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Measurements of shock-propagation velocities in liquid lead across
the metal-nonmetal transition range
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The propagation velocities of shock waves with Mach numbers in the range 1.1–1.5 have been directly
measured in liquid lead over a wide region of fluid states in the specific volume and pressure plane across
the metal-nonmetal transition range. The measured values are compared with those obtained from a caloric
equation of state (EOS) constructed using the results of dynamic experiments. The comparison shows that the
measured values are in good agreement within the values calculated by the EOS. These results suggest that, for
the entire region of the fluid states investigated here (where the fluid is a one-phase system) the shock waves
are stable. The values of the critical pressure, critical volume, and critical enthalpy were determined using the
EOS and compared with literature data. Thus, the EOS of liquid lead is presented, describing its thermodynamic
properties with known accuracy in wide ranges of specific volume and pressure.
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I. INTRODUCTION

Experimental studies of liquid metals in wide ranges of
specific volume and pressure are crucial for the development
of the theory of condensed states [1–3], theoretical models of
astrophysical objects like giant planets and brown dwarfs [4]
as well as for nuclear energy applications [5]. When the spe-
cific volume of a liquid metal increases, say at a constant
pressure, it undergoes two transitions, namely, the liquid-gas
phase transition, and the metal-nonmetal transition. On the
nonmetallic side of the transition in a plane of specific volume
and pressure, the fluid is a dense plasma whose ionization
state changes appreciably as the specific volume or pressure is
varied [6–8]. Such a partially ionized plasma is characterized
by strong coupling between charged particles (i.e., between
the conduction electrons and ions) and a partial degeneracy
of the electrons [4,9]. The physical theories of such a metal-
nonmetal transition and properties of the fluid on the metallic
and nonmetallic side of the transition are very uncertain, and
experimental data can be used to test the fundamental theories.

Remarkable progress in our understanding of the phe-
nomena in liquid metals is being made owing to the
rapid development of high-performance computing. How-
ever, despite the significant efforts made, the question of the
mechanism of the metal-nonmetal transition occurring in liq-
uid metals and the interrelation between the metal-nonmetal
and liquid-gas transitions remains open [10–12]. Recently,
to estimate the critical points for the liquid-gas transition in
refractory metals, ab initio molecular dynamics simulations
were used [13,14]. The pressure values on isotherms at sev-
eral density values were determined for a wide region in the
density and pressure plane. The data points on the isotherms
were interpolated by third-order polynomials by analogy with
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the van der Waals equation of state (EOS). Leaving aside the
question of the accuracy in the determined values of pressure
near the equilibrium line of the phase transition, the question
arises of the correct form of the isotherms in the vicinity of
the critical point of the liquid metal that undergoes a metal-
nonmetal transition. This question is closely related to the
question of the correct form of the EOS for this region of the
phase diagram.

The EOSs of liquid metals were constructed by using
the results of the ab initio molecular dynamics simula-
tions [15–17]. In such an EOS, the Helmholtz free energy is
represented as a sum of the cold and thermal components,
and the latter is divided into the sum of the contributions
from the thermal motion of nuclei (ions) and the conduction
electrons. The correct analytical forms of the dependencies
of the components on the specific volume and temperature are
unknown and were obtained by constructing interpolation for-
mulae between the liquid and ideal gas states [18–20]. Such an
EOS contains dozens of parameters, which are determined by
fitting the dependencies to experimental data or the molecular
dynamics simulations results. This approach has two signifi-
cant difficulties: The analytical form of the EOS in the region
of the phase diagram where the liquid-gas and metal-nonmetal
transitions occur has not been substantiated, and the errors in
the ab initio simulations results are not well known. In this
paper, we validate the EOS of liquid lead constructed by using
an approach which does not have the above difficulties.

To study experimentally the thermophysical properties of
liquid metals in wide ranges of specific volume and pressure,
the dynamic experimental method [21] was developed which,
after several improvements [12,22], made it possible to carry
out the measurements with accuracy comparable with that
of the static experiments [6,23]. Recently, this method was
used to measure the thermodynamic functions and electrical
resistivity of liquid lead [22] and lead-bismuth eutectic [12]
over wide regions of fluid states in the V P plane (V is the
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specific volume, and P is pressure). Based on the experimental
data and by using the phenomenological approach [24], the
caloric EOSs have been constructed for these two metals,
which allow the critical points for the liquid-gas transitions
and the critical density for the metal-nonmetal transitions to
be determined [12]. As shown in Ref. [24], the error in such
a caloric EOS depends only on the errors in the experimental
data used to determine the characteristic functions of the EOS,
which are directly derived from the measured quantities, and
therefore, the error in the EOS can be estimated. However,
for a wide region of the V P plane in which experimental data
have been obtained by the dynamic technique, corresponding
to the ranges of the relative volume V/V0 = 1.3–8 (V0 is
the normal value of the specific volume), and the pressure
P = 0.5–5 GPa, there are no other experimental data. The
literature data for liquid lead are only available in the ranges
P � 0.3 GPa, V/V0 < 2. Hence, for a wide region of the
V P plane, the experimental data [12,22] cannot be compared
with data obtained by a different experimental technique. This
situation does not allow a reliable estimate of the possible
systematic errors in the dynamic measurements to be made.
Since the results obtained in Refs. [12,22] and the conclusions
drawn from them are of considerable interest, the problem of
estimating the systematic errors in the pulse experiments is of
particular importance.

The van der Waals EOS is a particular case of the Mie-
Grüneisen EOS [24]. As was already mentioned, the present
EOS allows the critical density for both the liquid-gas and
metal-nonmetal transitions to be determined. For other liquid
metals, the critical density for the metal-nonmetal transition
has not yet been obtained, neither from the quantum molecular
dynamics simulations results nor from the results of the static
experiments [6,11,12]. The van der Waals EOS makes no
difference between a metal and a nonmetal. The fact that the
van der Waals EOS may not be quite correct in this region
follows from the behavior of the sound velocity predicted by
the present EOS which indicates that, at the critical point,
the velocity of sound tends to zero. Such behavior does not
generally follow from the van der Waals EOS [25].

In this paper, a time-of-flight method has been developed
for direct measurements of the propagation velocities of weak
shock waves generated in the samples of the dynamic ex-
periments. Such shock waves cause relatively small jumps
in density of the samples, but their velocity may noticeably
exceed the velocity of sound in the state in front of the shock
wave. The Mach numbers for these shocks, i.e., the ratio of the
shock velocity to the velocity of sound in the initial state, are
within the range 1.1–1.5. Since the Hugoniot curves for liquid
lead can be determined from the caloric EOS whose precision
depends only on the precision of the experimental data used to
determine the characteristic functions [24], the comparison of
the measured values of the shock wave velocity with those
obtained from the EOS allows the systematic errors of the
dynamic experiments to be estimated. The accuracy of the
EOS depends only on the accuracy of the experimental data
since no simplifying assumptions were made when deriving
the analytical form of the EOS. The time-of-flight methods
are frequently applied to measure the velocities of shock and
sound waves in dynamic experiments by using a laser pulse to
create a pressure perturbation and measuring the transit time

of the perturbation in the material under study. In Ref. [26],
the velocity interferometer for any reflector was used to mea-
sure the transit times of sound waves in silicon compressed by
shock waves up to pressures of 2 TPa.

It should be noted that experimental data on the shock-
propagation velocity for the fluid states across the metal-
nonmetal transition range are also of considerable interest in
connection with the theoretical predictions of the mechanical
instability of the electron Fermi liquid in this range [27–29]
and the question of the influence of quantum fluctuations
on thermodynamic functions [2,30]. In this paper, we report
on the measurement results on the shock-propagation veloc-
ity obtained for the entire region of fluid states in the V P
plane studied earlier [22]. Comparison of the measured shock-
propagation velocities with those determined from the caloric
EOS has shown reasonably good agreement. Based on the
comparison, an accurate estimate of the systematic errors in
the dynamic experiments was made, and thus, the accuracy of
the EOS was tested.

II. METHOD FOR MEASURING THE PROPAGATION
VELOCITY OF WEAK SHOCK WAVES IN

THE DYNAMIC EXPERIMENTS

The submicrosecond pulse-heating technique [21,22] used
here, designed to study the thermophysical properties of ex-
panded liquid metals, is as follows. A metal sample in the
form of a square piece of foil is sandwiched between two
transparent plates of the so-called window material (silica
glass or sapphire plates in these experiments) and resistively
heated by an electric current pulse with an amplitude of
10–100 kA and a rise time ∼1 μs from a capacitor discharge
system. In the experiment, the electric current in the sample,
the voltage across it, and the displacement of the sample
surface caused by the thermal expansion are measured. This
set of measured quantities allows the temporal dependences
of the specific internal energy, specific volume, pressure, and
resistivity for each experiment to be determined. The duration
of these experiments in the case in which the sapphire plates
are used does not exceed 1 μs, and for the experiments with
the silica glass plates, it is <2 μs. These conditions determine
the interval of time during which the sample remains homo-
geneous, and the thermal expansion is one dimensional.

In addition to the measured quantities listed above, in this
work, we measure the velocity of weak shock waves in such
dynamic experiments. The essence of the method used here
to perform these measurements is as follows. In the dynamic
experiment, i.e., during the ohmic heating of the sample by
an electric current pulse, at a predetermined instant t1 when
the sample is in the state of interest for which the shock wave
velocity is to be measured, one of the sample surfaces (which
we call here the front surface) is irradiated by a short laser
pulse. The time t1 is determined from the previously measured
(in a similar experiment) temporal dependences of the specific
volume and pressure in the sample. The laser pulse used in this
experiment had sufficient energy to create a well-defined pres-
sure perturbation (a weak shock wave) on the front surface of
the sample, and that remained so on the opposite surface (back
surface), where it arrived with some delay. By measuring the
instant of generation of the perturbation at the front surface
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FIG. 1. Schematic layout for the measurements of the shock-
propagation velocity in the dynamic experiments. F is the sample
(a piece of foil), PF and PB are the front and back plates of the
window material, L is a pulsed laser, IF and IB are the front and back
interferometers, M1 and M2 are dielectric mirrors, and FC1 and FC2
are fiber collimators.

and the instant of its arrival at the back surface of the sample
and knowing the change in the thickness of the sample with
time (which is measured in the experiment), we determine the
velocity of the perturbation. A scheme of such measurements
is shown in Fig. 1.

To produce the pressure perturbations, a New Wave Re-
search pulsed laser (Orion model) was used, which generates
a laser pulse at the wavelength of 1064 nm, having a duration
of ∼7 ns and an energy of ∼29 mJ. Due to the attenuation of
the laser pulse along the optical path, the laser pulse incident
on the sample front surface had an energy of ∼22 mJ. The
laser beam was focused on the front surface of the sample to
a spot with a diameter of 1 mm. The collimated beam of the
fiber laser interferometer IF (see Fig. 1) was reflected from
the same area. The reflecting spot diameter on the sample
surface (or more precisely, the beam was reflected from a
dielectric mirror deposited on the surface of the window in
contact with the sample) was ∼0.3 mm. A more detailed de-
scription of the interferometer can be found elsewhere [12,22].

It is well known that, in a conductor, the laser pulse energy
penetrates only to a relatively small depth δ, determined by
the formula:

δ = с√
2πωσ

, (1)

(the normal skin effect [31]), where c is the velocity of light
in vacuum, ω is angular frequency of the laser light, and σ

is the electrical conductivity of the sample. In the metallic
state, the resistivity of liquid lead (i.e., the reciprocal of the
conductivity) is in the range σ−1 = 2–10 μ� m [22], so that
we obtain from Eq. (1) δ = 0.05−0.1 μm. Absorption of the
laser pulse energy in the layer of the thickness ∼δ leads to
intense heating of the layer. As a result, a traveling pressure
perturbation arises in the sample. A typical thickness of the
samples in the measurements of the velocity of the shock
waves was h = 30–100 μm, that is much larger than δ, but

FIG. 2. (a) Oscillogram of the interferometer IB from which the
instant t2 is determined. (b) Oscillogram of the interferometer IF
used for detection of the instant t1. (c) Temporal dependence of the
radiation intensity produced by the pulsed laser.

is much less than the diameter of the spot irradiated by the
laser pulse. Thus, the pressure perturbations are rather short
compared with the duration of the dynamic experiments and
nearly one dimensional.

The time of appearance of the perturbation at the front
surface of the sample t1 is detected by the interferometer IF
(see Fig. 1). To increase the accuracy of the measurement,
a dielectric mirror is deposited on the side of the plate PF
in contact with the sample. The moment of arrival of the
perturbation to the back surface of the sample t2 is detected
by another interferometer (the interferometer IB in Fig. 1). A
dielectric mirror is also deposited on the surface of the plate
PB in contact with the sample. The interferometer IB is iden-
tical to the interferometer IF and uses the same laser source.
The velocity of propagation of the pressure perturbations in
the sample is determined by the formula:

D = h1 + h2

2(t2 − t1)
, (2)

where h1 and h2 are the thickness of the sample at instants t1
and t2, respectively. A derivation of this formula is given in
Sec. III.

The oscillograms of the two displacement interferometers
for a typical experiment in this paper illustrating accuracy of
the detection of the instants t1 and t2 are shown in Fig. 2. The
oscillograms were recorded by a Rohde&Schwarz RTM2104
oscilloscope using Thorlabs DET01FC photodetectors. The
abrupt increase in the amplitude of the front interferometer

195134-3



A. M. KONDRATYEV AND A. D. RAKHEL PHYSICAL REVIEW B 107, 195134 (2023)

FIG. 3. Temporal dependence of the pressure at the back surface
of the sample, obtained from the oscillogram shown in Fig. 2(a). t2 is
the instant when the pressure perturbation reaches the back surface
of the sample.

signal after the time t1 is caused by illumination of this inter-
ferometer by the radiation of the pulsed laser. As seen from
Fig. 2(a), the repetition rate of the extrema in the oscillogram
of the back interferometer increases remarkably after the ar-
rival of the perturbation, which indicates an increase in the
velocity of this surface.

The origin t = 0 in Fig. 2 corresponds to the time when
the electric current starts to flow through the sample. The
temporal dependence of the radiation intensity emitted by the
pulsed laser that is used to generate the pressure perturbation
in the sample is shown in Fig. 2(c). This signal was obtained
by reflecting the laser pulse from one of the dielectric mirrors
used in the optical scheme (see Fig. 1). The energy of this
pulse is <1% of that of the incident laser pulse. As seen
from the Fig. 2, the illumination of the front interferometer
by the pulsed laser allows us to prove that the synchroniza-
tion of these optical measurements was performed with an
accuracy of not worse than 1 ns. Figure 3 gives the temporal
dependence of the pressure at the back surface of the sam-
ple, obtained from the oscillogram represented in Fig. 2(a).
The method used here to determine the pressure is presented
elsewhere [22]. It should be mentioned that, in the experiment
from which the oscillograms are shown in Fig. 2, the windows
were of silica glass. As seen from the Fig. 3, at the instant t2,
the pressure at the back surface of the sample begins to rise
abruptly, which indicates the arrival of the shock wave. Thus,
the temporal dependence of the back surface displacement of
the sample measured in this experiment makes it possible to
determine both the pressure in the sample before the arrival of
the perturbation and the pressure jump created by it.

The foils from which the samples were cut for these ex-
periments were made by rolling ingots of lead (lead of grade
C0000 with a Pb content of at least 99.9999 wt. %) on YuMO-
V9 jewelry rollers. The foils used in these experiments had the
thickness of 10–50 μm.

To estimate some errors in the measurements of the ve-
locities of the pressure perturbations in the lead samples, we
performed the measurements for the sample under normal
conditions. In this case, the same experimental assemblies
were taken, consisting of two sapphire plates and the lead foil
strip sandwiched between them, which were used in dynamic
experiments, but the pressure perturbation was produced in
the sample under normal conditions (there was no electric
current pulse through the sample). As a result of the present
measurements made in 13 experiments, we obtained the av-
erage value of the velocities of 2.18 ± 0.09 km/s. In these
experiments, the errors in determining the pressure in the
waves are relatively large since the layers of glue between
the sample and the sapphire plates are not yet compressed
by the sample, and this compression occurs only in the per-
turbation waves. This error is greater, the lower the pressure
is in the wave. However, the measurements have shown that
the pressures in the waves exceeded the Hugoniot elastic limit
for lead (PHEL < 0.4 GPa [32]). Therefore, it is reasonable to
compare the measured values of the velocities of the waves
here not with the longitudinal sound velocity of lead but with
the shock wave velocity on the Hugoniot curve. We made such
a comparison using the dependence of the shock wave veloc-
ity on the particle velocity from Ref. [33]. The comparison
showed that, to within the error in the measurements of the
velocity jumps in the waves, our results agree with the values
of the shock waves velocities. For the waves with the pressure
of 4 GPa, we measured the velocity of 2.27 km/s, which is in
fair agreement with the shock wave velocity on the Hugoniot
curve of 2.22 km/s [33]. For waves with lower pressures, the
agreement is worse.

III. MEASUREMENT RESULTS

The measurement results obtained in the present experi-
ments on the velocity of weak shock waves in liquid lead are
shown in Fig. 4. The measured velocity values are represented
as a function of the relative density V0/V , i.e., the ratio of the
density ρ = V −1 to its normal value ρ0 = 11.34 g/cm3. Near
each measured value of the velocity, the pressure in the sample
in front of the perturbation (i.e., a weak shock wave) and the
pressure behind the shock wave are indicated (in GPa). Note
that a shock wave can be considered weak if it causes a jump
in the specific volume which is much smaller than the specific
volume in front of the shock wave. In the present experiments,
the ratio of the jump in the specific volume to the value of the
volume in the initial state (in front of the shock wave) did not
exceed 0.3, and for most of the experiments, it was <0.2. The
blue crosses in Fig. 4 indicate three experiments for which the
Hugoniot curves are shown in Fig. 5. The curves start from
the initial states for which the measurements of the shock-
propagation velocity were made. The data points represent the
results of measurements for three significantly different states
of the fluid, namely, the metallic state, the state with a density
close to the critical density for the liquid-gas transition, and
the plasma state (i.e., a gaseous nonmetallic state) [12,22].
As follows from Fig. 4, in the range V0/V > 0.6, where the
velocity of sound in liquid lead is relatively high, the measured
values of the velocity of weak shock waves here at pressures
of 1.0–1.5 GPa practically coincide with the values of the
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FIG. 4. Velocity of weak shock waves as a function of the relative
density (V0 is the specific volume of lead under normal conditions):
red squares are the values measured in this paper. The two numbers
next to the squares are the pressure values in the sample in front of
the shock wave and behind it, respectively (in GPa). Blue crosses
mark experiments for which the Hugoniot curves are given in Fig. 5.
The lines represent the dependencies of the velocity of sound in
lead on the density in the liquid and gaseous state along isobars
P = 0.5, 1, 2, and 3.5 GPa obtained from the caloric equation of state
(EOS). The green circles and the gray triangles are the sound velocity
values measured in the static experiments [34] and the dynamic
experiments [35], respectively.

velocity of sound measured in the range of 0.1–0.3 GPa [35].
At the lower densities, V0/V < 0.6, the shock wave velocity
values we obtained noticeably differ from the values of the
velocity of sound in Ref. [35]. Due to methodological diffi-
culties, we failed to perform the measurements for the shock

FIG. 5. (a) Hugoniot curves for liquid lead calculated from the caloric equation of state (EOS) in the plane of the relative volume and
pressure for three experiments, indicated with blue crosses in Fig. 4. The circles are the initial states on the Hugoniot curves. (b) The same
Hugoniot curves in the relative volume and shock-propagation velocity plane.

waves which are so weak that their velocities in this density
range are close to the sound velocity values at pressures of
0.1–0.3 GPa. In these dynamic experiments, we were not
always able to detect the pressure perturbations which caused
pressure jumps <0.5 GPa. For such perturbations, the fea-
tures in the oscillograms shown in Fig. 2 (the kinks) were
not well pronounced, so that their detection was difficult.
To demonstrate the dependence of the sound velocity on the
relative density and pressure, the isobars P = 0.5, 1, 2, and
3.5 GPa obtained from the caloric EOS are presented in Fig. 4.
These isobars show the expected dependencies for the shock-
propagation velocity in the case in which the pressure jumps
in the shocks are infinitesimal.

The errors in the measured values of the shock wave
velocity and the relative density are shown in Fig. 4. We
estimate the maximum error in the density values as <4%.
The major contribution to the experimental error in the shock
wave velocity gives the errors in the quantities which en-
ter the formula in Eq. (2). We proceed now to derive this
formula.

In these experiments, we detect the instant of generation
of the shock wave on the front surface of the sample t1 and
the instant of arrival of this wave on the back surface t2. Since
the window plates in the experimental assembly have equal
dimensions, the assembly has a symmetry plane that passes
through the center of mass of the sample and is parallel to the
front and back surface. Let us take the origin of the system
of coordinates at the center of mass of the sample, with the x
axis being perpendicular to the surfaces in the direction from
the front surface to the back. In this system of coordinates,
the velocity of a pressure perturbation is D + u, where D
is the velocity of the perturbation relative to the fluid, and u is
the local velocity of the fluid (we assume that the velocities
have x components only). It is obvious that the time required
for the perturbation to traverse the distance from the front to
the back surface is related to the instantaneous positions of
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these surfaces at the instants t1 and t2 by∫ t2

t1

[D(x, t ) + u(x, t )]dt = 0.5[h2 + h1], (3)

where h1 and h2 are the thicknesses of the sample at instants
t1 and t2, respectively. In view of the symmetry of the ex-
perimental assembly, the relative smallness of the velocity of
the fluid, and the variation in the velocity of the perturbation
during the interval t2-t1, the integral of u(x, t ) on the left side
of the relation in Eq. (3) can be neglected, and we obtain the
formula in Eq. (2) in which D is the averaged velocity over
the time t2-t1.

Now let us return to the estimation of the error in the
velocity D by the formula in Eq. (2). The difference t2−t1 was
determined from the oscillograms with an accuracy of 2 ns,
and synchronization of the two interferometers was made with
an accuracy of not worse than 0.3 ns. This contributes 2–7%
to the relative error in the difference t2−t1, depending on the
experimental conditions. The relative error in determining the
thicknesses h1 and h2 was ∼4%, and for the thinnest foils,
it reached 5%. Summing up the listed relative errors (as the
square root of the sum of squares of the contributions), we
obtain the errors in the shock wave velocity values in the range
5–9%, which are shown in Fig. 4. The error in the measured
values of pressure in front of the shock waves (which are
indicated in Fig. 4) did not exceed 6%, and the error in the
pressure values behind the shock waves was no worse than
20%.

IV. INTERPRETATION AND DISCUSSION
OF THE RESULTS

Figure 4 shows that the present results are only in qualita-
tive agreement with the calculations of the velocity of sound
by the caloric EOS. If we compare the measured value of
the velocity of the perturbation with the corresponding sound
velocity (on the nearest isobar), it becomes clear that these
quantities are closer when the pressure in the sample is closer
to the pressure on this isobar and when the pressure jump
caused by the perturbation is smaller. To make a quantitative
comparison for the shock waves with larger jumps, let us
compare their velocities with the velocity of shock waves
calculated by the EOS. As was shown in Sec. II, in these
experiments, we measure not only the pressure at the back
surface of the sample before the arrival of the perturbation
but also the pressure jump caused by it. Figure 5 shows three
Hugoniot curves for liquid lead calculated from the present
EOS. The initial states on these curves are the states for which
the shock wave velocities were measured, and these states are
indicated with the blue crosses in Fig. 4.

As shown in Ref. [22], the caloric EOS of liquid lead has
the form of the Mie-Grüneisen EOS:

P = Pc(V ) + γ (V )

V
[E − Ec(V )], (4)

where Ec(V ) and Pc(V ) are the cold components of the spe-
cific internal energy and pressure, respectively, and γ (V ) is
the Grüneisen coefficient, which is a function only of specific
volume. The statement that the EOS of liquid lead has the
form in Eq. (4) results from the fact that the isochores plotted

in the plane of the specific internal energy and pressure are
straight lines. This property of the isochores was established
and carefully examined in Ref. [22]. From the above fact,
using the familiar thermodynamic relations can be rigorously
derived, the EOS having the form of the Mie-Grüneisen
EOS [24]. In the EOS, the characteristic functions, i.e., the
dependencies γ (V ), Ec(V ), and Pc(V ), can be determined
directly from the experimental data. The accuracy of these
dependencies depends only on the accuracy of the data. The
dependence γ (V ) for liquid lead is presented in Ref. [22], and
the cold components of energy and pressure were obtained in
the same way as for the lead-bismuth eutectic [12] based on
the experimental data [22]. The analytical functions approx-
imating the experimental data points for these dependencies
are given in the Appendix. The functions have rather arbitrary
forms, and the only requirement was to approximate the ex-
perimental data within the range of the experimental errors. At
present, there are no physical models that can describe these
dependencies and hence predict their correct analytical forms.

It can be shown that, for the Mie-Grüneisen EOS in Eq. (4),
the Hugoniot curve can be represented in the analytical form:

P = V Pc(V ) + γ (V )[E1 − Ec(V ) − 0.5P1(V1 − V )]

V − 0.5γ (V )(V1 − V )
, (5)

where P and V are the values of pressure and specific volume
on the Hugoniot curve, and index 1 denotes the values of the
quantities in the initial state (i.e., in the state in front of a shock
wave).

The sound velocity, which we denote by cs, can also be
represented in the analytical form:

cs = V

{
−P

′
c(V ) +

[
γ

V
−

(
ln

γ

V

)′]
[P − Pc(V )]

}1/2

, (6)

where the prime denotes differentiation with respect to V .
Hence, the caloric EOS of liquid lead constructed here made
it possible to calculate the Hugoniot curves and the sound
velocity values for the entire region of the fluid states in the
V P plane investigated here. As seen from Fig. 5, the Hugoniot
curves do not have the sections for which the derivative of the
pressure with respect to the specific volume is positive and
where the shock wave is unstable [36]. We have also checked
that the sign of the second derivative of the specific volume
with respect to the pressure along isentropes is positive, i.e.,
the condition (

∂2V

∂P2

)
S

> 0 (7)

is fulfilled for the entire region of interest, so that the
shock waves are compression waves rather than rarefaction
waves [36].

Let us compare the velocities of the pressure perturbations
measured here with the corresponding shock wave velocity
values calculated by the EOS. We shall consider the middle
experiment of the three indicated in Fig. 4 by the blue crosses
for which the relative density in the initial state is 0.31. In this
case, the pressure in the sample at the instant t1 was ∼0.8 GPa,
and the velocity of sound for this state, according to the EOS,
is 0.7 km/s. For this experiment, the measured pressure at the
back surface of the sample after the arrival of the perturbation
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TABLE I. Values of the shock-propagation velocity inferred
from the experiment Dexp are compared with the calculated ones
Dcalc. Here, P1 and P2 are the pressure values in front of the shock
wave and behind it, respectively; V0/V1 is the relative density in
the initial state; d0 is the initial thickness of the foil (sample); and
δD = |Dcalc − Dexp|/Dexp.

Exp. P1 P2 t2 − t1 d0 Dexp Dcalc δD
No. V0/V1 (GPa) (GPa) (ns) (mm) (km/s) (km/s) (%)

21 0.546 0.5 1.2 46 29.7 1.18 1.11 5.9
24 0.364 1.6 2.0 87 36.6 1.16 1.12 3.4
25 0.474 1.1 1.6 68 37.2 1.15 1.12 2.6
32 0.375 1.5 1.7 118 38.0 0.86 0.98 14.0
35 0.617 0.4 1.2 28 19.8 1.15 1.21 5.2
36 0.813 0.2 1.5 24 31.9 1.63 1.7 4.3
37 0.714 0.2 1.5 30 31.1 1.45 1.41 2.8
41 0.441 1.5 2.5 59 31.9 1.23 1.19 3.3
42 0.791 0.1 1.0 25 29.4 1.49 1.53 2.7
44 0.452 0.5 1.1 65 29.7 1.01 0.99 2.0
53 0.431 0.6 1.4 64 29.3 1.06 1.04 1.9
54 0.256 3.4 4.0 38 14.2 1.46 1.62 11.0
57 0.145 2.2 3.0 65 15.3 1.62 1.65 1.9
58 0.317 2.3 3.3 34 15.3 1.42 1.41 0.7
59 0.306 0.8 2.0 27 9.8 1.19 1.10 7.6
60 0.158 1.8 2.6 35 9.0 1.63 1.49 8.6
64 0.271 3.4 5.0 34 14.7 1.6 1.77 10.6
65 0.356 3.2 4.6 26 13.5 1.46 1.65 13.0
66 0.637 1.7 2.8 17 14.0 1.29 1.5 16.3
67 0.427 3.3 5.0 22 14.5 1.54 1.69 9.7

was 2.0 GPa. As follows from Fig. 5(a), the relative volume
behind the shock wave for this pressure is ∼2.3, and according
to Fig. 5(b), for this volume, the shock wave velocity is 1.1
km/s. As seen from Fig. 4, the measured value of the velocity
of the perturbation is ∼1.2 km/s. Therefore, to within the
experimental error of this paper and Ref. [22], where the
experimental data used to construct the EOS here had been
obtained, these two values are in close agreement.

A similar comparison of the measured shock-propagation
velocity with the corresponding value calculated by the caloric
EOS has been carried out for all experiments in this paper. The
reader can easily make such a comparison for the other two
experiments marked in Fig. 4 with the blue crosses, for which
the Hugoniot curves are presented in Fig. 5. The comparison
for all experiments in this paper is presented in Table I. As
seen from this table, the difference between the measured val-
ues of the shock-propagation velocity and the calculated ones
is <10% for most experiments, except those with relatively
thin samples and that with the thickest sample for which the
difference t2−t1 becomes relatively large and the formula in
Eq. (2) becomes not sufficiently accurate.

Thus, the comparison shows that, to within the experi-
mental error, the values of the shock-propagation velocity
measured here agree with the values predicted by the caloric
EOS. Since the uncertainties in the quantities obtained from
the EOS are determined mainly by the errors in the experi-
mental data [22] used to obtain the characteristic functions of
the EOS, the present results also provide strong evidence that
the systematic errors in the dynamic experiments [12,22] had
been estimated correctly.

In the region of the V P plane investigated here, the fluid is
a one-phase system. This conclusion was made based on the
values of the critical density and critical pressure determined
from the caloric EOS. Since now we know with reasonable
confidence the accuracy of the EOS, we can determine both
the critical density and critical pressure of the fluid using the
procedure described in Ref. [12] and estimate the uncertainties
in these values. As a result, we found for the critical density
the value ρc = 3.2 ± 0.2 g cm−3 and for the critical pres-
sure Pc = 0.21 ± 0.01 GPa. These values are in excellent
agreement with the estimates made in Refs. [18,37–40]. In
addition to these quantities, we have determined the critical
enthalpy Wc = 1.02 ± 0.07 kJ g−1 (more precisely, it is the
difference between the critical enthalpy and its value in the
normal state). The value of the critical enthalpy obtained here
is a bit higher than that estimated in Ref. [39], 0.85 kJ g−1,
but lower than that which follows from the data presented in
Ref. [37], Wc � 1.2 kJ g−1. The literature estimates of Wc

were made based on the observation of the behavior of the
electrical resistivity along isobars.

V. CONCLUSIONS

An experimental technique has been developed which al-
lows direct measurements of the shock-propagation velocities
to be made over a wide region of fluid states in the density
and pressure plane. The measurement results obtained in this
paper have been used to obtain an accurate estimate of the sys-
tematic error in the exploding foil experiments (<5%) [12,22].
The measurement results are in good agreement with the pre-
dictions of the caloric EOS constructed using the data of the
dynamic experiments. Based on the present results, it can also
be concluded that the one-dimensional shock waves generated
by the laser pulses in these experiments were of sufficient
stability to enable the measurement of their velocity for the
sample thicknesses evaluated.
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APPENDIX

The fitting function to the experimental data points in
Ref. [22] for the dependence of the Grüneisen coefficient on
the relative volume:

γ = A1 + A3 p

1 + exp[k1(y1 − y)]
+ A3 (1 − p)

1 + exp[k2(y2 − y)]
,

(A1)
where y = ln(V/V0), A3 = A2 − A1, and the best fit values
of the parameters are as follows: A1 = 0.32852, A2 =
3.73608, y1 = 0.11388, y2 = 0.75668, k1 = −4.05931,
k2 = −1.48531, and p = 0.78365.

The function b(V ), which is used to determine the cold
components of the internal energy and pressure [24], and
defined as

b = Ec(V ) − V

γ (V )
Pc(V ) (A2)
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was approximated by the polynomial:

b =
n=8∑
n=1

Bnyn, (A3)

where y = ln(V/V0), and the best fit values of the param-
eters are B1 = 1.07432, B2 = 1.50417, B3 = −7.81034,
B4 = 16.7692, B5 = −19.29587, B6 = 11.70594, B7 =
−3.53087, and B8 = 0.41797.
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