with threefold ro-
tational symmetry is due to spontaneous nematic order or
induced nematic order by strain.

The extension of the results to nonzero temperatures de-
pends on the dimensionality of the system. For d = 3, the
system is always above the 3-state Potts upper critical dimen-
sion, implying that the phase diagram at nonzero temperatures
should be similar to that at T = 0. However, for d = 2, the
Potts-nematic transition should generally become second or-
der at high enough temperatures, thus displaying the typical
critical exponents of the 2D 3-state Potts model [61]. Conse-
quently, a tricritical point at T �= 0 should exist for unstrained
systems, connecting the first-order quantum phase transition
to the second-order transition at high T . As illustrated in
Fig. 1, this tricritical point is expected to directly connect to
the QCEP and the QCTP, giving rise to two first-order transi-
tion wings. This shape of the phase diagram resembles that of
an itinerant ferromagnet [71,72], although the mechanisms by
which the T = 0 transition becomes first order are unrelated
[73–75]. An important difference is that, in the Potts-nematic
case, the first-order transition wing on the ε̃ < 0 side is iso-
lated, bounded by the line of critical end points, whereas the
wing on the ε̃ > 0 side is bounded by a line of tricritical
points, and thus exists inside a much broader wing signaling
the second-order transition to the piezoelectric phase.

The paper is organized as follows: In Sec. II we apply
mean-field theory to determine the T = 0 phase diagram of
the Potts-nematic model, focusing on the emergence of the
metanematic QCEP and the piezoelectric QTCP in Secs. II B
and II C, respectively. The Potts-nematic hysteresis curves are
analyzed in Sec. III, whereas Sec. IV presents a qualitative
analysis of the T > 0 phase diagram. Conclusions are pre-
sented in Sec. V.

II. ZERO-TEMPERATURE PHASE DIAGRAM

A. Mean-field solution of the Potts-nematic model

The “in-plane” nematic order parameter can always be
parametrized as � ≡ (φ1, φ2) = φ(cos 2θ, sin 2θ ), where
φ > 0 is the magnitude and 0 � θ � π is the nematic director
angle [12,42]. By construction, the order parameter satisfies
�(θ ) = �(θ + π ), as is the case for the classical nematic
order parameter. Physically, the components φ cos 2θ and
φ sin 2θ transform as the expectation values of the electronic
quadrupolar moments ρx2−y2 and ρxy, as well as the strain
components εxx − εxy and εxy. Here, εi j = (∂iu j + ∂ jui )/2 is
the strain tensor and u the displacement vector. The allowed
values of θ are constrained by the symmetries of underlying
crystal lattice, as well as by the presence of in-plane uniaxial
strain. Hereafter, we focus on lattices that are invariant under
threefold rotations with respect to the z axis (C3z operation)
and twofold rotations with respect to at least one in-plane axis
(C′

2 operation). These include the triangular lattice as well as
any other lattice with point groups D6h, D3h, D3d , D6, and
D3. Note that the latter two describe certain twisted moiré
superlattices, like TBG and TDBG. We assume that external
uniaxial strain is applied along a direction that makes an angle

α with respect to the x axis, and consider both tensile (ε > 0)
and compressive (ε < 0) strain. In this case, the nematic ac-
tion is given by [29,41,42,52]

Snem[�(q)] = 1

2

∫
q
φ−qχ

−1
0 (q)φq

+
∫

x

[
λ

3
φ3 cos 6θ + u

4
φ4 − γ εφ cos(2θ − 2α)

]
. (1)

Here, x = (τ, x) denotes imaginary time τ ∈ [0, β] and spatial
variable x, whereas q = (�n, q) consists of bosonic Matsub-
ara frequencies �n = 2πnT and momentum q. The inverse
nematic susceptibility is given by χ−1

0 (q) = a + q2 + �2
n,

where a is a nonthermal tuning parameter. The coupling con-
stants λ and u > 0 describe the nonharmonic terms of the
action, whereas γ is the elastonematic coupling.

For ε = 0, the action (1) maps onto the 3-state Potts model
or, equivalently, the three-state clock model. Indeed, for λ >

0, the nematic director is pinned to the three high-symmetry
directions θ = (2n + 1)π/6, whereas for λ < 0, the three al-
lowed values are θ = 2nπ/6, with n = 0, 1, 2. In the presence
of strain, there are important changes in the problem. In
this paper, we consider strain applied along one of the high-
symmetry directions of the lattice. In this case, we can set
without loss of generality α = 2mπ/6with , m = 0, 1, 2, since
the action (1) is invariant under ε → −ε and α → α + π/2.
This invariance reflects the fact that, for the nematic order
parameter, compressive strain applied along one axis has the
same effect as tensile strain applied along an orthogonal axis.
Shifting the director angle such that it is measured with re-
spect to the strain direction θ̃ = θ − α, and considering the
case of static and homogeneous fields, the action “density”
becomes

Snem(�) = a

2
φ2 + u

4
φ4 + λ

3
φ3 cos 6θ̃ − γ εφ cos 2θ̃ . (2)

Upon defining the rescaled quantities φ̃ ≡ u
|λ| φ, S̃nem ≡

u3

λ4 Snem, ã = u
λ2 a, and ε̃ ≡ γ u2

λ3 ε, we can rewrite the action in
a more convenient form

S̃nem = ã

2
φ̃2 + 1

4
φ̃4 + sgnλ

(
1

3
φ̃3 cos 6θ̃ − ε̃φ̃ cos 2θ̃

)
.

(3)

Regardless of whether the system is 2D or 3D, at T = 0 the
effective dimensionality d + z � 3, implying that the system
is above the upper critical dimension of the 3-state Potts
model. As a result, a mean-field solution is appropriate; setting
∂ S̃nem/∂φ̃ = 0 and ∂ S̃nem/∂θ̃ = 0, and assuming φ̃ �= 0, we
find the mean-field equations

ãφ̃ + sgnλ φ̃2 cos 6θ̃ + φ̃3 = sgnλ ε̃ cos 2θ̃ , (4)

sin 6θ̃ = ε̃

φ̃2
sin 2θ̃ . (5)

To make the notation less cumbersome, hereafter we drop
the tilde of all quantities except for ε̃; the latter is to emphasize
that the relevant quantity is the combination ε̃ = (γ u2/λ3)ε,
whose overall sign depends not only on whether the applied
strain ε is compressive or tensile, but also on the signs of
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the nematoelastic coupling γ and on the cubic Landau coef-
ficient λ. We first review the well-known results in the case
of no applied strain, ε̃ = 0 [42,52]. Equation (5) gives the ex-
trema θ0 = pπ/6, with p = 0, . . . , 5. Computing the second
derivative of the action at the extrema, we find ( ∂2Snem

∂θ2 )θ0 =
−12φ3(−1)psgnλ. Therefore, the minima (maxima) of the
action are given by θ0 = pπ/6 with even (odd) p if λ < 0 and
odd (even) p if λ > 0. Meanwhile, Eq. (4) becomes

a − φ0 + φ2
0 = 0 (6)

which gives

φ0,± = 1
2 (1 ± √

1 − 4a). (7)

Clearly, a φ0 �= 0 solution can only exist if a < aus ≡ 1
4 ,

which sets the upper spinodal of the first-order Potts-nematic
transition. The first-order transition takes place for a ≡ ac,0

such that Snem(φ0,+, θ0) = 0, which gives ac,0 = 2
9 . The jump

in the nematic order parameter at the transition is thus given
by �φ0 = 2

3 .
The mean-field solution for nonzero strain has been in part

discussed in Refs. [29,53] and, more broadly, in the literature
of the 3-state Potts model under the presence of a magnetic
field [59–61]. The second mean-field equation (5) can be
rewritten as (where, we recall, the director angle θ is measured
with respect to the direction strain is applied)

sin 2θ

[
cos2 2θ − 1

4

(
1 + ε̃

φ2

)]
= 0. (8)

This equation always admits two solutions: θ+ = 0, corre-
sponding to a nematic director parallel to the strain direction,
and θ− = π/2, denoting a nematic director perpendicular to
the strain direction. Note that, by definition, � → −� upon a
rotation of 90◦ of the director angle θ . In both cases, the mean-
field equation (4) that determines the φ± values corresponding
to θ± is

aφ± + φ3
± ± sgnλ (φ2

± − ε̃) = 0, (9)

whereas the action evaluated at these extrema is given by

S± = a

2
φ2

± + 1

4
φ4

± ± sgnλ

(
1

3
φ3

± − ε̃φ±

)
. (10)

To check which of these solutions (if any) is a minimum of
the action, we evaluate the second derivative:(

∂2Snem

∂θ2

)
θ±

= ±4 sgnλ φ±ε̃

(
1 − 3φ2

±
ε̃

)
. (11)

It follows that, when ε̃ < 0, the θ− (θ+) solution is always
a local action minimum for λ > 0 (λ < 0). Meanwhile, when
ε̃ > 0, the situation is more involved. Far enough from the
Potts-nematic transition of the unstrained system, where the
nematic order parameter induced by the strain is expected to
be small, φ2 	 ε̃, we find that the θ+ (θ−) solution is a local
minimum of the action for λ > 0 (λ < 0). Once the nematic
order parameter increases such that φ2 > ε̃/3, however, this
solution switches to a local maximum. This indicates that
another solution is available. Indeed, the mean-field equation

for θ , Eq. (8), admits two additional solutions:

θ∗
± = ±1

2
arccos

⎛
⎝1

2

√
1 + ε̃

φ2

⎞
⎠ (12)

provided that the argument is smaller than 1, i.e., φ2 > ε̃/3.
This is the same condition for which the θ+ (θ−) solution be-
comes a local maximum of the action for λ > 0 (λ < 0). Note
that, in the director space spanned by the angle θ , the points
θ∗
+ and θ∗

− are related by a twofold rotation with respect to the
horizontal axis (as well as the vertical axis), which indicates
that selecting one of the two solutions will break a spatial
symmetry of the system. We will return to this point later.
Using Eq. (12), it is straightforward to obtain the mean-field
equation for the corresponding nematic amplitude φ∗

±

aφ∗
± + (φ∗

±)3 ∓ sgnλ φ∗
±
√

ε̃ + (φ∗±)2 = 0 (13)

as well as the values of the action evaluated at these solutions:

S∗
± = a

2
(φ∗

±)2 + 1

4
(φ∗

±)4 ∓ sgnλ

3
[ε̃ + (φ∗

±)2]3/2. (14)

Equation (13) can be solved in a straightforward way:

φ∗
± =

√
1
2 − a ±

√
ε̃ − a + 1

4 . (15)

It turns out that the φ∗
− solution is either a saddle point of

the action or does not satisfy the condition φ2 < ε̃/3. Conse-
quently, φ∗

+ is the desired solution, yielding

θ∗
± = ±1

2
arccos

⎛
⎜⎜⎝1

2

⎡
⎢⎣1 + ε̃

1
2 − a +

√
ε̃ − a + 1

4

⎤
⎥⎦

1/2
⎞
⎟⎟⎠.

(16)

We therefore obtain three different viable solutions for ε̃ �=
0: θ+ = 0, θ− = π/2, and θ∗

± given by Eq. (16). Following our
analysis above, either θ− or θ+ is expected to be the global
minimum for ε̃ < 0, depending on whether λ > 0 or λ < 0,
respectively. On the other hand, for ε̃ > 0, two different min-
ima are expected for distinct ranges of a: θ+ or θ− (for λ > 0
and λ < 0, respectively) and θ∗

±.
The full phase diagram can be directly obtained by compar-

ing the actions evaluated at the three solutions, Eqs. (10) and
(14), after solving for the corresponding nematic amplitude
in Eqs. (9) and (16). The resulting phase diagram is shown
in Fig. 2; as anticipated, it is analogous to the phase diagram
of the ferromagnetic 3-state Potts model in the presence of
a magnetic field [59,60]. For concreteness, we consider the
case in which λ > 0. For ε̃ < 0, we indeed find that the
θ− = π/2 solution is the global minimum for any value of
a. This does not mean, however, that the system does not
undergo a phase transition. As denoted by the dashed line
in Fig. 2, for small enough |ε̃| and close enough to the ne-
matic transition at zero strain, ac = 2

9 , the system undergoes
a symmetry-preserving first-order transition in which the ne-
matic amplitude φ− jumps, while the nematic director angle
θ remains fixed. This is expected since the nematic order
parameter undergoes a first-order transition in the absence of
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FIG. 2. Zero-temperature (ε̃, a) phase diagram of a Potts-
nematic system. The red and blue regions correspond to the phases
in which the director angle θ is fixed to the high-symmetry direc-
tions θ+ = 0 and θ− = π/2, respectively, whereas the green region
corresponds to the piezoelectric phase, in which θ = θ∗

± is not fixed
[see Eq. (12)]. For ε̃ < 0, there is a first-order metanematic transition
line (dashed black) that ends at a QCEP. Beyond the QCEP, there
is a crossover signaled by the Widom line (solid gray). For ε̃ > 0,
the first-order piezoelectric transition, which spontaneously breaks
in-plane twofold rotational symmetry, ends at a QTCP, after which it
becomes second order (solid black line).

strain and ε̃ acts as a conjugate field to the nematic order pa-
rameter. We dub this a metanematic quantum phase transition,
in analogy to the T = 0 metamagnetic transition that takes
place in a metallic ferromagnet subjected to an external field.
The first-order line ends in a critical end point, similarly to the
liquid-gas transition of water. This side of the phase diagram
is further discussed in Sec. II B.

The ε̃ > 0 side of the phase diagram is qualitatively differ-
ent. As displayed in Fig. 2, for a � ac, the global minimum is
at θ+ = 0. However, upon approaching the nematic transition
point of the unstrained system, ac,0 = 2

9 , the nematic director
angle that minimizes the action switches to θ∗

±. In contrast
to the transition on the ε̃ < 0 side of the phase diagram,
this is not a symmetry-preserving transition since the spatial
symmetry that relates the two nematic director angles θ∗

+ and
θ∗
− is spontaneously broken. For small enough ε̃, this transition

is first order whereas for large enough ε̃, it becomes second
order. Therefore, there is a tricritical point, marked in the
figure, for intermediate values of ε̃. We will analyze this side
of the phase diagram in more detail in Sec. II C.

The change in the nematic director angle upon decreasing
a for ε̃ > 0, discussed also in Ref. [42], can be understood
directly from the action in Eq. (3). For λ > 0, the cubic term
is minimized for θ = π/6, π/2, 5π/6 and maximized for
θ = 0, π/3, 2π/3. The linear term, on the other hand, is min-
imized by θ = π/2 and maximized by θ = 0, for ε̃ < 0, and
minimized by θ = 0 and maximized by θ = π/2 for ε̃ > 0.
Therefore, in the regime ε̃ < 0, both the linear and cubic
terms can be simultaneously minimized by the same nematic
director angle, θ = π/2. In contrast, in the regime ε̃ > 0, the
minimum of the cubic term is the maximum of the linear
term and vice versa. For large enough values of a, where the
amplitude of the nematic order parameter is small, the linear

term wins over the cubic one. Once the system approaches its
intrinsic nematic instability, the nematic amplitude increases
and the two terms eventually give comparable contributions to
the action. This frustration between the minima and maxima
of the cubic and linear terms is lifted by a compromise value
for the nematic director θ . Indeed, Eq. (12) for θ∗

± interpolates
between 0 when φ2 = ε̃/3, which minimizes the linear term,
to π/6 and 5π/6 when φ2 � ε̃/3, which minimizes the cubic
term.

B. Metanematic quantum critical end point

To gain further insight into the ε̃ < 0 region of the phase
diagram, we substitute the value of the nematic director angle
that minimizes the action θ− = π/2 in Eq. (3); recall that we
are considering λ > 0. We then obtain an action that depends
only on the magnitude φ:

S(ε̃<0)
nem (φ) = a

2
φ2 + 1

4
φ4 − 1

3
φ3 + ε̃φ. (17)

To proceed, we recall that, for zero strain ε̃ = 0, the system
undergoes a first-order transition at ac,0 = 2

9 in which the
nematic order parameter jumps by �φ0 = 2

3 . Therefore, it is
convenient to introduce the shifted nematic order parameter
δφ ≡ φ − �φ0/2, as it effectively removes the cubic term
above. We find

S(ε̃<0)
nem (δφ) = A

2
(δφ)2 + 1

4
(δφ)4 − H δφ, (18)

where we dropped a constant term and defined

A ≡ a − 1
3 , (19)

H ≡ −ε̃ − 1
3 (a − ac,0). (20)

Equation (18) is nothing but the Ising model in the pres-
ence of an external field H , widely employed to describe
symmetry-preserving phase transitions, such as the Mott tran-
sition [76,77] and certain magnetic transitions [78]. It consists
of a first-order transition line parametrized by H = 0, below
which the order parameter φ jumps between two nonzero
values, signaling a meta-nematic transition. The first-order
transition line, and thus the jump in φ, terminates at the so-
called critical end point, given by A = H = 0, which in our
case is a quantum critical end point (QCEP), since the system
is at T = 0. This allows us to obtain the location of the QCEP
in the (ε̃, a) phase diagram

aQCEP = 1
3 , (21)

ε̃QCEP = − 1
27 (22)

as well as the equation describing the first-order transition
line:

ac(ε̃) = 2
9 − 3ε̃ for ε̃QCEP < ε̃ < 0. (23)

The behavior of the magnitude of the nematic order pa-
rameter φ and of the nematic component projected along the
strain direction φ1 = φ cos 2θ is shown in Fig. 3 as a function
of the nonthermal tuning parameter a for fixed values of strain
ε̃ < 0. For ε̃ < ε̃QCEP, as shown in Figs. 3(a) and 3(b), the
nematic order parameter evolves continuously and displays a
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FIG. 3. Behavior of the nematic order parameter for fixed ε̃ < 0
across the crossover Widom line [(a) and (b)] and the metanematic
transition line [(c) and (d)], as defined in the phase diagram of
Fig. 2. Representative values of ε̃ are chosen from the left and right
side of ε̃QCEP = − 1

27 ≈ −0.037, respectively. The top panels show
the magnitude of the nematic order parameter φ and the bottom
panels, the nematic component projected along the strain direction,
φ1 = φ cos 2θ ; in all cases, the nematic director angle remains fixed
at π/2. The horizontal axis corresponds to the nonthermal tuning
parameter a measured relative to unstrained Potts-nematic transition
point ac,0 = 2

9 .

crossover behavior at a characteristic a value corresponding
to the Widom line located at the left of the QCEP.On the other
hand, for ε̃ > ε̃QCEP, the nematic order parameter undergoes
a jump between two nonzero values, signaling a symmetry-
preserving metanematic transition, as shown in Figs. 3(c)
and 3(d).

To characterize the properties of the QCEP, we calculate
the dynamical critical exponent z. For an insulator, the bare
dynamics of the nematic susceptibility χ0(q) is unchanged by
the coupling to the electrons, resulting in z = 1. For a metal,
we employ a Hertz-Millis approach [62,79,80] to compute the
one-loop polarization bubble �(q) that renormalizes the ne-
matic susceptibility χ−1(q) = χ−1

0 (q) − �(q). As discussed
elsewhere [41,42], for a single-band system, the interaction
(with coupling constant g) between the nematic field � and the
electronic quadrupolar charge density is given by the Hamil-
tonian

HI = gφ
∑

k

cos(2βk − 2θ )c†
k+q/2,σ ck−q/2,σ , (24)

where tan βk ≡ ky/kx and the annihilation operator ck,σ refers
to an electron with momentum k and spin σ . Spin indices are
implicitly summed. Recall that, in our notation, θ is measured
with respect to the strain direction α. Therefore, it is conve-
nient to define β̃k ≡ βk − α. The coupled nematic-electronic
action is then given by

S[�, ψ,ψ†] =Snem[�] +
∫

k
(−iωn + ξk )ψ†

kσ
ψkσ

+ g
∫

k,q
φq cos(2β̃k − 2θ̃q)ψ†

k+q/2,σ
ψk−q/2,σ ,

(25)

where we reintroduced the tilde in θ̃ for the sake of clarity.
Here, ψ , ψ† are Grassmann variables, ξ0,k = εk − μ is the
electronic dispersion, and k = (ωn, k), where ωn = 2π (n +
1/2)kBT is the fermionic Matsubara frequency. In the ε̃ < 0
side of the phase diagram, the nematic director θ̃ is fixed
at θ̃− = π/2. Therefore, in terms of δφ ≡ φ − �φ0/2, the
interacting action becomes

Sint = −g
∫

k,q
δφq cos(2β̃k )ψ†

k+q/2ψk−q/2. (26)

Moreover, the electronic dispersion is renormalized to
ξk = ξ0,k − g

3 cos(2β̃k ), signaling the Fermi surface distortion
caused by the nonzero nematic order parameter. The coupling
in Eq. (26) is analogous to the case of a metal in the presence
of an Ising-nematic QCP [63–66]. The lowering from 3-state
Potts symmetry to Ising symmetry is due to the external strain
pinning the nematic director. The residual Ising degree of
freedom is not associated with any symmetry of the system,
but a consequence of the fact that the transition in the absence
of the conjugate field is first order. The situation is analogous
to the QCEP of a metallic ferromagnet in the presence of a
magnetic field [80].

It is now straightforward to compute the polarization bub-
ble. To leading order in g, it is given by

�(q) = −2g2
∫

k
cos2(2β̃k )G0,k+q/2G0,k−q/2, (27)

where G−1
0,k = iωn − ξ0,k + g

3 cos(2β̃k ) is the fermionic prop-
agator for the distorted band dispersion. We find

δ�(q) = − g2

2EF
f1

(
g

3EF
, cos 2β̃q

) |�|
vF |q|

− g2

2EF
f2

(
g

3EF
, cos 2β̃q

)(
�

vF |q|
)2

, (28)

where EF and vF are the Fermi energy and the Fermi velocity
of the undistorted Fermi surface, δ�(q) ≡ �(q) − �(q,� =
0), and we defined the functions

f1(g̃, x) = [(1 + g̃2)x − 2g̃]2

π (1 − g̃2)5/2(1 − g̃x)5/2
, (29)

f2(g̃, x) = 4g̃(2 + g̃2)x − 9g̃2 − (2 + g̃2)(2x2 − 1)

π (1 − g̃2)5/2(1 − g̃x)3
. (30)

Thus, as in the case of an Ising-nematic QCP, the Hertz-
Millis dynamical critical exponent is z = 3 since f1(x) �
0, except for the cold spots defined by f1(xcs) = 0. From
Eq. (29), we find that the cold spots are located at

β̃q = βq − α = 1

2
arccos

(
6gEF

9E2
F + g2

)
. (31)

Due to the Fermi-surface distortion caused by the nonzero
nematic order parameter, the cold spots shift away from the
value β̃q = ±π/4, which is recovered in the limit g�φ → 0.
Moreover, because f2(xcs) > 0, at the cold spots the dynami-
cal critical exponent is given by z = 2.
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C. Piezoelectric quantum tricritical point

We now move to the ε̃ > 0 side of the (ε̃, a) phase diagram.
As discussed above, there are two different minima: θ+ = 0
far above ac and θ∗

±, as given by Eq. (12), far below ac. Our
numerical results showed that the transition between the two
corresponding phases is first order for small strain but second
order for large strain. To understand this behavior analytically,
we start from Eq. (3) and substitute φ =

√
ε̃

−1+4 cos2 2θ
(recall

that we are considering λ > 0). Near the QTCP, we can ex-
pand the action to leading order in θ . Dropping a constant
term, we obtain

S(ε̃>0)
nem (θ ) = A

2
θ2 + U

4
θ4 + W

6
θ6, (32)

where we defined

A ≡ 16ε̃(3a − 2
√

3ε̃ + ε̃)

27
, (33)

U ≡ 64ε̃(18a − 13
√

3ε̃ + 10ε̃)

81
, (34)

W ≡ 64ε̃(1512a − 1183
√

3ε̃ + 1224ε̃)

1215
. (35)

The nematic order parameter in this case is given by

φ =
√

ε̃

3

(
1 + 8θ2

3

)
. (36)

Before analyzing the behavior of Eq. (32), let us discuss the
nature of the phase transition from the θ− = 0 phase to the θ∗

±
phase. In contrast to the ε̃ < 0 case discussed in Sec. II B, here
the emergent Ising degree of freedom θ is related to a symme-
try of the system, namely, twofold rotations with respect to
an in-plane axis C′

2. Indeed, as pointed out in Ref. [42], when
the director moves away from the high-symmetry directions
pπ/6 (with p = 1, . . . , 5), which is the case only in the θ∗

±
phase, the twofold rotational symmetry C′

2 is spontaneously
broken, in addition to the threefold rotational symmetry C3z

that is explicitly broken by the external strain.
More formally, focusing on a lattice with point group

D6h, strain applied along a high-symmetry direction low-
ers the point-group symmetry to D2h. The onset of the θ∗

±
phase breaks the in-plane twofold rotational symmetry, fur-
ther lowering the point-group symmetry to C2h. In the phase
diagram of Fig. 2, starting from the ε̃ = 0 axis slightly above
the nematic transition point (a > ac,0) and then increasing ε̃

(i.e., ε̃ > 0), the sequence of point-group-symmetry lowering
is D6h → D2h → C2h. Importantly, while the first symme-
try breaking is explicit and caused by any nonzero ε̃, the
second one is spontaneous and requires a threshold value
for ε̃. In contrast, upon decreasing ε̃ (i.e., ε̃ < 0), there is
only the explicit symmetry breaking D6h → D2h caused by

a nonzero ε̃. Following the same steps for the other point
groups considered here, we find the following sequences
of symmetry lowering upon increasing ε̃: D3h → C2v → Cs,
D3d → C2h → S2, D6 → D2 → C2, and D3 → C2 → C1.

This result becomes even more interesting in the case of
lattices described by the point groups D6 and D3, which lack
any mirror symmetries. These are the groups that describe the
symmetries of twisted bilayer graphene and twisted double-
bilayer graphene. In these cases, spontaneous breaking of the
in-plane twofold rotational symmetry in the θ∗

± phase results
in the condensation of an electric polarization Pz pointing
out of the plane. This can be seen by analyzing how the
Potts-nematic order parameter couples to Pz in these groups.
Following Ref. [81], the nematoelectric action is given by

S′ = ϒ

6
Pzφ

3 sin 6θ = ϒ

6
Pzφ

3 sin 6θ̃ , (37)

where ϒ is a coupling constant. Expanding for small θ , we
find

S′ ≈ ϒ

(
ε̃

3

)3/2

Pz θ. (38)

Therefore, a nonzero θ necessarily triggers a nonzero out-of-
plane electric polarization, which allows us to identify the
θ∗
± phase with a ferroelectric phase. However, because this

phase is only accessible in the presence of externally applied
uniaxial strain, we dub it a piezoelectric phase. We emphasize
that the onset of piezoelectricity is a specific property of D6

and D3 lattices only.
The shape of the piezoelectric transition line in the (ε̃, a)

phase diagram, as well as the character of the transition, can be
directly obtained from minimization of Eq. (32). The QTCP
takes place for A = U = 0, yielding

aQTCP = 7
16 , (39)

ε̃QTCP = 3
16 . (40)

For ε̃ > ε̃QTCP, the piezoelectric transition is second order
since U > 0. In this regime, the transition line is given by A =
0, which corresponds to

ac(ε̃) = 2
√

3ε̃ − ε̃

3
for ε̃ > ε̃QTCP. (41)

On the other hand, for 0 < ε̃ < ε̃QTCP, U < 0 and the piezo-
electric transition is first order. Minimizing Eq. (32), we find
that the first-order transition takes place when the following
condition is met:

A = 3U2

16W , (42)

which corresponds to

ac(ε̃) = −1278ε̃ + 1606
√

3ε̃ + √
15ε̃

√
25344ε̃ − 12312

√
3ε̃ + 4487

2214
for 0 < ε̃ < ε̃QTCP. (43)

Note that this is an approximate expression valid only close
to ε̃QTCP. In Fig. 4, we show the behavior of different

components of the nematic order parameter, the magnitude φ,
the projection φ1 = φ cos 2θ , and the angle θ , as a function
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FIG. 4. Behavior of the nematic order parameter for fixed ε̃ > 0
across the first-order transition line [(a)–(c)] and the second-order
transition line [(d)–(f)], as defined in the phase diagram of Fig. 2.
Representative values of ε̃ are chosen from the left and right sides of
ε̃QTCP = 3

16 ≈ 0.19, respectively. The top panels show the magnitude
of the nematic order parameter φ; the middle panels show the ne-
matic component projected along the strain direction φ1 = φ cos 2θ ;
the bottom panels show the nematic director angle θ . The horizontal
axis corresponds to the nonthermal parameter a measured relative
to unstrained Potts-nematic transition ac,0 = 2

9 . The red curve corre-
sponds to the θ = 0 phase whereas the green curve corresponds to
the θ = θ∗

± phase.

of the nonthermal tuning parameter for two different values
of ε̃ > 0. For ε̃ < ε̃QTCP, all components change discontin-
uously across the piezoelectric transition [Figs. 4(a)–4(c)],
whereas for ε̃ > ε̃QTCP, all components change continuously
[Figs. 4(d)–4(f)]. We note that, for large enough ε̃ > 0, the
derivative of the second-order transition line with respect to
ε̃ changes, as described by Eq. (41), resulting in a reentrance
of the θ+ = 0 phase as a function of strain for fixed a. This
behavior is not shown in the phase diagram of Fig. 2 because
it only happens for very large strain values ε̃ > 3 (for compar-
ison, recall that the nematic order-parameter jump across the
unstrained Potts-nematic transition is �φ0 = 2

3 ).
We finish this section by discussing the properties of the

line of piezoelectric QCPs described by Eq. (41). As in the
case of the QCEP discussed in the previous section, the dy-
namical critical exponent is z = 1 in the case of an insulator.
For a metallic system, we start from the action (25), substitute
φq =

√
ε̃
3 , and expand for small θ to obtain

Sint =
√

4ε̃

3
g
∫

k,q
θq sin(2β̃k )ψ†

k+q/2ψk−q/2, (44)

where, as before, β̃q = βq − α. Note that the electronic
dispersion is also renormalized due to the external strain

ξk = ξ0,k +
√

ε̃
3 g cos(2β̃k ). Like the QCEP case studied in

Sec. II B, the form factor in Eq. (44) is that of an Ising-nematic
QCP. Interestingly, the two Ising-nematic form factors in
Eqs. (26) and (44) are “orthogonal” in the nematic space,
corresponding to the longitudinal and transverse modes of a
hypothetical XY nematic order parameter [63,65]. This is a
consequence of the fact that, for ε̃ < 0, the nematic direc-
tor angle is pinned and the nematic amplitude is fluctuating,
whereas for ε̃ > 0 it is θ that fluctuates.

To one-loop order, the polarization bubble is given by

�(q) = −8

3
ε̃g2

∫
k

sin2(2β̃k )G0,k+q/2G0,k−q/2, (45)

which evaluates to

δ�(q) = − ε̃g2

2EF
f3

(
g

EF

√
ε̃

3
, cos 2β̃q

)
|�|

vF |q|

− ε̃g2

2EF
f4

(
g

EF

√
ε̃

3
, cos 2β̃q

)(
�

vF |q|
)2

, (46)

where we defined the functions

f3(g̃, x) = 4

3π

1 − x2√
1 − g̃2(1 + g̃x)5/2

, (47)

f4(g̃, x) = 4

3π

3g̃2 + 4g̃x + (2 − g̃2)(2x2 − 1)

(1 − g̃2)3/2(1 + g̃x)3
. (48)

Thus, within a Hertz-Millis approximation for the dynami-
cal critical exponent z, we find z = 3, except for the cold
spots parametrized by f3(xcs) = 0, for which z = 2. The last
result follows from the fact that, since g̃ is small, f4(xcs) >

0. Moreover, note that f3(x) � 0 for any x. Interestingly,
in contrast to the QCEP case, here the cold spots are the
same as in the case of the undistorted Fermi surface β̃q =
0, π/2. This can be understood geometrically by noting
that the semimajor axes of the elliptical Fermi surface coin-
cide with its cold spots. As a result, cold-spot fermions at
βk = 0 (βk = π/2) will necessarily exchange underdamped
collective bosons with momentum direction β̃q = π/2
(β̃q = 0).

III. HYSTERESIS AND SPINODAL LINES

The phase boundaries in the phase diagram of Fig. 2
were obtained by determining the global minimum of the
action. In the case of first-order transitions, however, the ac-
tion also has local minima, which correspond to metastable
phases. While they are formally inaccessible in true equi-
librium, they can be probed via hysteresis measurements
in which the order parameter � is measured upon cycling
the conjugate field ε̃. The interesting aspect of the Potts-
nematic state is that the action has three discrete minima
rather than two, which should lead to more complex hys-
teresis loops as compared to the standard Ising-nematic
case.

To calculate these hysteresis curves, we first derive the
upper and lower spinodals associated with the first-order
transition lines in Fig. 2. As in Sec. II, we consider λ > 0
and drop the tilde of the rescaled variables (except for ε̃).
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The spinodals are curves on the (ε̃, a) plane that bound the
regions of metastability of the different phases. We con-
sider first the phase θ− = π/2; it corresponds to a local
minimum as long as the following metastability conditions
are met:

∂φSnem(θ = π/2) = φ3 − φ2 + aφ + ε̃ = 0, (49)

∂2
φSnem(θ = π/2) = 3φ2 − 2φ + a > 0,

∂2
θ Snem(θ = π/2) = 3φ3 − ε̃φ > 0. (50)

Since ∂θ∂φSnem vanishes, positive-definiteness of the Hes-
sian matrix of second derivatives (∂i∂ jSnem) is ensured by
Eq. (50). It is convenient to define the cubic discriminant
of Eq. (49), Dπ/2 = a2 − 4a3 + 4ε̃ − 27ε̃2 − 18aε. When
Dπ/2 < 0, Eq. (49) has only one real φ solution, whereas
when Dπ/2 > 0, there are three real φ solutions. In the
latter case Dπ/2 > 0, the largest and smallest values of φ

that solve Eq. (49) correspond to the two solutions asso-
ciated with the metanematic transition. On the other hand,
in the former case Dπ/2 < 0, the single real solution in-
dicates that there is no metanematic transition, as is the
case to the left of the QCEP. This suggests that Dπ/2 = 0
gives the spinodals associated with the metanematic tran-
sition. There is, however, one subtlety: by construction,
φ must be positive. Therefore, it is not enough to en-
sure the existence of a real solution, but of a real and
positive solution. It turns out that, when ε̃ < 0, the real so-
lutions of Eq. (49) in both cases (Dπ/2 > 0 and Dπ/2 <

0) are always positive. However, when ε̃ > 0, the sin-
gle solution in the Dπ/2 < 0 case is negative, whereas
only one among the two positive solutions in the Dπ/2 >

0 case is an action minimum. Taking these conditions
into account and solving the equation Dπ/2 = 0 for a, we
find the equations describing the spinodals of the metane-
matic transition. The three solutions of Dπ/2 = 0 can be
written as

an(ε̃) = 1

12

(
1 − e2niπ/3 b(ε̃) + e−2niπ/3 216ε̃ − 1

b(ε̃)

)
, (51)

b(ε̃) = [108ε̃(54ε̃ − 5) + 24
√

3ε̃(27ε̃ + 1)3 − 1]
1
3 (52)

with n = 0, 1, 2. Then, the upper spinodal is given by

ameta
us (ε̃) =

{
a1(ε̃), for ε̃QCEP < ε̃ < ε̃∗
a0(ε̃), for ε̃ > ε̃∗

(53)

with ε̃∗ = 1
216 defined such that b(ε̃∗) = 0. For the lower

spinodal, we obtain

ameta
ls (ε̃) = a2(ε̃), for ε̃QCEP < ε̃ < 0.

Here, the subscripts “us” and “ls” denote upper spin-
odal and lower spinodal, respectively. In particular, ameta

us (ε̃)
gives the limit of metastability of the θ− phase below the
metanematic transition line, whereas ameta

ls (ε̃) gives the limit of
metastability of the θ− phase above the metanematic transition
line. These spinodal lines are shown by the blue dashed lines
in the phase diagram of Fig. 5.

FIG. 5. The zero-temperature phase diagram of Fig. 2 is shown
with the spinodal lines included (top panel). The two blue dashed
lines on the left side (ε̃ < 0) are the upper and lower spinodals
corresponding to the two phases associated with the metanematic
transition. They coincide at the QCEP. The green and red dashed
curves on the right side (ε̃ > 0) are the upper and lower spinodals
of the θ = θ∗

± (piezoelectric) and θ = 0 phases, respectively. They
coincide at the QTCP. The bottom panel is a zoom of the top panel;
the purple arrows show the values of a for which the hysteresis curves
�(ε̃) in Fig. 6 are shown.

We now analyze the metastability of the θ+ = 0 phase. The
metastability conditions are given by

∂φSnem(θ = 0) = φ3 + φ2 + aφ − ε̃ = 0, (54)

∂2
φSnem(θ = 0) = 3φ2 + 2φ + a > 0,

∂2
θ Snem(θ = 0) = −3φ3 + ε̃φ > 0. (55)

Applying a similar analysis as in the θ− = π/2 case, we find
that θ+ = 0 ceases to be a local minimum when the second
condition of Eq. (55) fails. Plugging in φ2 = ε̃/3 into Eq. (54),
we find

apiezo
ls (ε̃) = 2

√
3ε̃ − ε̃

3
, for 0 < ε̃ < ε̃QTCP (56)

which corresponds to the lower spinodal of the first-order
piezoelectric phase transition, shown by the dashed red line
in the phase diagram of Fig. 5. To obtain the upper spinodal
of this transition, we need to analyze the metastability of the
θ = θ∗

± phase. Equation (3) gives the nematic magnitude φ∗
+

in the θ∗
± phase. For ε̃ < ε̃QTCP, the condition (φ∗

+)2 � ε̃/3
required for θ∗

± in Eq. (12) to exist is always satisfied.
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FIG. 6. Hysteresis curves of the nematic order parameter as a function of uniaxial strain ε̃ for four representative values of a marked by
the purple arrows in Fig. 5. (a) Corresponds to a = 0.16; (b) to a = 0.225; (c) to a = 0.24; and (d) to a = 0.26. Left, middle, and right panels,
which are identified by the numbers 1, 2, and 3, respectively, correspond to the nematic magnitude φ, the nematic director angle θ , and the
nematic component projected along the direction of the strain φ1 = φ cos 2θ . Red, green, and blue colors denote the action minimum θ = 0,
θ = θ∗

±, and θ = π/2, respectively.

Moreover, the φ∗
+ solution exists as long as the argument of

the square root in Eq. (3) is positive, a < ε̃ + 1
4 . This therefore

defines the limit of metastability of the θ∗
± phase, which cor-

responds to the upper spinodal of the first-order piezoelectric
transition. It is shown by the dashed green line in Fig. 5(a) and
given by

apiezo
us (ε̃) = ε̃ + 1

4 , for ε̃ < ε̃QTCP (57)

Interestingly, for ε̃ > ε̃QTCP, the condition (φ∗
+)2 � ε̃/3

would imply an upper spinodal apiezo
us (ε̃) = 2

√
3ε̃−ε̃
3 , which is

identical to what the lower spinodal would be in this strain
range [see Eq. (56)]. The coincidence between the upper and

lower spinodals implies that the transition is actually second
order. Indeed, these would-be spinodals have the same expres-
sion as the one describing the second-order transition line,
Eq. (41).

We are now in position to analyze the hysteresis curves
�(ε̃) as the strain ε̃ is cycled. We employ the Stoner-
Wohlfarth approach [70]: starting deep in one of the ordered
states, we assume that the system remains in this state until
it is no longer a local minimum of the action, i.e., until its
spinodal line is crossed, at which point the system moves to
another minimum. In the Ising-nematic case, this last step is
straightforward, as there is only one minimum available in the
action landscape after the spinodal line is crossed. However,
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FIG. 7. Left panel: Qualitative (ε̃, a, T ) phase diagram of a 2D Potts-nematic system (same as Fig. 1). Middle panel: (h, a, T ) phase
diagram of an itinerant ferromagnet, where h is the magnetic field (see Refs. [71,72]). The first-order wings are symmetric with respect to
h and are bounded by a line of classical critical end points terminating at QCEPs. Right panel: (ε̃, a, T ) phase diagram of an Ising-nematic
system. There is a second-order transition only along the ε̃ = 0 plane. Any nonzero strain along the nematic director directions smears the
transition completely.

in the Potts-nematic case, there can be two local minima. To
decide which of the two minima the system chooses, we em-
ploy a “gradient-descent criterion.” Specifically, we introduce
a “time” variable s, promoting � to a dynamical field �(s),
and define a generalized gradient-descent equation

φ̇i = −ηi j
∂Snem

∂φ j
, (58)

where, we recall, � ≡ (φ1, φ2) = φ(cos 2θ, sin 2θ ). Here,
repeated indices are implicitly summed, φ̇i = ∂φi/∂s, and ηi j

is a positive-definite matrix. The last condition ensures that
Eq. (58) remains purely diffusive, such that � approaches a
local minimum of Snem as s → ∞. We set ηi j = ηδi j with
η > 0, in which case solutions to Eq. (58) are trajectories
of steepest descent. We rescale s → s′ = s/η and redefine
φ̇i = ∂φi/∂s′ to obtain the autonomous system

φ̇1 = −aφ1 − φ1
(
φ2

1 + φ2
2

) − (
φ2

1 − φ2
2

) + ε̃,

φ̇2 = −aφ2 − φ2
(
φ2

1 + φ2
2

) + 2φ1φ2. (59)

The procedure we adopt once the system approaches a
spinodal at ε̃∗, for a fixed a value, is as follows: let ε̃+ and
ε̃− be strain values near ε̃∗ and within the unstable and stable
sides of the spinodal curve, respectively. Let �

(ε̃− )
min be the

local minimum of the action at ε̃ = ε̃−, which disappears once
ε̃ = ε̃+. We then set ε̃ = ε̃+ in Eq. (59) and choose several
initial conditions �(0) in a narrow neighborhood of �

(ε̃− )
min ,

|�(0) − �
(ε̃− )
min | � 10−4, letting the system evolve until a new

local minima is encountered. We found that �(s) approaches
the same minimum for all initial conditions we investigated,
which suggests that the outcome is insensitive to any initial
condition within a small vicinity of �

(ε̃− )
min .

We applied this procedure to four representative fixed val-
ues of a in the phase diagram of Fig. 5, marked by the purple
arrows in the bottom panel. They each correspond to one of
the four regions bounded by the values of a in which two

different spinodal lines intersect, namely,

a1 = −39 + 16
√

6 ≈ 0.1918,

a2 = −45 + 13
√

13

8
≈ 0.2340,

a3 = aPotts
us = 0.25. (60)

Here, a1 corresponds to the crossing between the blue and red
dashed spinodal lines; a2 corresponds to the lower crossing
between the blue and green dashed spinodal lines; and a3

corresponds to the upper crossing between the blue and green
dashed spinodal lines, which also coincides with the upper
spinodal of the unstrained Potts transition.

The hysteresis curves for the four representative a val-
ues marked in Fig. 5 are shown in Fig. 6. In this figure,
we present the hysteresis curves for the nematic magnitude
φ(ε̃), the nematic director angle θ (ε̃), and the nematic com-
ponent projected along the strain direction φ1 = φ cos 2θ .
Figures 6(a1)–6(a3) show the case a = 0.16 < a1. The system
starts deep inside the θ∗

± green phase (piezoelectric phase)
when ε̃ is large and positive. Upon decreasing ε̃ (from right to
left in Figs. 6(a1)–6(a3)), the system remains in the metastable
θ∗
± phase until it reaches the dashed green spinodal line,

where ε̃ < 0. At this point, the only available minimum is
the θ− = π/2 blue phase below the metanematic transition.
Once we reverse ε̃ and start increasing it [from left to right in
Figs. 6(a1)–6(a3)], the system remains in the θ− = π/2 phase
until the spinodal blue dashed line is crossed in the ε̃ > 0
side of the phase diagram, at which point the system moves
back to the θ∗

± green phase. In terms of the φ1 component, the
hysteresis curve is a rather standard one, albeit not symmetric
with respect to either the φ1 or the ε̃ axes.

Figures 6(b1)–6(b3) show the hysteresis curves for the case
a1 < a = 0.225 < a2. Starting deep from the ε̃ > 0 side of
the phase diagram and then decreasing ε̃ (i.e., going from
right to left in the plots), the situation is the same as in
Figs. 6(a1)–6(a3), namely, the system remains in the θ∗

± green
phase until the green spinodal line is crossed on the ε̃ < 0
side of the phase diagram. However, upon reversing ε̃ and
increasing it (i.e., going from left to right in the plots), the
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situation changes. Once the blue dashed spinodal line is
crossed, on the ε̃ > 0 side of the phase diagram, there are two
local minima available: the global minimum corresponding to
the θ∗

± green phase and the metastable minimum correspond-
ing to the θ+ = 0 red phase. By solving Eq. (58), we find that
the system moves to the θ+ = 0 red phase and remains at this
local minimum until the red dashed spinodal line is crossed,
at which point the system finally moves back to the θ∗

± green
phase. This behavior results in multiloop hysteresis curves.

The case a2 < a = 0.24 < a3 is depicted in Figs. 6(c1)–
6(c3). The behavior upon increasing ε̃ (i.e., going from left to
right in the plots) is the same as in Figs. 6(b1)–6(b3). On the
other hand, the sequence of spinodals crossed upon decreasing
ε̃ (i.e., going from right to left in the plots) is different: once
the green dashed spinodal line is crossed, there are now two
local minima available, corresponding to the two θ− = π/2
blue phases associated with the two sides of the metanematic
transition. The solution of Eq. (58) shows that the system
moves to the global minimum, where it remains as ε̃ continues
being decreased. Therefore, although the sequence of spin-
odals crossed is different from the case of Figs. 6(b1)–6(b3),
the sequence of metastable phases probed is the same.

Finally, Figs. 6(d1)–6(d3) show the case a = 0.26 > a3.
Upon decreasing ε̃ (right to left in the plots), the green dashed
spinodal line is now crossed on the ε̃ > 0 side of the phase
diagram. The only available minimum is the θ+ = 0 phase,
which however ceases to be a solution once the ε̃ = 0 line
is crossed. At this axis, φ → 0, which is a consequence of
the fact that the system is above the upper spinodal a3 of the
unstrained Potts-nematic transition. The system then moves to
the θ− = π/2 blue phase above the metanematic transition,
where it remains until the lower blue dashed spinodal line
is crossed. At this point, the system moves to the θ− = π/2
blue phase below the metanematic transition. The behavior
upon increasing ε̃ (left to right in the plots) can be understood
in a similar manner. The resulting hysteresis curves display
multiple loops which, however, do not cross the origin since
φ = 0 when ε̃ = 0.

IV. NONZERO-TEMPERATURE PHASE DIAGRAM

At T = 0, the Potts-nematic phase diagram is expected to
be the same for both 2D and 3D systems since in either case
the effective dimensionality d + z is larger than the upper
critical dimension of the 3-state Potts model dPotts

u � 3, such
that a mean-field analysis is warranted. At larger temperatures,
where the bosonic quantum dynamics can be neglected, the
situation is different. Since d = 3 > dPotts

u , in the 3D case the
(ε̃, a, T ) phase diagram consists essentially of a sequence of
“copies” of the phase diagram shown in Fig. 2. Similarly, for a
fixed a, the (ε̃, T ) phase diagram has the same form as the one
obtained at T = 0, but with the y axis representing T − Tc.

The situation at nonzero temperatures is more interesting
in the 2D case. The fact that d = 2 < dPotts

u implies that
the mean-field solution is not applicable. Surprisingly, despite
the presence of a cubic invariant in the free-energy expansion,
the 2D 3-state Potts model undergoes a second-order transi-
tion characterized by the critical exponents α = 1

3 and β = 1
9 ,

which are in the universality class of the hard hexagon lattice
gas model [61]. Of course, one cannot exclude the possibility

that for particular microscopic models the quartic Landau
coefficient is negative, rendering the transition first order. But,
in the general case, we expect that, in the absence of strain
and at high enough temperatures, the Potts-nematic transition
is second order. As a result, since at T = 0 the Potts-nematic
transition is first order, the (a, T ) phase diagram with fixed
ε̃ = 0 should display a (classical) tricritical point. It is difficult
to estimate the position of this tricritical point since stan-
dard perturbative approaches such as renormalization-group
calculations do not capture the second-order character of the
transition in 2D. It would be interesting to perform Monte
Carlo simulations to pinpoint the position of the classical
tricritical point.

Having established the (ε̃, a) phase diagram at T = 0 and
the (a, T ) phase diagram at ε̃ = 0, we can conjecture the
full qualitative three-dimensional (ε̃, a, T ) phase diagram for
the 2D Potts-nematic model by continuously connecting the
QTCP and the QCEP at T = 0 with the classical tricritical
point at ε̃ = 0. The result, shown in Fig. 1 and repeated for
convenience in the left panel of Fig. 7, consists of two wings
(in blue) inside which the transition is first order. On the ε̃ < 0
side, the wing is isolated and the transition is a symmetry-
preserving metanematic one. On the other hand, on the ε̃ > 0
side, the wing is connected to a larger surface (in red) that
signals a second-order transition. Regardless of the character
of the transition in the ε̃ > 0 region, it is associated with
the spontaneous breaking of an in-plane twofold rotational
symmetry, which is manifested as a piezoelectric phase in the
case of twisted moiré systems.

It is interesting to compare this (ε̃, a, T ) phase diagram
with that expected for an Ising-nematic order parameter, as
realized in tetragonal lattices. As shown in the right panel of
Fig. 7, in the Ising-nematic case the system is generically ex-
pected to undergo a second-order transition only along the ε̃ =
0 plane. Any strain applied along the directions of the nematic
director completely smears the Ising-nematic phase transition.
This is what renders it difficult to unambiguously distin-
guish spontaneous Ising-nematic order from strain-induced
anisotropies in experimental settings, where residual strain is
invariably present. In contrast, metanematic and piezoelec-
tric transitions persist for a wide range of strain values in
the case of Potts-nematic order. Experimental observation of
these effects would provide direct evidence for spontaneous
Potts-nematic order.

The wings in the (ε̃, a, T ) phase diagram of the Potts-
nematic order, bounded by tricritical points and critical end
points, are reminiscent of the wings generally expected in
the (h, a, T ) phase diagram of a metallic (Heisenberg) ferro-
magnet, which is schematically shown in the middle panel of
Fig. 7 (see Refs. [71,72]). Note that here h denotes a mag-
netic field. At first sight, this analogy may seem unsurprising
since both ε̃ and h act as conjugate fields to the nematic and
ferromagnetic order parameters, respectively. However, there
are crucial qualitative differences. First, because the nematic
order parameter is 3-state Potts-type rather than continuous,
there is a fundamental asymmetry between the effects of com-
pressive strain and tensile strain, whereas in the ferromagnetic
case the phase diagram is symmetric with respect to the sign
of the magnetic field. Second, the mechanisms behind the
first-order T = 0 transitions are completely different in the
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two cases. In the Potts-nematic case, the first-order nature of
the quantum phase transition is an intrinsic property of the
bosonic model, as it is a direct consequence of it being above
its upper critical dimension. In contrast, in the metallic ferro-
magnetic case, the T = 0 transition is rendered first order due
to the coupling between the ferromagnetic Goldstone modes
and the gapless electron-hole excitations of the metal [73–75].

V. CONCLUSIONS

In this paper, we used a phenomenological approach to
establish the (ε̃, a, T ) phase diagram of the electronic 3-state
Potts-nematic model in the presence of uniaxial strain applied
along one of the high-symmetry directions of a lattice that
possesses out-of-plane threefold rotational symmetry and in-
plane twofold rotational symmetry. While a is a nonthermal
tuning parameter, such as doping, the parameter ε̃ is linearly
proportional to the applied strain. Whether compressive or
tensile strain gives ε̃ < 0 or ε̃ > 0 depends on the signs of the
cubic nematic coefficient and the nematoelastic coupling. At
zero temperature and zero strain, the mean-field approach is
justified due to the reduced upper critical dimension of the 3-
state Potts model dPotts

u � 3. Then, because the Potts-nematic
action contains a cubic invariant, there is no Potts-nematic
QCP, but rather a first-order Potts-nematic quantum phase
transition. Upon increasing the temperature, but keeping the
strain zero, the mean-field solution ceases to be valid in the
case of a 2D lattice, and the Potts-nematic transition becomes
second order. Thus, a classical tricritical nematic point is
generally expected in an unstrained 2D system, whereas in a
3D system the Potts-nematic transition should be always first
order.

Notwithstanding the absence of a QCP in an unstrained
2D or 3D system, application of strain can tune the system
across a a metanematic QCEP, for ε̃ < 0, and a QTCP fol-
lowed by a line of QCPs for ε̃ > 0. The former transition is
symmetry preserving, whereas the latter spontaneously breaks
the in-plane twofold rotational symmetry of the lattice. Note
that a nonzero ε̃ explicitly breaks the out-of-plane threefold
rotational symmetry. In lattices with D3 and D6 point-group
symmetries, which is the case for instance of twisted bi-
layer graphene (TBG) and twisted double-bilayer graphene
(TDBG), the transition in the ε̃ > 0 side of the phase diagram
leads to the emergence of a nonzero electric polarization,
resulting in what we dubbed a piezoelectric phase, since the
ferroelectric order requires the presence of external strain.
Connecting the phase diagrams at zero strain and at zero
temperature, we proposed the (ε̃, a, T ) phase diagram for a
2D Potts-nematic system shown in Fig. 1. One of its key
features is the existence of two first-order transition wings,
bounded by a line of tricritical points in the ε̃ > 0 side of
the phase diagram, and by a line of critical end points in
the ε̃ < 0 side. While the latter wing is isolated, the for-
mer is connected to an open surface of second-order phase
transitions towards the piezoelectric phase. The recent obser-
vation of electronic nematicity in TBG [26–29], TDBG [30],
and twisted trilayer graphene [31], which are 2D materials,
indicate not only that the phase diagram of Fig. 1 may be
realized in moiré superlattices, but also that strain can be
used to move the system towards nematic quantum criticality.

Note that this is a different mechanism from that proposed
in Ref. [82] to strain tune TBG across a quantum phase
transition.

It is interesting to contrast the results obtained here for the
Potts-nematic phase with those for an Ising-nematic phase,
which is realized in lattices with fourfold rotational symme-
try. In the Ising-nematic case, “longitudinal” strain applied
along either of the two allowed nematic director directions
smears the second-order phase transition. However, “trans-
verse” strain applied along the other two high-symmetry
directions not encompassed by the nematic director can tune
the system towards an Ising-nematic QCP [83]. This offers
an interesting insight into why strain is capable of tuning the
system across a Potts-nematic QCP. For the lattices consid-
ered here, the nematic director can point along any of the
high-symmetry lattice directions. Thus, uniaxial strain applied
along these directions can have either a “longitudinal” or a
“transverse” character, depending on whether strain is com-
pressive or tensile. This asymmetry between compressive and
tensile strain traces back to the well-understood inequivalence
between positive and negative conjugate fields in the mean-
field solution of the 3-state Potts model [59,60].

The Potts-nematic QCPs that emerge in the presence of
strain behave analogously to an Ising-nematic QCP in the
absence of strain. In both the ε̃ > 0 and ε̃ < 0 sides of
the phase diagram, the two-component Potts-nematic order
parameter is effectively reduced to a single-component one
by the external strain, either because the nematic amplitude
jumps between two nonzero values while the nematic director
angle is pinned by the strain (ε̃ < 0), or because the nematic
director unlocks from the strain direction by rotating along
the clockwise or the counterclockwise direction (ε̃ > 0). In
fact, under these conditions, the Potts-nematic electronic form
factor reduces to the well-known “B1g” Ising-nematic form
factor for ε̃ < 0 and “B2g” Ising-nematic form factor for ε̃ >

0. Consequently, while the QCPs on the two sides of the phase
diagram have the same Hertz-Millis dynamical critical expo-
nent z = 3 except for a few cold spots, for which z = 2, these
cold spots are at different locations depending on the sign
of ε̃. More broadly, the strain-induced Potts-nematic QCPs
should support the same phenomena expected for the Ising-
nematic QCP, such as superconductivity and non-Fermi-liquid
behavior [66–68,84–86].

Our results provide valuable criteria to experimentally
identify intrinsic Potts-nematic order and distinguish it from
extrinsic effects via a controlled application of uniaxial strain.
Observation of the characteristic multiloop hysteresis curves
shown in Fig. 6 would be a direct confirmation not only of
long-range nematic order, but also of the Potts-type character
of the order parameter. Experimentally, φ1 can be probed via
resistivity anisotropy measurements similarly to those carried
out in the pnictides [8]. In this regard, as pointed out in
Ref. [87], the geometry used to measure the resistivity plays
an important role in extracting the anisotropic component
of the resistivity tensor (see also Ref. [16]). Moreover, the
observation of a piezoelectric effect in twisted moiré systems
that only emerges for one type of strain (compressive or
tensile) would provide unambiguous evidence for an intrinsic
Potts-nematic instability. Interestingly, ferroelectricity has
been recently observed in a moiré heterostructure [88]. While
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in this paper we focused only on externally applied uniform
strain, any crystalline system will invariably be subjected to
internal random strain [13–15]. Given the nontrivial impact
of uniform strain on the Potts nematicity, it will be interesting
for future studies to shed light on the properties of the
3-state Potts-nematic model in the presence of both random
strain and uniform strain. The random-field Potts model is
believed to behave similarly to the random-field Ising model,
in that long-range order is robust against weak random-field
disorder in d = 3 but cannot be established in d = 2 [89].
Nevertheless, as discussed in Ref. [90], the relatively small

number of moiré unit cells present in realistic twisted
moiré devices could protect nematic order against domain
breakup.
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