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Fermi-Dirac staircase occupation of Floquet bands and current rectification
inside the optical gap of metals: An exact approach
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We consider a model of a Bloch band subjected to an oscillating electric field and coupled to a featureless
fermionic heat bath, which can be solved exactly. We demonstrate rigorously that in the limit of vanishing
coupling to this bath (so that it acts as an ideal thermodynamic bath) the occupation of the Floquet band is not
a simple Fermi-Dirac distribution function of the Floquet energy, but instead it becomes a “staircase” version of
this distribution. We show that this distribution generically leads to a finite rectified electric current within the
optical gap of a metal even in the limit of vanishing carrier relaxation rates, providing a rigorous demonstration
that such rectification is generically possible and clarifying previous statements in the optoelectronics literature.
We show that this current remains nonzero even up to the leading perturbative second order in the amplitude of
electric fields, and that it approaches the standard perturbative expression of the Jerk current obtained from a
simpler Boltzmann description within a relaxation time approximation when the frequencies are small compared
to the bandwidth.
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I. INTRODUCTION

Quantum many-body systems that are periodically driven
in time have garnered attention over the last decades as rich
platforms to realize novel collective phenomena and nonequi-
librium states beyond those realized in equilibrium [1–25]. A
phenomenon that can arise in such periodically driven systems
and which is forbidden in equilibrium, is the existence of an
average net rectified particle flow or ratchet effect. In partic-
ular, for the case of electrons in crystals driven by oscillating
electric fields, these effects have enjoyed recent renewed at-
tention due to their interesting interplay with the dispersions
and Berry phases of band structures and their potential for
novel optoelectronic devices [26–32]. Despite their natural
connection, only a handful of studies have studied current
rectification effects in Bloch bands through the lens of Floquet
theory [33–35]. This is in part due to the difficulty that even
for noninteracting systems, there is no simple general formula
dictating the occupation of Floquet bands analogous to the
Fermi-Dirac distribution that dictates the occupation of bands
in equilibrium [36–41].
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One of the central goals of our study is to provide simple
analytical formulas for the occupation of a single Floquet
band coupled to a “featureless fermionic bath” (which is a
commonly used model of bath that, for example, was em-
ployed in Refs. [33,35,42]). This featureless bath is a physical
system that has a finite coupling to the fermionic system
of interest and is characterized by a single relaxation scale
�. The dynamics of the system coupled to this bath can
be described in an exact manner thanks to the fact that we
will take the combined system plus bath as a noninteracting
fermionic system. As we will see, this featureless fermionic
bath behaves as an ideal thermodynamic bath in the limit in
which its coupling to system is vanishingly small (� → 0),
and, in particular, in this limit it relaxes the system toward
the equilibrium Fermi-Dirac occupation of the bands in the
absence of an external periodic drive. As we will show, how-
ever, when the system is periodically driven in time, this bath
leads to a self-consistent occupation the Floquet bands that
is sharply different from that of the equilibrium Fermi-Dirac
distribution, but which we can determine analytically with no
approximations. This occupation is instead a staircase version
of the Fermi-Dirac distribution with several jumps that occur
at copies of the chemical potential shifted by all the harmonics
of the driving frequency [see Fig. 1(a)]. In the limit of an ideal
bath (� → 0), we will show that this distribution coincides
with the distribution that has been previously obtained within
the Boltzmann approach to Floquet systems (see, in particular,
Eq. (12) of Ref. [38]).

Another central purpose of our study is to exploit the
Floquet formalism to further elaborate on our recent finding
[43] that it is indeed possible for time-dependent oscillating
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FIG. 1. (a) Time-independent lim�→0 pn as a function of ε̄n/ω

calculated using Eq. (46) showing a ladderlike occupation. Param-
eters used: β/ω = 50, μ/ω = 1. (b) Schematic of the ladderlike
occupation for a Bloch band.

electric fields with a frequency that lies within the optical gap
of a metal, to induce a net rectified DC electric current. We
will see that this is true even when the electric field has a
single monochromatic frequency ω that is much larger than
the relaxation rates and this current remains finite in the limit
when these rates vanish (� → 0) (and therefore does not rely
on the frequency difference effect [44] or the Raman scatter-
ing effect [45,46]). We will demonstrate that this is possible
by choosing a simple model containing a single Bloch band
with no Berry curvature, which in a simpler relaxation time
Boltzmann description would give rise to the so-called “Jerk”
effect described in Refs. [43,47]. Our aim is to use this simple
model because it will allow us to carry out calculations of its
response coupled to the fermionic bath in a clear and exact
analytical manner.

We are motivated to do this rigorously to clarify a series of
misconceptions that originated from the work of Belinicher,
Ivchenko, and Pikus [48] and that have propagated into some
of the subsequent literature [45,46,49,50]. In Appendix E we
comment in more detail about some of these previous works
and point out more specifically some of their imprecisions.

One of the central messages of our study is that it is in-
deed possible to have a net rectified current in response to a
monochromatic oscillating electric field whose frequency lies
within the optical gap of a system, in the limit of vanishing
carrier relaxation rates. We will demonstrate this within a self-
consistent picture of the occupation of Floquet Bloch band in
the steady state of the system. More specifically we will show
that in the limit of an ideal bath (� → 0) the average rectified
current in the nonequilibrium steady state of the system is

given by

j̄ =
∫

k
pk∇kε̄k, (1)

where ε̄k is the Floquet energy of the band, pk is the occu-
pation of the Floquet band, j̄ is the current averaged over one
period, and the integral is over the crystal momentum in the
Brillouin zone with the usual normalization of 1/(2π )d .

The crucial difference between the above expression and
that for the average current in an equilibrium system, is that
the occupation function pk is not simply the Fermi-Dirac
distribution associated with ε̄k, but instead it is precisely the
stair-case occupation function depicted in Fig. 1. Importantly,
we will show that generically this stair-case occupation is
a function that depends on all the information of the time
dependence of the Hamiltonian, and cannot be expressed as a
function of only ε̄k. We will then show that as a consequence
of this, the rectified current is in fact generically nonzero in the
optical gap of a metal that breaks inversion and time-reversal
symmetries. This result remains true even to second order in
the amplitude of the oscillating electric field, which is the
leading order at which rectification currents appear, and there-
fore implies a nonvanishing rectification conductivity within
the optical gap of metals, in agreement with our previous
results [43]. For other previous discussions of the possibility
of in-gap rectification see also Refs. [46,51–57].

Our paper is organized as follows. In Sec. II, we setup
the approach to open quantum systems, obtain exact occu-
pation functions for diagonal and time-periodic Hamiltonians
coupled to a featureless fermionic bath. In Sec. III, based
on the exact occupation functions, we calculate exact linear
and rectification conductivities and show that there is a net
rectified current in response to a monochromatic oscillating
electric field whose frequency lies within the optical gap of a
metal, in the limit of vanishing carrier relaxation rates.

II. THE OPEN-SYSTEM SCHRÖDINGER EQUATION
APPROACH TO OPEN QUANTUM SYSTEMS

To obtain nontrivial and unique steady states at late times
for periodically driven systems, it is important to couple them
to a heat bath. This is because generic interacting closed
systems will either approach a trivial state of infinite tem-
perature [58–60], if they are thermalizing, or if they are not
thermalizing, they will retain memory of initial conditions and
will not have a unique steady state under driving [61]. These
considerations therefore lead us to consider a setting of an
open quantum system coupled to a heat bath.

In descriptions of quantum open systems it is typically
natural to view the combined Hilbert space of the “system”
and the “bath” as a tensor product of their Hilbert spaces in
isolation. There are situations, however, where it is possible
to alternatively cast this separation of system and bath as
a direct sum of their individual Hilbert spaces. As we will
show, such separation into sums of Hilbert spaces is extremely
powerful and convenient, because it allows to integrate out the
dynamics of the bath in an exact manner and to obtain a simple
non-Hermitian generalization of Schrödinger’s equation for
the system which captures its coupling to the bath without any
approximations.
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One example of the class of models which admits such
direct sum separation into system and bath are those of non-
interacting particles. To see this let us imagine that the system
and the bath as a whole can be described by a noninteracting
model. For concreteness we can imagine this to be a tight-
binding model of particles hopping on a lattice. Because the
problem is noninteracting, then the dynamics can be analyzed
by computing the trajectories of single individual particles and
then adding them up. However, for a single particle the Hilbert
space of the “system” and the “bath” can be naturally viewed
as a direct sum. For example, in the case of a tight-binding
model, some sites can be viewed as belonging to the system
and the remainder sites as belonging to the bath.

Let us then consider that the Hilbert space of the system
and the bath can be decomposed into a direct sum, namely,
their Hamiltonian and states have block form as follows:

H (t ) =
[

HS (t ) HSB(t )
HBS (t ) HB(t )

]
, |ψ (t )〉 =

[|ψS (t )〉
|ψB(t )〉

]
, (2)

where HBS (t ) = H†
SB(t ). From Eq. (2), the coupled

Schrödinger equations for system and bath states then
read

i∂t |ψS (t )〉 = HS (t ) |ψS (t )〉 + HSB(t ) |ψB(t )〉 , (3)

i∂t |ψB(t )〉 = HBS (t ) |ψS (t )〉 + HB(t ) |ψB(t )〉 , (4)

where we set h̄ = 1 throughout the paper. By integrating
Eq. (4) over time and inserting it into Eq. (3) allows to for-
mally eliminate the bath state dynamics |ψB(t )〉 and to obtain
the open-system Schrödinger equation for |ψS (t )〉:

i∂t |ψS (t )〉 = HS (t ) |ψS (t )〉 + HSB(t )UB(t, t0) |ψB(t0)〉

− iHSB(t )
∫ t

t0

dt ′ UB(t, t ′)HBS (t ′) |ψS (t ′)〉 , (5)

where UB(t, t ′) is the bath (intrinsic) evolution operator sat-
isfying i∂tUB(t, t0) = HB(t )UB(t, t0). This procedure is often
carried within the Schwinger-Keldysh formalism by integrat-
ing out part of the action describing the degrees of freedom
of the bath (see, e.g., Refs. [33,35,42]). But this is easier and
more physically transparent in our first quantization notation
and the final results would be identical.

A. Featureless fermionic bath

We will now specialize the above equation to a model of
a “featureless fermionic bath,” which we define as having the
following characteristics:

(i) In a featureless fermionic bath every state of the system
is coupled to a collection of identical sites with the same
energy spectrum and the same coupling λ [see Fig. 2(a)]. If the
system states (basis) are denoted by |χn〉 and the bath states
(basis) by |ϕn, j〉, then the bath and the system-bath coupling
are

HB =
∑
n, j

ε j |ϕn, j〉 〈ϕn, j | , (6)

HSB = λ
∑
n, j

|χn〉 〈ϕn, j | , (7)

system

DoS

energy

bath

(a) (b) (c)

FIG. 2. (a) Schematic of the system-bath coupling HSB. (b) The
bath’s density of states is much wider than that of the system, and
we simplify it to be flat in the energy range of interest. (c) Schematic
of the bath acting as a source as well as a sink for the system [see
Eq. (27)].

where ε j is the energy for the bath state |ϕn, j〉. This model of
the bath is identical to that employed in Refs. [35,43,62–68].

(ii) The featureless fermionic bath is prepared in an initial
condition at t0 with a Fermi-Dirac distribution that only has
weight on the bath sites, described by

ρS (t0) = 0, ρB(t0) = ∑
n, j f0(ε j ) |ϕn, j〉 〈ϕn, j | , (8)

f0(ε j ) = 1

exp[β0(ε j − μ0)] + 1
, (9)

where μ0 is the chemical potential of and β0 = 1/kBT0

denotes the temperature of the bath, respectively. The as-
sumption of the initial density matrix only having weight
on the bath is useful but it is not strictly necessary. This is
because in the limit in which the bath spectrum becomes a
dense continuum, the information of the initial condition for
the component of density matrix on the system will decay
over time and only the information of the initial condition
for the density matrix on the bath will dictate the late time
steady state [this will become more clear in Eq. (16) which
is a subsequent version of Eq. (5)]. Notice also that we have
equated the evolution of the single particle density matrix with
that of the many-body one-particle density matrix (equal time
Greens function), which is possible thanks to the fact that the
system is noninteracting.

With assumptions (i) and (ii), by evolving the initial con-
dition in Eq. (8) under Eqs. (3) and (4), one finds that the
one-body density matrix projected onto the system at time t is
given by

ρS (t ) =
∑
n, j

f0(ε j )
∣∣ψ ( j)

n (t )
〉 〈

ψ ( j)
n (t )

∣∣ , (10)

where |ψ ( j)
n (t )〉 is the component within system Hilbert space

that evolves out of the initial state |ψB(t0)〉 = |ϕn, j〉 in the
bath at t0. Equation (10) states that the density matrix for
the system is the weighted sum of contributions from all bath
states with their corresponding initial occupations.

Using Eqs. (5), (6), and (7), we obtain the open-system
Schrödinger equation for |ψ ( j)

n (t )〉:
i∂t

∣∣ψ ( j)
n (t )

〉 = HS (t )
∣∣ψ ( j)

n (t )
〉 + λ exp[−iε j (t − t0)] |χn〉

− i
∫ ∞

t0

dt ′ γ (t − t ′)
∣∣ψ ( j)

n (t ′)
〉
. (11)
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Here, λ exp[−iε j (t − t0)] |χn〉 is a source term for |ψ ( j)
n (t )〉

arising from the bath, while the memory function in the sec-
ond line is given by

γ (t ) = λ2�(t )
∑

j

exp(−iε jt ), (12)

which encodes the memory of decay for |ψ ( j)
n (t )〉 due to the

bath. This memory function makes the Schrödinger equa-
tion for open systems nonlocal in time, and in general it
incorporates decay and renormalizations of the system en-
ergies due to their coupling to the bath [see Fig. 2 for a
depiction].

(iii) To remove the finite memory delay, we impose one fur-
ther property defining the featureless fermionic bath, namely,
that it has an infinitely broad and flat spectrum [see Fig. 2(b)],
i.e., the bath density of state is constant:

νB(ωb) = 2π
∑

j

δ(ωb − ε j ) ≡ ν0. (13)

With this simplification, the finite delay or nonlocal memory
of the past time t ′ in Eq. (11) is lost, the memory function
becomes

γ (t ) = λ2�(t )
∑

j

∫ +∞

−∞
dωb δ(ωb − ε j ) exp(−iωbt )

= λ2ν0�(t )
∫ +∞

−∞

dωb

2π
exp(−iωbt ) = δ(t ) �, (14)

where we used Eq. (13) to obtain the second equation and
defined

� ≡ λ2ν0

2
. (15)

With the above simplification of infinitely broad spectrum for
the bath, the open-system Schrödinger’s equation reduces to

i∂t

∣∣ψ ( j)
n (t )

〉 = [HS (t ) − i�]
∣∣ψ ( j)

n (t )
〉

+ λ exp[−iε j (t − t0)] |χn〉 . (16)

The above equation is remarkably simple. It is a simple non-
Hermitian version of the Schrödinger equation in which the
system Hamiltonian is dressed by a constant imaginary part
“−i�” which captures the decay into the bath. Many recent
studies of open quantum systems have used non-Hermitian
Schrödinger equations that only include the first line of
Eq. (16). However, we see that the influence of the bath is not
merely to induce decay, but it also produces the second term
that acts a source and makes the equation inhomogeneous.
The balance of these two terms is what allows the existence
of nontrivial late time steady states (see Fig. 2 for depiction).
We also note that our formulation is closely related to that of
the Friedrichs-Lee model [69,70], which is often employed to
the describe the coupling of a quantum state to a continuum
[71–73].

B. Ideal fermionic bath

To illustrate that our bath leads to the expected equilibrium
when the system is not driven in time, we first consider the

special case in which HS (t ) is time-independent,

HS (t ) → H0 =
∑

n

εn |χn〉 〈χn| , (17)

Eq. (16) can be equivalently expressed as

i∂t s
( j)
n = [εn − i�]s( j)

n + λ exp[−iε j (t − t0)], (18)

where

s( j)
n = 〈

χn

∣∣ψ ( j)
n (t )

〉
, (19)

is the amplitude for the system state |χn〉. Solving the above
Eq. (18) gives

s( j)
n = − iλ exp

[
− i

∫ t

t0

dt ′ (εn − i�)

]

×
∫ t

t0

dt ′ exp

[
i
∫ t ′

t0

dt ′′(εn − i� − ε j )

]

= λ

εn − i� − ε j
[e−(�+iεn )(t−t0 ) − e−iε j (t−t0 )]. (20)

Then using Eq. (10), we obtain the steady state, diagonal
density matrix for the system:

ρS (t → +∞) =
∑

n

f� (εn) |χn〉 〈χn| , (21)

in which f� (εn) = limt→+∞
∑

j f0(ε j )|s( j)
n |2 and reads explic-

itly as

f� (εn) =
∑

j

f0(ε j )
λ2

(εn − i� − ε j )(εn + i� − ε j )

=
∫ +∞

−∞
dωb f0(ωb)

λ2 ∑
j δ(ωb − ε j )

(εn − i� − ωb)(εn + i� − ωb)

=
∫ +∞

−∞

dωb

π
f0(ωb)

�

(εn − ωb)2 + �2
, (22)

where we used Eqs. (13) and (15) in obtaining the last equa-
tion. The above distribution f� (εn) shows that when HS (t ) is
time-independent, the system “thermalizes” by approaching a
time-independent steady state dictated by the initial condition
of the bath, f0(ωb), while a finite � accounts for the broaden-
ing of the energy levels of the system due to its coupling to
the bath.

Importantly, taking the limit in which the coupling to the
bath vanishes from Eq. (22), we obtain

lim
�→0

f� (εn) = f0(εn), (23)

i.e., f� (εn) reduces to the ideal Fermi-Dirac distribution in
the limit of � → 0. We will then call this � → 0 limit
of the “featureless fermionic bath” an “ideal fermionic
bath.” The fact that the ideal Fermi-Dirac distribution ap-
pears only when the coupling to the bath is vanishingly
weak is consistent with general considerations of statistical
physics.

However, Eq. (22) still allow us to obtain analytically the
modified occupation at finite coupling to the bath, which will
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be used in subsequent manipulations. By integrating over ωb

in Eq. (22) using Cauchy’s residue theorem, we find that

f� (ε) = 1
2 [ f+(ε) + f−(ε)], (24)

where f+(ε) = [ f−(ε)]∗ and they are given by

f±(ε) = 1

2
± i

π
� (0)

(
1

2
± iβ

ε ∓ i� − μ

2π

)
, (25)

with � (0) the 0th order Polygamma function (or the digamma
function). We also note that the ideal featureless fermionic
bath we are considering is closely related to the singular
Friedrichs-Lee model [72].

C. Diagonal and time-periodic Hamiltonians

1. Diagonal system Hamiltonian

In this work, we will develop the above general formalism
to the special case where the system Hamiltonian HS (t ) is
time-dependent but diagonal in the system states. Let us then
take the following form for the system Hamiltonian:

〈χn|HS (t )|χm〉 = δnm[εn + Vn(t )] = δnmεn(t ). (26)

With this, Eq. (16) then reduces to

i∂t s
( j)
n = [εn(t ) − i�]s( j)

n + λ exp[−iε j (t − t0)]. (27)

Solving the above Eq. (27) gives

s( j)
n (t ) = − iλ exp

(
− i

∫ t

t0

dt ′ [εn(t ′) − i�]

)

×
∫ t

t0

dt ′ exp

(
i
∫ t ′

t0

dt ′′[εn(t ′′) − i� − ε j]

)
, (28)

and then with Eq. (10), we obtain the diagonal density matrix
for the system:

ρS (t ) =
∑

n

pn(t ) |χn〉 〈χn| , (29)

pn(t ) =
∑

j

f0(ε j )
∣∣s( j)

n (t )
∣∣2

. (30)

2. Periodic system Hamiltonian

Now we consider a periodically driven system. Namely, we
take the diagonal elements of the Hamiltonian to be periodic
in time:

εn(t + T ) = εn(t ) =
+∞∑

l=−∞
ε (l )

n exp[−ilω(t − t0)], (31)

where T is the period and ω = 2π/T is the frequency, and

ε (l )
n =

∫ T

0

dt

T
εn(t ) exp[ilω(t − t0)] (32)

is the lth Fourier coefficient for εn(t ). In particular,

ε̄n ≡ ε (0)
n =

∫ T

0

dt

T
εn(t ), (33)

is the time-average of the diagonal element of the Hamilto-
nian, which as we will show next, coincides with the Floquet
energy of state n. To see this, notice that the wave function that

would solve the system Schrödinger’s equation in the absence
of the bath, can be expressed as follows:

exp

[
− i

∫ t

t0

dt ′ εn(t ′)

]

= exp

(
− i

∫ t

t0

dt ′[εn(t ′) − ε̄n]

)
× exp

(
− i

∫ t

t0

dt ′ ε̄n

)

≡ φn(t ) × exp[−iε̄n(t − t0)]. (34)

The periodicity of the first factor denoted by φn(t ) can be
shown explicitly:

φn(t + T ) = φn(t ) × exp

(
− i

∫ t+T

t
dt ′[εn(t ′) − ε̄n]

)

= φn(t ), (35)

where we used Eq. (33) in obtaining the second equa-
tion. Therefore, we see from second factor in the last
line of Eq. (35) that the time-average of the diago-
nal element of the Hamiltonian is the Floquet energy
itself.

Let us now consider the Fourier expansion of the periodic
part of the Floquet wave function:

φn(t ) = exp

(
− i

∫ t

t0

dt ′[εn(t ′) − ε̄n]

)

=
+∞∑

l=−∞
φ(l )

n exp[−ilω(t − t0)], (36)

or equivalently,

φ(l )
n = 1

T

∫ t0+T

t0

dt

[
exp[ilω(t − t0)]

× exp

(
− i

∫ t

t0

dt ′[εn(t ′) − ε̄n]

)]
. (37)

The above expression makes clear that the amplitude of the
harmonics of the wave function, φ(l )

n , are functions of the full
time dependence of the instantaneous energy εn(t ) and are
independent of the Floquet energy ε̄n. This property will be
crucial later on for purposes of understanding why there is
in-gap rectification. In other words, Eq. (37) defines φ(l )

n as
a function of all the harmonics of the time-dependent energy
from Eq. (32) as follows:

φ(l )
n = φ(l )

n

(
ε (±1)

n , ε (±2)
n , · · · ). (38)

Also from Eq. (36) it can be shown that these amplitudes
satisfy the following normalization condition:

+∞∑
l=−∞

∣∣φ(l )
n

∣∣2 = 1. (39)

With Eqs. (28), (30), (36), and (13), and by taking the
late-time limit that allows to neglect transient terms of the
form exp[−�(t − t0)] → 0, we obtain the system steady-state
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occupation:

pn(t ) =
∫ +∞

−∞

dωb

π
f0(ωb)

× �

∣∣∣∣∣∣
+∞∑

l=−∞
φ(l )

n

exp[−ilω(t − t0)]

ε̄n − ωb − lω − i�

∣∣∣∣∣∣
2

. (40)

Similar to Eq. (22), by integrating over ωb in Eq. (40), we find
that

pn(t ) =
+∞∑

l,m=−∞

[
φ(m)

n

]∗
φ(l )

n exp[i(m − l )ω(t − t0)]

× �

2� + i(m − l )ω
[ f+(ε̄n − lω) + f−(ε̄n − mω)],

(41)

where f±(ε) is given in Eq. (25). The Eq. (41) is one of the
central formulas of our work because it allows to compute
expectation values of any equal-time system observables, even
at a finite coupling � to featureless fermionic bath.

The expression in Eq. (41) captures the steady-state oc-
cupation of the nth state in the case of featureless fermionic
bath, and thus it replaces what would be the Fermi-Dirac dis-
tribution in equilibrium. One important feature of this steady
state is that it displays “synchronization,” namely, it is strictly
periodic in the drive:

pn(t + T ) = pn(t ). (42)

Remarkably, in the limit of an “ideal bath” (� → 0) the above
distribution becomes time-independent and it is given by

lim
�→0

pn =
+∞∑

l=−∞

∣∣φ(l )
n

∣∣2
f0(ε̄n − lω). (43)

Here ε̄n is the Floquet energy of nth state, and φ(l )
n are the Har-

monics of the periodic part of the wave functions defined in
Eq. (37). The reader is encouraged to contrast this occupation
function with that in Eq. (23) obtained when the Hamiltonian
was time-independent. Notice also that because the occupa-
tion function becomes time-independent in this limit, there are
no time fluctuations of the average fermion occupation of each
state n.

Thus, the distribution is an infinite sum of several Fermi-
Dirac distributions with chemical potentials shifted by the
various harmonics of the driving frequency lω and weighed
by amplitudes of the harmonics of the Floquet wave functions
|φ(l )

n |2. It is therefore clear that the occupation of the state is
completely different from how the state is filled in equilib-
rium [see Fig. 1(a) for an illustration of the nonequilibrium
occupation function]. One recovers an occupation similar to
equilibrium when one neglects all the higher harmonics of φ(l )

n
with l 
= 0 and forces by hand the amplitude of the l = 0 term
to be φ(0)

n → 1, but this is not justified in general (not even
perturbatively as we will illustrate in Sec. III B). We note that
the idea that Floquet states are not filled in the same way as
equilibrium states has been emphasized in several studies, by
using a variety of models for the relaxation when the system
is coupled to a heat bath [36–39,41,74]. In fact, the expression
for the nonequilibrium time-independent steady states we find

in Eq. (43) has been reported before and is, in particular, the
same kind of expression shown in Eq. (12) of Ref. [38].

3. Harmonic time-dependent driving

Computing analytically the integral in Eq. (37) that relates
the harmonics of the Floquet wave function to the harmonics
of the energy is in general involved. There is a simple case
where these integrals can be computed in a simple closed
analytical form, which is when the time-dependent part Vn(t )
of the Hamiltonian has a single harmonic:

Vn(t ) = Vn cos[ω(t − t0)]. (44)

In this case the coefficients φ(l )
n from Eq. (37) correspond to

the lth Bessel function:

φ(l )
n = Jl (Vn/ω). (45)

Substitution of Eq. (45) into Eq. (41) leads to the following
nonperturbative expression for the occupation of the states in
the limit of � → 0:

lim
�→0

pn =
+∞∑

l=−∞
J2

l (Vn/ω) f0(ε̄n − lω). (46)

We therefore see that the occupation in the case of the ideal
fermionic bath becomes a sum of several Fermi-Dirac dis-
tributions boosted by the different harmonics of the Floquet
quasi-energies ε̄n − lω (l ∈ Z). It is interesting to note that
this ladderlike behavior is analogous to the Tien-Gordon effect
that arises in nanostructures that are simultaneously subjected
to AC and DC drives [75]. Similarly as in that case, the ladder
behavior becomes more pronounced as the driving becomes
stronger [see Fig. 1(a)].

III. SINGLE-BAND MODEL UNDER MONOCHROMATIC
LIGHT

In this section we will use the formalism developed in the
previous ones to determine the self-consistent occupation of
an electronic band driven by an oscillating electric field and
demonstrate the existence of in-gap rectification. Because we
are primarily interested here in proving and clarifying the
origin of in-gap rectification, we will focus on a simple model
of a Bloch band that has vanishing Berry connections. These
bands can display however the in-gap Jerk current effect that
arises from the energy band dispersions [43]. However, other
mechanisms driven by the Berry phases, such as the nonlinear
Hall effect, can also lead to in-gap rectification as we have
recently demonstrated [43].

Let us now consider our system Hamiltonian to be a tight-
binding model with a single site per unit cell and a trivial
single Bloch band (with no Berry connections) coupled to
a uniform monochromatic electric field. The time-dependent
system Hamiltonian is

HS (t ) =
∫

k
εk(t ) |χk〉 〈χk| , (47)

εk(t ) ≡ ε(k − A(t )),
∫

k
≡

∫
BZ

dk
(2π )d

. (48)

The system states are now labeled by the wave vector k
and ε(k) is the unperturbed band dispersion. We assume a
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monochromatic electric field which leads to the periodic vec-
tor potential using E(t ) = −∂t A(t ):

A(t ) = − i

ω
Eω exp(−iωt ) + c.c. (49)

A. Electric current in the steady state

Since the system Hamiltonian is diagonal in crystal mo-
menta k, we can apply the formalism of Sec. II C to compute
the steady-state occupation of each momenta k, by replacing
the label in previous sections n → k. If we denote the occupa-
tion of each state by pk(t ), then the system’s electric current
reads as follows:

j(t ) =
∫

k
pk(t )∇kεk(t ) =

+∞∑
s=−∞

j(s) exp[−isω(t − t0)], (50)

where we set e = h̄ = 1 throughout the paper. By combining
Eqs. (32) and (41), the weight of each oscillating mode of the
electric current can be written as

j(s) =
∫

k

+∞∑
m,l=−∞

�

2� + i(l − s)ω

[
φ

(m)
k

]∗
φ

(s+m−l )
k

× [ f+(ε̄k − (s + m − l )ω) + f−(ε̄k − mω)]∇kε
(l )
k .

(51)

Interestingly, as discussed in Sec. II C, in the limit of
an ideal heat bath � → 0, the distribution function pk(t )
becomes time-independent, and therefore the time-averaged
electric current (also referred to as rectified current), is given
by

j̄ =
∫ T

0

dt

T
j(t ) =

∫
k

pk∇kε̄k, (52)

where ε̄k is the Floquet energy of the band and in our current
simple single-band model, and is given by the time-averaged
band energy (l = 0 component):

ε̄k ≡ ε
(0)
k =

∫ T

0

dt

T
ε[k − A(t )]. (53)

Therefore, we see that Eq. (52) has a resemblance to how one
would compute the current in a time-independent equilibrium
system, but with the equilibrium Fermi-Dirac distribution
replaced by occupation function pk, and the bare band dis-
persion replaced by the dressed Floquet band energy ε̄k. At
first glance, this point of view might suggest that the time-
averaged rectified current vanishes in the ideal limit of ω �
� → 0, just in the same way it is expected to vanish in a
time-independent equilibrium system. In fact, several classic
and more recent works have incorrectly taken this point of
view that the nonequilibrium steady-state occupation pk is a
Fermi-Dirac distribution of the dressed Floquet band energy
[45,46,48–50] (see Appendix E for detailed comments on
previous works). However, as we have shown in Sec. II C, the
correct occupation of the states in the nonequilibrium steady
state is not a simple Fermi-Dirac distribution, but it is given
by the following expression [see Eqs. (38) and (43)]:

pk
(
ε̄k, ε

(±1)
k , · · · ) ≡

+∞∑
l=−∞

∣∣φ(l )
k

∣∣2
f0(ε̄k − lω). (54)

In the argument of pk in the above expression, we have em-
phasized that pk is not only a function of the Floquet band
energy ε̄k but also of all the higher harmonics ε

(±1)
k , ε

(±2)
k · · ·

of the time-dependent energy εk(t ) through its dependence
on the amplitudes φ

(l )
k [see Eqs. (37) and (38)]. Precisely

because of this, the rectification current j̄ cannot be expressed
as an integral of a total derivative over the Brillouin zone and
generally does not vanish, i.e.,

j̄ 
=
∫

k
∇kP̃(ε̄k ) = 0, (55)

where P̃(ε̄k ) would be defined through

∂P̃(ε̄k )

∂ε̄k
≡ p̃k(ε̄k ), (56)

which would be possible if the occupation depended only on
the dressed Floquet energy pk → p̃k(ε̄k ) [but this is not the
case for Eq. (55)].

Therefore, we see that in general a nonzero rectified current
is expected in the nonequilibrium steady state, even in the
limit of the ω � � → 0. As we will show in detail in the
following section, this finite rectified current remains nonzero
within the optical gap of a metal, even within the usual second
order of perturbation theory in the amplitude of the electric
field for which rectification currents are typically computed.
These findings further substantiate our recent work showing
the existence of in-gap rectification [43] but appear in ten-
sion with some other statements in the literature [44–46,48–
50]. In Appendix E, we comment in more detail on some
of these other works clarifying some partial agreements but
also pointing out some of their imprecisions and incorrect
statements.

B. Perturbative results

In this subsection we will compute perturbatively the elec-
tric current in powers of electric field to the currents at
modes [see Eqs. (50) and (51)]: s = 0 representing rectifi-
cation conductivity, s = 1 representing linear conductivity.
s = 2 representing second harmonic generation is discussed
in Appendix A. We will show explicitly that even to sec-
ond order in electric fields, the nonequilibrium distribution
in the steady state for an ideal bath, pk, differs clearly
from the naive Fermi-Dirac distribution evaluated in the
dressed Floquet bands. This will allow us to compute
analytically the rectification conductivities and prove rigor-
ously that they remain finite within the optical gap of the
metal.

Although our conclusions and formulas are valid and can
be used for any single-band model (with no Berry connec-
tions) in arbitrary dimensions, for simplicity we will illustrate
our results for a simple 1D model with the following band
dispersion:

ε(kx ) = −t1 cos(a0kx ) − t2 sin(2a0kx ) + ε0, (57)

where ε0 is a constant that we have added for convenience
to shift the band energy so that it lies within 0 and � [see
Fig. 3(b)], and a0 is the lattice constant. Notice that the above
band structure breaks not only inversion, which is always
needed to have rectification, but also time-reversal symmetry,
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FIG. 3. (a) The 1D tight-binding model whose inversion and
time-reversal symmetries are broken by the next-nearest-neighbour
hopping ±it2/2, and its (b) dispersion relation with 0 the band
bottom and � the band top. (c) Real part of the dimensionless lin-
ear conductivity Re σ xx

� (ω)/σ (1)
0 illustrating how it vanishes at finite

frequency as � → 0 (which defines the optical transparency region),
and (d) dimensionless rectification conductivity σ xxx

� (ω,−ω)/σ (2)
0

for different � illustrating the existence of in-gap rectification in
the metal, namely, that it approaches a finite nonzero value in the
limit of � → 0 at finite ω. The characteristic linear and second-
order conductivities in 1D used here are σ

(1)
0 = a0e2/h̄ and σ

(2)
0 =

a2
0τ0e3/h̄2 with τ0 = h̄/t1. (e, f) Log-log plots of Re σ xx

� (ω)/σ (1)
0 and

σ xxx
� (ω,−ω)/σ (2)

0 for different � illustrating their power dependen-
cies over ω in different frequency ranges. Parameters used: a0 = 1,
t1/t2 = 2, μ = 5t1/7, β0 = 109/t1.

and therefore it has no symmetry relating k → −k. As we
will see, this is indeed crucial to obtain a nonzero in-gap
rectification conductivities for the models without Berry cur-
vature that we are considering in this study. More generally,
as discussed in Ref. [43], in the case of bands with nontrivial
Berry connections one can alternatively obtain a nonzero in-
gap rectification, e.g., via the Berry-Dipole effect by breaking
time reversal symmetry only by having a circularly polar-
ized light instead of having a time-reversal breaking band
structure.

1. Occupation function to the second order of electric field

We begin by deriving the explicit perturbative expressions
for ε

(l )
k and φ

(l )
k discussed in the previous sections and can be

computed from Eqs. (32) and (37) by replacing n → k. Up to
the second order in the electric field, it is sufficient to expand
the band dispersion up to the same second order, namely,

ε(k − A(t )) = ε̄k + ε
(1)
k e−iω(t−t0 ) + ε

(−1)
k eiω(t−t0 )

+ ε
(2)
k e−2iω(t−t0 ) + ε

(−2)
k e2iω(t−t0 ) + · · · .

(58)

Using Eq. (49), this perturbative expansion leads to the fol-
lowing expressions for ε

(l )
k :

ε̄k ≡ ε
(0)
k = ε(k) + 1

ω2

∑
αβ

∂α∂βε(k) Eα
ω Eβ

−ω + O(|Eω|4),

ε
(1)
k = i

ω

∑
α

∂αε(k) Eα
ω + O(|Eω|3),

ε
(2)
k = − 1

2ω2

∑
αβ

∂α∂βε(k) Eα
ω Eβ

ω + O(|Eω|4),

ε
(−l )
k = [

ε
(l )
k

]∗
. (59)

We can use Eq. (37) to perturbatively evaluate φ
(l )
k leading to

φ
(0)
k = 1 − ε

(1)
k − ε

(−1)
k

ω

+
[
ε

(1)
k

]2 + [
ε

(−1)
k

]2 − 4ε
(1)
k ε

(−1)
k − ωε

(2)
k + ωε

(−2)
k

2ω2
,

φ
(1)
k = − ε

(1)
k

ω
− ε

(1)
k

[
ε

(1)
k − ε

(−1)
k

]
ω2

,

φ
(−1)
k = ε

(−1)
k

ω
− ε

(−1)
k

[
ε

(−1)
k − ε

(1)
k

]
ω2

,

φ
(2)
k =

[
ε

(1)
k

]2 − ωε
(2)
k

2ω2
, φ

(−2)
k =

[
ε

(−1)
k

]2 + ωε
(−2)
k

2ω2
.

(60)

The other φ
(l )
k with |l| > 2 will scale with higher powers of

electric fields, and therefore can be neglected to second order.
The norm squared of those terms above are

∣∣φ(0)
k

∣∣2 = 1 − 2
∣∣ε (1)

k

∣∣2

ω2
+ O(|Eω|3),

∣∣φ(1)
k

∣∣2 =
∣∣ε (1)

k

∣∣2

ω2
+ O(|Eω|3),

∣∣φ(2)
k

∣∣2 = O(|Eω|4). (61)

Therefore, the ideal occupation function pk in the limit � → 0
to second order in electric fields reads as

pk =
(

1 − 2
∣∣ε (1)

k

∣∣2

ω2

)
f0(ε̄k ) +

∣∣ε (1)
k

∣∣2

ω2
f0(ε̄k − ω)

+
∣∣ε (−1)

k

∣∣2

ω2
f0(ε̄k + ω). (62)
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The above expansion contains all the correct terms to second
order in electric fields, even though it is not strictly per-
turbative, because the Floquet band energy ε̄k also includes
implicitly a correction of order |Eω|2 [see Eq. (59)]. In other
words, if one wants to obtain a strictly perturbative expansion
to order |Eω|2 one simply needs to Taylor expand the Fermi-
Dirac distribution f0(ε̄k ) above as well. However, we find it
convenient to keep the above form, with the understanding
that we can only trust its predictions to order |Eω|2.

Let us now comment on the significance of Eq. (62). We
see above that even to second order, the nonequilibrium dis-
tribution, pk, contains not only the Fermi-Dirac distribution
evaluated for the Floquet bands, f0(ε̄k ), but also several other
terms that make it clearly deviate from f0(ε̄k ). As we will
see these additional terms, are precisely the ones that lead
to a finite in-gap rectification in the clean limit � → 0. In
Appendix D, we also demonstrate that the above occupa-
tion function agrees with the one obtained from a simpler
Boltzmann/relaxation-time description in the limit ω  ε̄k.
Notice also that the above occupation differs even to up sec-
ond order |Eω|2 from the naive Fermi-Dirac occupation of the
Floquet band, f0(ε̄k ), that was presumed in Refs. [45,46,48–
50] (see Appendix E for further comments on previous
studies).

2. Linear conductivity

The linear conductivity is defined from

j (1)
α = σ

αβ

� (ω)Eβ
ω + O(|Eω|3), (63)

where the subindex � emphasizes a finite coupling of the
system to the bath. Using Eqs. (51), (37), and (32), the exact
conductivity of our model at finite coupling to the bath is
found to be

σ
αβ

� (ω) = i

ω

∫
k

f� (ε̄k )∂α∂β ε̄k

+
∫

k

∂αε̄k∂β ε̄k

ω2

i�

2� − iω
L1(ε̄k, ω), (64)

where ∂γ ≡ ∂/∂kγ , and

L1(ε̄k, ω) = f+(ε̄k ) + f−(ε̄k + ω) − f+(ε̄k − ω) − f−(ε̄k ),

(65)

where f± are defined in Eq. (25). Just as for Eq. (62), we have
kept the dressed Floquet band energy, ε̄k, in the integrands
of Eq. (64), and therefore this is not a strictly perturbative
expression. But if desired, the strictly perturbative expression
can simply be obtained from the one above by replacing the
dressed Floquet band energy dispersion by the bare unper-
turbed band dispersion: ε̄k → ε(k). This also applies to the
subsequent formulas of this section.

In the clean limit (ω 
= 0 and � → 0), the above expression
reduces to the standard Drude form:

lim
�→0

σ
αβ

� (ω) = i

ω

∫
k

f0(ε̄k )∂α∂β ε̄k. (66)

Therefore, we see that the real part of the linear conductivity
at finite frequency vanishes when � → 0. In Fig. 3(c) we

illustrate this in detail for the simple model 1D from Eq. (57).
The above Drude form follows from the fact that to the linear
order of the electric field, the ideal occupation function pk in
the limit � → 0 is the same with the equilibrium Fermi-Dirac
distribution [see Eq. (62)].

In the DC limit ω → 0 the linear conductivity approaches
a finite Drude-like value (see Appendix A for details):

lim
ω→0

σ
αβ

� (ω) = 1

2

∫
k
∂α∂β ε̄k

[
f� (ε̄k )

�
− ∂g� (ε̄k )

∂ε̄k

]

≈ 1

2

∫
k
∂α∂β ε̄k

[
f0(ε̄k )

�
+ O(�)

]
, (67)

in which

g� (ε) = 1

2i
[ f+(ε) − f−(ε)] (68)

is the imaginary part of f+(ε) defined in Eq. (25). Therefore,
the clean limit of the DC conductivity resembles the predic-
tion of the classic Drude theory for τ ≡ 1/(2�), and has a
Drude peak in the DC limit when the chemical potential of
the bath is within the bandwidth of the system μ ∈ [0,�] [see
Fig. 3(c)]. The fact that the conductivity is finite when ω → 0
and has the expected Drude behavior, evidences that our sim-
ple bath produces the correct behavior for the relaxation of
currents.

In the limit in which the frequency is small compared to the
bandwidth but much larger than �, we obtain the usual decay
power 1/ω2 associated with the Drude behavior [see Fig. 3(e),
left-hand side]:

lim
�ω�

Re
[
σ

αβ

� (ω)
] = −2�

ω2

∫
k
(∂αε̄k )(∂β ε̄k )

∂ f (ε̄k )

∂ε̄k
. (69)

However, in the ultralarge-frequency regime when the fre-
quency greatly exceeds even the bandwidth, the real part of the
linear conductivity has a different scaling from that of Drude
theory:

lim
ω��

Re
[
σ

αβ

� (ω)
] = �

ω3

∫
k
(∂αε̄k )(∂β ε̄k ), (70)

decaying as 1/ω3 [see Fig. 3(e), right-hand side].

3. Rectification conductivity

The rectification conductivity is a three-index tensor that
relates the time-averaged current [namely, the average DC
current corresponding to s = 0 in Eq. (50)] to the bilinears of
electric-field amplitudes. Without loss of generality, we define
it by choosing the following symmetry convention for indices
of the electric-field bilinears:

j (0)
γ = σ

γαβ

� (ω,−ω)Eα
ω

(
Eβ

ω

)∗

+ σ
γαβ

� (−ω,ω)
(
Eα

ω

)∗
Eβ

ω + O(|Eω|4). (71)
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The exact rectification conductivity of our model at finite
coupling to the bath, �, is given by

σ
γαβ

� (ω,−ω)

=
∫

k

∂γ ε̄k∂αε̄k∂β ε̄k

2ω4
[ f� (ε̄k + ω) + f� (ε̄k − ω) − 2 f� (ε̄k )]

+ �

2� − iω

∫
k

∂αε̄k∂γ ∂β ε̄k

2ω3
L1(ε̄k, ω)

+ �

2� + iω

∫
k

∂β ε̄k∂γ ∂αε̄k

2ω3
L∗

1(ε̄k, ω). (72)

The DC limit of the rectification conductivity can be shown
to be (see Appendix B for details):

lim
ω→0

σ
γαβ

� (ω,−ω)

= 1

4

∫
k
∂α∂β∂γ ε̄k

[
f� (ε̄k )

�2
− 1

�

∂g� (ε̄k )

∂ε̄k
− 1

3

∂2 f� (ε̄k )

∂ε̄2
k

]

≈ 1

4

∫
k
∂α∂β∂γ ε̄k

[
f0(ε̄k )

�2
+ O(�0)

]
. (73)

The leading term of the above expression in the second
line coincides with the Jerk conductivity predicted within
the relaxation time approximation from a simple Boltzmann-
relaxation-time formalism [43,47,52]. For an illustration see
Fig. 3(d). We have also verified that the above ω → 0 limit of
the rectification conductivity is identical to the ω → 0 limit of
the second-harmonic generation conductivity σ

γαβ

� (ω,ω) (see
Appendix C for details).

Let us now focus on the main regime of our interest, which
is the “clean-limit” in which the relaxation rate vanishes
(� → 0) while the frequency remains finite. The exact ex-
pression for the rectification conductivity in this limit is given
by

lim
�→0

σ
γαβ

� (ω,−ω) = 1

2ω4

∫
k
(∂γ ε̄k )(∂αε̄k )(∂β ε̄k )

× [ f0(ε̄k + ω) + f0(ε̄k − ω) − 2 f0(ε̄k )].
(74)

Notice that the above rectification conductivity would vanish
under any symmetry that enforces ε̄k = ε̄−k, such as time re-
versal or inversion symmetry. Therefore, the above expression
proves one of our central claims, namely, that the rectification
conductivity remains finite at finite frequency within the opti-
cal transparency region of the metal. The “transparency” here
refers to the fact that the real part of the linear conductivity
vanishes in this same limit ω � � → 0. We illustrate this
behavior in Fig. 3(d) for our toy 1D model, confirming that
the in gap rectification is possible. The origin of this finite
rectification conductivity can be traced back to the fact that
to the second order of the electric field, the ideal occupation
function pk in the limit � → 0 is different from the equilib-
rium Fermi-Dirac distribution [see Eq. (62)].

While the expression of Eq. (74) is the exact clean limit
of the rectification conductivity in our model, it can be shown
that this expression reduces to the more familiar expression
for the Jerk current prediction of the simple Boltzmann-
relaxation-time expression in the limit in which the frequency
is small compared to the bandwidth, namely, �  ω  �,

and it is given by

lim
ω→0

lim
�→0

σ
γαβ

� (ω,−ω) = 1

ω2

∫
k

f0(ε̄k )∂α∂β∂γ ε̄k, (75)

which coincides with Eq. (21) of Ref. [43] for the Jerk
mechanism which has a 1/ω2 decaying power [see Fig. 3(f),
left-hand side]. More details of this agreement with the sim-
pler Boltzmann approach are discussed in Appendix D.

Interestingly, in the “ultrahigh” frequency limit, when the
frequency is much larger than the bandwidth ω � �, the
clean rectification conductivity transits to a different scaling
and decays much faster [see Fig. 3(f), right-hand side]:

lim
ω��

lim
�→0

σ
γαβ

� (ω,−ω)

= 1

2ω4

∫
k
[1 − 2 f0(ε̄k )](∂αε̄k )(∂β ε̄k )(∂γ ε̄k ). (76)

In contrast to the Boltzmann-relaxation-time result where the
large-frequency regime is controlled by the third momentum
derivative of the band dispersion, here, the large-frequency
response is controlled by the third power of band velocity,
which is a different intrinsic property of the band.

It is interesting to note that the expression in Eq. (76)
remains finite even when the unperturbed band is either fully
occupied [ f0(ε̄k ) = 1] or fully empty [ f0(ε̄k ) = 0], namely,
the system would be nominally an insulator without a Fermi
surface. This behavior is possible because our bath does not
conserve the total particle number of the system, and there-
fore, there appears a finite occupation of the bands when they
are driven by the electric field, even if the bands were initially
empty in the distant past before turning on the time-dependent
drive. In other words, all our calculations are performed
strictly for a bath with fixed chemical potential but not fixed
density. The appearance of a finite occupation of the bands
to second order of perturbation theory occurs when the fre-
quency exceeds the threshold so that one of the copies of the
Floquet bands boosted by ±ω crosses the chemical potential,
as depicted in Fig. 4.

IV. SUMMARY AND DISCUSSION

We have shown rigorously that the occupation of states
in a periodically driven fermionic system coupled to a fea-
tureless fermionic heat bath approaches a time-independent
occupation function in the limit in which the coupling to this
bath is vanishingly small. This occupation function can be
computed analytically and differs from the naive Fermi-Dirac
occupation of the dressed Floquet energies. This nonequi-
librium steady-state occupation instead resembles a staircase
version of the Fermi-Dirac distribution [see Fig. 1(a) for an
illustration], and also cannot be expressed as a function of the
Floquet energy alone, but in general contains information on
all the harmonics encoding the full time dependence of the
Hamiltonian.

We applied these results to the case in which the fermionic
system has a Hamiltonian corresponding to a single Bloch
band without Berry connections (e.g., arising from a tight-
binding model with a single site per unit cell) driven by
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FIG. 4. (a) Schematic of the original band (denoted by solid
line l = 0) and the boosted Floquet bands (denoted by dashed lines
l = ±1). Here the chemical potential μ is below the original band.
The threshold frequency ωt is the minimum frequency for boosted
Floquet bands to cross the chemical potential. (b) and (c) dimension-
less rectification conductivity σ xxx

� (ω,−ω)/σ (2)
0 and its Log-log plots

for different �, showing that rectification conductivity is nonzero
when ω > ωt. Parameters used are the same with those in Fig. 3.

a monochromatic electric field. We showed that this stair-
case Fermi-Dirac distribution leads to a finite rectification
conductivity within the optical transparency region of a metal,
which at small frequencies compared to the bandwidth agrees
exactly with the prediction of the Jerk current effect ex-
pected from a simpler Boltzmann-relaxation-time description
[43,47]. Because the oscillating electric field is monochro-
matic, this rectification conductivity does not arise because of
the frequency difference effect of Ref. [44] or the Raman-like
scattering effect of Refs. [45,46].

Our results validate our recent findings [43] that in-gap rec-
tification within the optical transparency region of metals are
indeed possible, even in the limit in which carrier relaxation
rates vanish, and clarify a discussion surrounding this matter
[44–46,48–50]. More details of the partial agreement with
some of these references but also the corrections of impre-
cisions and incorrect statements in some of them can be found
in Appendix E. Finally, we would like to caution that while
the featureless fermionic bath that we have employed has the
great advantage of allowing analytic calculations, it is not nec-
essarily a realistic approximation to relaxations mechanisms
in solids. It could be however, an approximation to situations
where, for example, a 2D metallic system of interest, has a
local tunnel coupling to larger metallic system that acts as a
bath. It would be interesting to investigate in the future how
our conclusions are affected by, e.g., phonon baths, which are
ubiquitous in materials.
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APPENDIX A: LINEAR CONDUCTIVITY
IN THE DC LIMIT

In this Appendix we show additional details of the linear
conductivity in the DC limit discussed in the main text. In the
DC limit ω → 0 the linear conductivity [see Eq. (64) in the
main text] becomes

lim
ω→0

σ
αβ

� (ω) = 1

2

∫
k
∂α∂β ε̄k

[
f� (ε̄k )

�
− ∂g� (ε̄k )

∂ε̄k

]

= 1

2

∫
k
∂α∂β ε̄k

[
f0(ε̄k )

�
+ �

2

∂3 f0(ε̄k )

∂ε̄3
k

+ �2

3

∂3g0(ε̄k )

∂ε̄3
k

+ O(�3)

]
, (A1)

in which

g� (ε) = 1

2i
[ f+(ε) − f−(ε)], g0(ε) ≡ lim

�→0
g� (ε), (A2)

where g� (ε) is the imaginary part of f+(ε) defined in Eq. (25)
in the main text, and we used the Cauchy-Riemann equa-
tions satisfied by f� (ε) and g� (ε)

∂ f� (ε)

∂�
= ∂g� (ε)

∂ε
,

∂ f� (ε)

∂ε
= −∂g� (ε)

∂�
, (A3)

and the resulting relation

f� (ε) = f0(ε) + �
∂g0(ε)

∂ε
+ O(�2), (A4)

to obtain the second equation of Eq. (A1). Therefore, the clean
limit of the DC conductivity resembles the prediction of the
classic Drude theory for τ ≡ 1/(2�):

lim
�→0

lim
ω→0

σ
αβ

� (ω) = 1

2�

∫
k

f0(ε̄k )∂α∂β ε̄k, (A5)

and linear conductivity has a Drude peak in the DC limit when
the chemical potential of the bath is within the bandwidth of
the system μ ∈ [0,�]. The system can still have a finite linear
DC conductivity even if the band is nominally fully empty or
occupied at finite �, namely,

lim
ω→0

σ
αβ

� (ω)

= 1

2

∫
k
∂α∂β ε̄k

[
�2

3

∂3g0(ε̄k )

∂ε̄3
k

+ O(�3)

]
∝ �2 + O(�3),

(T0 → 0, μ /∈ [0,�]). (A6)

This conductance vanishes when � → 0.
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APPENDIX B: RECTIFICATION CONDUCTIVITY
IN THE DC LIMIT

In this Appendix we show more details of the rectification
conductivity in the DC limit discussed in the main text. In the
DC limit, the rectification conductivity [see Eq. (72) in the
main text] is

lim
ω→0

σ
γαβ

� (ω,−ω)

= 1

4

∫
k
∂α∂β∂γ ε̄k

[
f� (ε̄k )

�2
− 1

�

∂g� (ε̄k )

∂ε̄k
− 1

3

∂2 f� (ε̄k )

∂ε̄2
k

]

= 1

4

∫
k
∂α∂β∂γ ε̄k

[
f0(ε̄k )

�2
+ 1

6

∂2 f0(ε̄k )

∂ε̄2
k

+ �2

24

∂4 f0(ε̄k )

∂ε̄4
k

+ �3

45

∂5g0(ε̄k )

∂ε̄5
k

+ O(�4)

]
, (B1)

where we again used Eq. (A4) in arriving at the second
equation. In the clean limit � → 0, this coincides with the
Jerk conductivity predicted within the relaxation time ap-
proximation, but here we also present the subleading in �

correction:

lim
�→0

lim
ω→0

σ
γαβ

� (ω,−ω)

= 1

4

∫
k
∂α∂β∂γ ε̄k

[
f0(ε̄k )

�2
+ 1

6

∂2 f0(ε̄k )

∂ε̄2
k

]
. (B2)

Therefore, similar to the linear conductivity, second-order
rectification conductivity has a Jerk peak at DC limit when
the chemical potential is within the bandwidth of the system
μ ∈ [0,�]. When the band is nominally fully empty or occu-
pied, for the rectification conductivity we now have

lim
ω→0

σ
γαβ

� (ω,−ω)

= 1

4

∫
k
∂α∂β∂γ ε̄k

[
�3

45

∂5g0(ε̄k )

∂ε̄5
k

+ O(�4)

]
∝ �3 + O(�4),

(T0 → 0, μ /∈ [0,�]). (B3)

This finite DC rectification conductivity again vanishes in the
clean limit � → 0.

APPENDIX C: SECOND HARMONIC GENERATION

In this Appendix we show the second harmonic con-
ductivity mentioned in the main text. The second harmonic
conductivity is the one that controls the response oscillating
at the double frequency of the drive (s = 2), we define it as

j (2)
γ = σ

γαβ

� (ω,ω)Eα
ω Eβ

ω + O(|Eω|3), (C1)

and it is given by the following expression:

σ
γαβ

� (ω,ω) = − 1

2ω2

∫
k

f�∂α∂β∂γ ε̄k

− 1

ω3

�

2� − iω

∫
k
(∂αε̄k )(∂β∂γ ε̄k )L1(ε̄k, ω)

− 1

2ω4

�

2� − 2iω

∫
k
(∂γ ε̄k )

[
(∂αε̄k )(∂β ε̄k )L2

× (ε̄k, ω) + ω

2
∂α∂β ε̄kL1(ε̄k, 2ω)

]
, (C2)

where

L2(ε̄k, ω) = f+(ε̄k − 2ω) − 2 f+(ε̄k − ω) + f+(ε̄k )

+ f−(ε̄k ) − 2 f−(ε̄k + ω) + f−(ε̄k + 2ω).
(C3)

The low-frequency limit of second harmonic conductiv-
ity coincides with the low-frequency limit of rectification
conductivity from Eq. (73) in the main text:

lim
ω→0

σ
γαβ

� (ω,ω) = 1

4

∫
k
∂α∂β∂γ ε̄k

×
[

f� (ε̄n)

�2
− 1

�

∂g� (ε̄n)

∂ε̄n
− 1

3

∂2 f� (ε̄n)

∂ε̄2
n

]
.

(C4)

Interestingly, at large frequencies ω � � the real part of the
second harmonic conductivity decays as 1/ω2 in contrast to
1/ω4 power decay of the rectification conductivity.

APPENDIX D: RELATION TO THE BOLTZMANN THEORY

In this Appendix we discuss the relation between our result
and that from a simpler Boltzmann/relaxation-time approach.
We begin by writing a Boltzmann equation for a single-band
system in the relaxation time approximation:

∂t f (k, t ) + E(t ) · ∇k f (k, t ) = −[ f (k, t ) − f0(εk )]/τ,
(D1)

where E(t ) = Eωe−iωt + c.c. is a monochromatic electric
field.

The above equations are written in a different gauge with
respect to the main text: here k is viewed as a gauge in-
variant mechanical crystal momentum, which corresponds to
k − A(t ) in the main text. To obtain expressions for occu-
pation functions in the same gauge as in the main text, we
convert to a gauge in which we keep track of the occupation
of canonical crystal momenta, using the following relation:

p(k, t ) ≡ f (k − A(t ), t ). (D2)

The occupation function p(k, t ) satisfies the following equa-
tion:

∂t p(k, t ) = ∂t f (k − A(t ), t ) − ∂t A(t ) · ∇k f (k − A(t ), t )

= ∂t f (k − A(t ), t ) + E(t ) · ∇k f (k − A(t ), t )

= −[ f (k − A(t ), t ) − f0(εk−A(t ) )]/τ, (D3)

where we used Eq. (D1) in obtaining the last equation. There-
fore, we see that the distribution function p(k, t ) satisfies an
equation without explicit electric-field derivative term:

∂t p(k, t ) = −[p(k, t ) − f0(εk−A(t ) )]/τ. (D4)

Using the fact that the late-time steady-state distribution is pe-
riodic, we perform Fourier series expansions for both p(k, t )
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and f0(εk−A(t ) ):

p(k, t ) =
+∞∑

l=−∞
p(l )(k) exp(−ilωt ),

p(l )(k) =
∫ T

0

dt

T
p(k, t ) exp(ilωt ),

f0(εk−A(t ) ) =
+∞∑

l=−∞
f (l )
0 (k) exp(−ilωt ),

f (l )
0 (k) =

∫ T

0

dt

T
f0(εk−A(t ) ) exp(ilωt ). (D5)

With the above expansions, Eq. (D4) becomes

−ilωp(l )(k) = −p(l )(k)/τ + f (l )
0 (k)/τ (D6)

and leads to

p(l )(k) = 1

1 − ilωτ
f (l )
0 (k). (D7)

The above solution in general requires an explicit calculation
of the following mixed harmonics of the distribution:

f (l )
0 (k) =

∫ T

0

dt

T
f0

(
ε

(0)
k + ε

(1)
k e−iωt + ε

(−1)
k eiωt + · · · )

× exp(ilωt ), (D8)

where

εk−A(t ) =
+∞∑

l=−∞
ε

(l )
k exp(−ilωt ),

ε
(l )
k =

∫ T

0

dt

T
εk−A(t ) exp(ilωt ). (D9)

Let us consider however the clean limit τ → +∞. Notice that
f (l )
0 (k) is independent of τ , therefore for l 
= 0 components

we have

lim
τ→+∞ p(l 
=0)(k) = lim

τ→+∞
1

1 − ilωτ
f (l )
0 (k) = 0. (D10)

However, the l = 0 component, or time-averaged component,
which is independent of τ and therefore remains finite as τ →
+∞, is given by

p(0)(k) = f (0)
0 (k)

=
∫ T

0

dt

T
f0

(
ε

(0)
k + ε

(1)
k e−iωt + ε

(−1)
k eiωt + · · · ).

(D11)

Therefore, similar to Eq. (54) obtained from the full formalism
with the bath, the distribution from the Boltzmann theory
becomes time-independent in the canonical crystal momen-
tum, but not in the mechanical physical momentum, in the
analogous ideal limit of τ → +∞. Notice, however, that the
above result has to be viewed as a limit of τ → +∞, and not

as a situation in which there is no relaxation. This is because
in the strict absence of relaxation mechanisms there is no
unique late-time steady state, namely, by taking 1/τ = 0 and
neglecting altogether the relaxations in the right-hand side of
Eq. (D4) any time-independent distribution of the canonical
momenta would be a solution.

If we expand up to the second order of electric fields
Eq. (D11), then we obtain

p(0)(k) =
∫ T

0

dt

T

[
f0(ε̄k ) + (

ε
(1)
k e−iωt + ε

(−1)
k eiωt + ε

(2)
k e−i2ωt

+ ε
(−2)
k ei2ωt

)
f ′
0(ε̄k ) + 1

2

(
ε

(1)
k e−iωt + ε

(−1)
k eiωt

)2

× f ′′
0 (ε̄k ) + O(|Eω|3)

]

= f0(ε̄k ) + ∣∣ε (1)
k

∣∣2
f ′′
0 (ε̄k ) + O(|Eω|3). (D12)

Interestingly, the above distribution function coincides with
the asymptotic behavior of the staircase distribution function
discussed in the main text [see, e.g., Eq. (62)] in limit of � �
ω � � → 0:

lim
ω→0

lim
�→0

pk = lim
ω→0

[(
1 − 2

∣∣ε (1)
k

∣∣2

ω2

)
f0(ε̄k )+

∣∣ε (1)
k

∣∣2

ω2

× f0(ε̄k − ω) +
∣∣ε (−1)

k

∣∣2

ω2
f0(ε̄k + ω)

]

= f0(ε̄k ) + ∣∣ε (1)
k

∣∣2
f ′′
0 (ε̄k ). (D13)

Therefore, the expectation value of all equal time observables,
such as the electric current, coincide with those of the more
microscopic Floquet-bath theory of the main text, at least to
second order in electric fields. In particular, one obtains the
same rectification conductivity in the above limit as that in
Eq. (75) of the main text, that we refer to as Jerk effect.

APPENDIX E: COMMENTS AND CONNECTIONS
TO OTHER WORKS IN THE LITERATURE

There has been a long-standing debate in the literature
about the possibility of in-gap rectification which has been
clouded by previous imprecise and incorrect statements. In
this section we will try to clarify some of this. We begin by
defining precisely what we mean by in-gap rectification. The
optical gap is defined as the region in the frequency domain in
which the the Hermitian symmetric part of the conductivity
tensor vanishes in the limit of low temperatures and small
scattering rates (see Ref. [43] for a review). We then say
that a system has in-gap rectification if any of the elements
of the rectification conductivity tensor that lead to finite DC
currents generated by a monochromatic AC electric field with
a frequency within the optical gap remain nonzero in that same
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limit. More specifically:

Definition of “optical gap” : lim
T0→0

lim
�→0

(σαβ (ω) + [σβα (ω)]∗) → 0, when ω ∈ optical gap. (E1)

Definition of “in-gap rectification” : lim
T0→0

lim
�→0

σγαβ (ω,−ω) 
= 0, when ω ∈ optical gap. (E2)

Therefore, our current manuscript and our previous work in
Ref. [43] demonstrate rigorously that in-gap rectification in
the above sense is indeed possible.

Nevertheless, some confusion in the literature appears to
have originated from different interpretations of the work
of Belinicher, Ivchenko, and Pikus (BIP) in Ref. [48]. That
paper contained statements such as “The conclusion that a
steady-state photocurrent may appear on illumination in the
transparency range of a crystal, reached in earlier publica-
tions, is shown to be in error.” This statement could be read
as implying the impossibility of in-gap rectification in the
sense we defined above. In fact, this reading of the BIP
paper appears to have been made in several references claim-
ing that in-gap rectification in the above sense is impossible
[44,45,50]. Even us in our recent work of Ref. [43], read
the BIP paper as trying to prove that in-gap rectification is
impossible in the above sense.

However, part of the issue with reading the aforementioned
BIP paper is that it left several crucial gaps in its discussion
and its derivations that make it hard to know in a precise
way what exactly BIP implied at various places and the pre-
cise framework that BIP used for reaching such conclusions.
For example, a crucial point that can lead to different read-
ings of the BIP paper relates to the definition of the term
“gn” that appears in the right-hand side of their Eq. (8) in
Ref. [48], which is a central equation from which various
conclusions are derived. Unfortunately, BIP never spelled out
an explicit form for this term, but simply wrote that “gn is
the generation function, i.e., the rate of change of the distri-
bution function due to optical transitions.” This leaves open
to interpretation what exactly they had in mind for “optical
transitions.” For example, one could read this by interpreting
“gn” as associated only with inter-band optical transitions,
and in this case, one would be lead to read the BIP paper as
trying to imply that in-gap rectification in the above sense is
impossible.

There is however an alternative way to interpret “gn” and
the notion of “optical transitions” in Ref. [48] as a more
general notion of irreversible “transitions” that can take place
even within what would nominally be the optical gap defined
in the above sense. This more nuanced way of interpreting the
BIP paper has indeed been recently emphasized by Glazov
and Golub in Ref. [46]. For example, Golub and Glazov write
in Ref. [46] that “...even for transparent media, real electronic
transitions should occur to enable the photocurrent.” and that
“We reiterate that in the absence of any real electronic tran-
sitions DC current is forbidden. It is obvious from general
reasons: If a DC current is generated, then this current re-
sults in a Joule heat in the sample or in the external circuit
connected to the sample. It is forbidden by the energy conser-
vation law in the absence of real transitions.” What Golub and
Glazov are trying to explain there is in line with our recent

thermodynamic analysis in Ref. [43], where we emphasized
that to guarantee the positivity of entropy production, spe-
cially when the system is connected to an external circuit, it is
always important to view the scattering rate � as possibly arbi-
trarily small but not strictly zero. This requirement means that
physically it is important to have always a nonzero absorption
within the nominal optical gap of the material. In fact, Golub,
Ivchenko, and Spivak, have also emphasized a related aspect
of this in Ref. [57] where they demonstrated that the CPGE
effect associated with the Berry dipole term remains finite
within the optical gap in the limit of � → 0, but also coexists
the other contributions that originate from impurity scattering
mechanisms that scale in the same way with frequency and
remain finite inside of the gap in the limit of � → 0. One
way to state this state of affairs, that has been emphasized by
Golub and Glazov to us in private communications, is that
while the real transitions associated with scattering lead to a
vanishingly small linear dissipative conductivity in the limit
of � → 0, there are cancellations of the scattering rate that
lead to finite rectification conductivity in this limit, and the
“real electronic transitions” are still taking place. These “real
electronic transitions” could be therefore interpreted as a more
general notion of the “optical transitions” that can contribute
to the term “gn” in the BIP reference. Therefore, within this
point of view, one can say that the BIP should not be read as
implying that in-gap rectification is impossible in the sense
we defined above. We are in agreement with the physics of
this point of view broadly speaking.

There is however another crucial aspect of the BIP work in
Ref. [48] with which we still find ourselves in disagreement
and that we believe our current paper provides good evidence
to be incorrect in general. BIP stated that “...in the case of
continuous illumination the steady-state distribution function
is f0(ε̄k ) irrespective of how weak is the interaction of elec-
trons with phonons.” In this statement f0 is the “equilibrium
distribution function” (the Fermi-Dirac occupation function)
and ε̄k is the Floquet energy of the band. These statement
has been echoed in several subsequent works [45,46,49,50].
However, our current work demonstrates that in the limit
of � → 0 the distribution function is sharply different from
the naive Fermi-Dirac occupation, but becomes instead the
nontrivial Fermi-Dirac staircase discussed in the main text,
even to the leading order |Eω|2 in the driving monochromatic
field. Crucially the resulting occupation function cannot be
expressed as a function of the Floquet energy alone [see
Fig. 1, Eq. (54), and Eq. (62) of the main text]. Notice that
to have a unique and well defined steady state at late times,
we must necessarily view the relaxation rate � as being ar-
bitrarily small but not strictly zero. Therefore, the notion of
the ideal occupation in the steady state has to be necessarily
interpreted as the limit of � → 0 of the occupation of sys-
tems with a finite �. This is because systems with strictly
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zero relaxation rate (� = 0) do not have a way to erase the
memory of their initial conditions and therefore their steady
state in the presence of the monochromatic light is not
uniquely defined.

We have demonstrated rigorously that at least for an ideal
fermionic bath the occupation of states in the limit of � → 0
is not f0(ε̄k ) as Refs. [45,46,48–50] presumed. We would like
to emphasize that while the fermionic bath might appear to
be a somewhat artificial approximation to the true mecha-
nisms of relaxation for certain realistic physical situations,
it behaves as an ideal thermal bath in the limit � → 0. In
particular, the particle number becomes effectively conserved
in such limit since the self-consistent occupations at each
momentum become a time-independent function as we have
shown. Additionally, we have demonstrated that in equilib-
rium (namely, in the absence of the time-dependent electric
field) this bath leads to the expected Fermi-Dirac occupation
of the system. More generally speaking, in equilibrium one
expects a universality of all intensive thermodynamic phys-
ical properties of the system of interest for a large class of
baths regardless of their details, which essentially defines

the class of “ideal thermodynamic baths.” However, how this
universality carries over to nonequilibrium settings is still
unclear to us. Therefore, whether other baths or other relax-
ation mechanisms such as coupling to phonons, impurities
or self-thermalization via electron-electron interactions lead
to a similar stair-case occupation to the one we have found
in the limit of vanishing relaxation rates � → 0, remains an
interesting open problem. We note however that none of the
aforementioned Refs. [45,46,48–50] has provided a rigorous
and controlled derivation of the self-consistent occupation of
Floquet bands based on any microscopically explicit mecha-
nism of relaxation, like the one we have provided. Therefore,
we do not see any substance to their claim that the occupation
is f0(ε̄k ) even for other microscopic relaxation mechanisms
such as phonons or other relaxation mechanisms arising from
electron-electron interactions or impurities. Moreover, it has
become abundantly clear in the study of thermalization of
Floquet systems in recent years that the self-consistent occu-
pation of Floquet bands coupled to baths that are also bosonic
differs clearly from the naive Fermi-Dirac distribution of the
Floquet bands f0(ε̄k ) [36–41].
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