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Symmetric mass generation (SMG) is a mechanism to give gapless fermions a mass gap by nonperturbative
interactions without generating any fermion bilinear condensation. The previous studies of SMG have been
limited to Dirac/Weyl/Majorana fermions with zero Fermi volume in the free fermion limit. In this paper, we
generalize the concept of SMG to Fermi liquid (FL) with a finite Fermi volume and discuss how to gap out the
Fermi surfaces (FSs) by interactions without breaking the U(1) loop group symmetry or developing topological
orders. We provide examples of FS SMG in both (1+1)-dimensional [(1+1)D] and (2+1)-dimensional FL
systems when several FSs together cancel the FS anomaly. However, the U(1) loop group symmetry in these
cases is still restrictive enough to rule out all possible fermion bilinear gapping terms, such that a nonperturbative
interaction mechanism is the only way to gap out the FSs. This symmetric FS reconstruction is in contrast to
the conventional symmetry-breaking gapping mechanism in the FL. As a side product, our model provides a
pristine one-dimensional lattice regularization for the (1+1)D U(1) symmetric chiral fermion model (e.g., the
3-4-5-0 model) by utilizing a lattice translation symmetry as an emergent U(1) symmetry at low energy. This
opens up the opportunity for efficient numerical simulations of chiral fermions in their own dimensions without
introducing mirror fermions under the domain wall fermion construction.
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I. INTRODUCTION

Fermi liquids (FLs) are gapless quantum many-body sys-
tems of fermions that possess Fermi surfaces (FSs) and
well-defined quasiparticle excitations at low energy. They are
the models for the most commonly seen metallic materials
in nature. They are probably also some of the most studied
quantum phases of matter in condensed matter physics since
Landau [1,2]. However, there are still many aspects of FLs
that might not have been well recognized. In this paper, we
explore one such aspect: the phenomenon of symmetric mass
generation (SMG, see a recent overview [3] and references
therein) in FLs.

One intriguing property of the FL is the surprising stability
of the FS under generic local interactions of fermions. Al-
though the system is gapless with vastly degenerated ground
states, local interactions often do not immediately lift the
ground state degeneracy and destabilize the FL toward gapped
phases. Early understanding of this property came from the
perturbative renormalization group (RG) analysis, as the FL
theory can emerge as a stable RG fixed point of interacting
fermion systems [4–10].

Recently, a modern understanding arose under the name
of a FS anomaly [11–13], which states that the stability of
the FS can be viewed as protected by the quantum anomaly
of an emergent LU(1) loop group symmetry at low energy,
extending and unifying many related discussions [14–29]
about Luttinger’s theorem [30] and the Lieb-Schultz-Mattis
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(LSM) theorem [31] in fermionic systems. Loosely speak-
ing, the LU(1) symmetry corresponds to the fermion number
nk conservation at each momentum point k on the FS,
which is preserved by the Landau FL Hamiltonian HFL =∑

k∈FS εknk + ∑
k,k′∈FS fkk′nknk′ + · · · . In the presence of the

FS anomaly, the FL can only be gapped by either (i) sponta-
neously breaking the LU(1) symmetry or (ii) spontaneously
developing anomalous topological orders (or other non-FL
exotic states) that saturate the FS anomaly. The anomaly
matching is a kinematic constraint, which is nonperturbative
and more robust than the perturbative RG analysis of the FL
low-energy dynamics.

Over the past decade, the quantum anomaly [32–35] has
been realized as an important theoretical tool in analyzing
the protected gapless boundary states of interacting topolog-
ical insulators/superconductors, which belong to symmetry-
protected topological (SPT) phases in a grand scope (see
overviews [36–38] and references therein). An interesting
phenomenon, known as SMG [39–51], was discovered in
the study of interacting fermionic SPT states. It was re-
alized that certain SPT states might look nontrivial at the
free-fermion (noninteracting) level but can be smoothly de-
formed into a trivial gapped phase with a unique ground
state by fermion interactions. This implies some integer Z
classification of noninteracting SPT states can be reduced to
a finite Abelian elementary order-n group Zn classification
for some interacting SPT states, emphasized by Fidkowski
and Kitaev [39,40]. Correspondingly, their gapless boundary
states can be gapped out by (and only by) interaction without
breaking the symmetry or developing the topological order
(breaking emergent higher-form symmetry). This provides a
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mechanism to generate a mass for zero-density relativistic
gapless fermions (e.g., Dirac/Weyl/Majorana fermions occu-
pying only Fermi points with zero Fermi volumes at the Fermi
level, colloquially known as Dirac/Weyl/Majorana cones)
without symmetry breaking, which has been proposed to pro-
vide lattice regularization for the standard model and grand
unified theories [45,52–56]. This mechanism is called SMG,
or a mass-without-mass term [57,58], which is distinct from
the conventional Higgs mechanism that relies on symmetry
breaking for fermion mass generation.

However, the SMG mechanism has not yet been extended
to fermion systems at a finite filling (with a finite density). The
FL is the most notable examples of such, which possesses a FS
enclosing a finite Fermi volume. It is natural to ask: Can SMG
happen on the FS as well, gapping out the FS by interaction
without breaking the loop group symmetry of interest? As we
will demonstrate in this paper, the answer is yes.

Given the spacetime-internal symmetry G of a fermion
system, the conditions [3] for SMG to happen are (i) the
system must be free from G anomaly such that symmetric
gapping (without topological order) becomes possible, and
(ii) the symmetry G must be restricted enough to rule out
any symmetric fermion bilinear gapping term such that the
gapping can only be achieved by interaction. These defining
conditions of SMG can be applied to the FL system by con-
sidering G as the emergent loop group symmetry on the FS.
Based on this understanding, we will investigate the FS SMG
in the presence of the LU(1) symmetry. The general feature
is that, even though a single FS is anomalous, it is possible
to cancel the FS anomaly among multiple FSs (or FSs with
multiple fermion flavors), such that interactions can drive the
transition from the FL phase to a symmetric gapped phase. We
shall name this phenomenon as the FS SMG.

The FS SMG provides us a different possibility to cre-
ate a gap to all excitations on the FS without condensing
any fermion bilinear order parameter, which makes it distinct
from the superconducting gap (i.e., condensing Cooper pairs)
or the density wave gap (i.e., condensing excitons) that are
more familiar in condensed matter physics. Nevertheless, it
does involve condensing some multifermion bound states that
transform trivially under the symmetry transformation. The
simplest example is the charge-4e superconductor [59–66],
which condenses fermion quartets (four-fermion bound states)
that preserve at least the Z4 subgroup of the charge U(1)
symmetry. In this paper, we provide more carefully designed
examples preserving the full U(1) symmetry (and other lattice
symmetries), but the essential idea of condensing symmetric
multifermion operators to generate a many-body excitation
gap is the same. Therefore, the FS SMG is intrinsically a
strong nonperturbative interaction effect of fermions. The in-
teraction may look irrelevant at the free-fermion (or the FL)
fixed point. However, strong enough interaction can still drive
the gap-opening transition through nonperturbative effects.

This paper is organized as follows. In Sec. II, we present a
lattice model of FS SMG in (1+1) dimensions [(1+1)D], as
the pristine lattice regularization of the 3-4-5-0 chiral fermion
model, whose phase diagram can be reliably analyzed by the
RG approach. In Sec. III, we extend the discussion of FS SMG
to (2+1) dimensions [(2+1)D] in a concrete lattice model,
which can be exactly solved in both the weak and strong

FIG. 1. (a) A typical single-band Fermi liquid (FL) with Fermi
surface (FS) anomaly. (b) Two-band model of a FL with the
FS anomaly canceled. Chiral fermions with linearized dispersions
around different Fermi points emerge at low energy.

interaction limits. Through these examples, we establish the
FS SMG as a general mechanism to gap out anomaly-free FSs
in different dimensions. We summarize our result and discuss
its connection to future directions in Sec. IV.

II. FS SMG IN (1+1)D

A. (1+1)D Fermi liquid and Fermi surface anomaly

In the free-fermion limit, the (1+1)D FL can be realized
as a system of fermions occupying a segment of single-
particle momentum eigenstates in the one-dimensional (1D)
momentum space (or Brillouin zone), which can be described
by a Hamiltonian H = ∑

k c†
kεkck , where ck (or c†

k ) is the
fermion annihilation (or creation) operator of the single-
particle mode at momentum k. For now, we only consider
spinless fermions, such that the ck operator does not carry
spin (or any other internal degrees of freedom). As an ex-
ample, suppose the band structure is described by εk = (k2 −
k2

F )/(2m) for nonrelativistic fermions with a finite chemical
potential μ = k2

F /(2m). The ground state of the Hamiltonian
H will have fermions occupying the momentum segment k ∈
[−kF , kF ] bounded by the Fermi momentum kF , as illustrated
in Fig. 1(a).

The low-energy degrees of freedom in the (1+1)D FLs can
be modeled by the chiral fermions near the zero-dimensional
(0D) FSs (namely, Fermi points) at ±kF , which are described
by the following Lagrangian density:

L = c†
L(i∂t − vF i∂x )cL + c†

R(i∂t + vF i∂x )cR, (1)

where vF = kF /m is the Fermi velocity. The operator cL (or
cR) annihilates the left (or right)-moving fermion modes, de-
fined as

cR/L (x) =
∫ �

−�

dκ c±kF +κ exp[i(±kF + κ )x] (2)

around the Fermi points within a small momentum cutoff
� � kF . The low-energy effective theory L in Eq. (1) has
an emergent U(1)L × U(1)R symmetry (more precisely as an
emanant symmetry [67] since the translation and charge con-
servation symmetry are not the subgroup of U(1)L × U(1)R

symmetry), corresponding to the separate charge conservation
of the left- and right-moving chiral fermions. Under the sym-
metry transformation with the periodic φL and φR in [0, 2π ):

U(1)L : cL → exp(iφL )cL, cR → cR;

U(1)R : cL → cL, cR → exp(iφR)cR. (3)
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They can be as well understood as a recombination of the
vector U(1)V and axial U(1)A symmetries by rewriting φL =
φ − kF δx and φR = φ + kF δx:

U(1)V : ck → eiφck ⇒
{

cL → eiφcL,

cR → eiφcR;

U(1)A : ck → eik δxck ⇒
{

cL → exp(−ikF δx)cL,

cR → exp(+ikF δx)cR.
(4)

More precisely, the combined symmetry group should be de-
noted as U(1)V ×ZF

2
U(1)A ≡ U(1)V ×U(1)A

ZF
2

because the U(1)V

and U(1)A symmetries share the fermion parity ZF
2 subgroup

(under which cL,R → −cL,R). The physical meaning of the
vector U(1)V symmetry is the total U(1) charge conservation
of the fermions, and the axial U(1)A symmetry can be consid-
ered an effective representation of the translation symmetry in
the infrared (IR) limit (that translates all fermions by displace-
ment δx along the 1D system). Although translation symmetry
is described by a noncompact symmetry group Z at the lattice
scale, its action on the low-energy chiral fermion fields cL, cR

behaves as a compact U(1)A emergent symmetry [26,68].
The stability of the FL is protected by the FS anomaly,

which can be viewed as the mixed anomaly between the
U(1)V and U(1)A symmetries. The anomaly index is given by
[24,30,31]

1 × kF − 1 × (−kF ) = 2kF = 2πν, (5)

which can be related to the fermion filling fraction ν. The
system is anomalous if the filling ν is not an integer. Without
breaking the charge U(1) and translation symmetries, it is
impossible to drive the FL to a trivial gap phase due to the
nonvanishing FS anomaly. This can be viewed as a conse-
quence of the LSM theorem [31]. The situation is also like
the chiral fermion edge states on the (1+1)D boundary of a
(2+1)D quantum Hall insulator.

B. Two-band model and anomaly cancellation

To generate a gap for these low-energy fermions in (1+1)D
FLs, the FS anomaly must be canceled. Here, we present a
two-band toy model that achieves anomaly cancellation and
enables gapping out the FS without breaking the charge U(1)
and translation symmetries and without generating any Fermi
bilinear condensation. It will provide a concrete example of
SMG in (1+1)D FLs.

Consider a 1D lattice (a chain of sites) with two types of
fermions ciA and ciB per site. The A-type fermion ciA carries
charge qA under a global U(1) symmetry, and the B-type
fermion ciB carries charge qB under the same U(1) symmetry.
The Hamiltonian takes the general form of

H = −
∑

i j

(
tA
i jc

†
iAc jA + tB

i jc
†
iBc jB + H.c.

)

−
∑

i

(μAc†
iAciA + μBc†

iBciB) + Hint, (6)

with Hint being some fermion interactions to be specified later
in Eq. (16). The specific details of the hopping coefficients tA

i j

and tB
i j are not important to our discussion if they produce a

band structure that looks like Fig. 1(b) in the Brillouin zone.

The A-type fermion forms an electronlike band, and the B-
type fermion forms a holelike band. The two bands overlap
in the energy spectrum. This will realize a two-band FL in
general. The Hamiltonian H in Eq. (6) has a U(1) × (Z � Z2)
symmetry (parameterized by a periodic angle φ ∈ [0, 2π ) and
an integer n ∈ Z as follows):

U(1) : ciA → exp(iqAφ)ciA, ciB → exp(iqBφ)ciB;

Z : ciA → c(i+n)A, ciB → c(i+n)B;

Z2 : ciA → c(−i)A, ciB → c(−i)B. (7)

They correspond to the total charge conservation symmetry
U(1), the lattice translation symmetry Z, and the lattice re-
flection symmetry Z2. The question is whether we can gap
the FL without breaking all these symmetries in (1+1)D.

One significant obstruction toward gapping is the FS
anomaly, which can also be interpreted as a mixed anomaly
between the charge U(1) and (the IR correspondence of) the
translation symmetry. To cancel the FS anomaly, we need to
fine-tune the chemical potentials μA and μB such that the
anomaly index vanishes:

qAνA + qBνB = 0 mod 1, (8)

where νA and νB are the filling fractions of the A and B bands
(for the holelike B band, we may assign νB < 0 such that
|νB| corresponds to the hole-filling). This is also known as the
charge compensation condition in semiconductor physics.

If the A- and B-type fermions carry the same charge as
qA = qB = 1, the anomaly cancellation condition in Eq. (8)
simply requires νA = −νB. In this case, the electronlike FS of
the A-type fermion and the holelike FS of the B-type fermion
are perfectly nested (with zero nesting momentum). A gap
can be opened simply by tuning on a fermion bilinear term∑

i(c
†
iAciB + H.c.) in the Hamiltonian, which preserves the

full U(1) × (Z � Z2) symmetry. This is the familiar band
hybridization mechanism to open a band gap in a charge-
compensated FL, which drives a metal to a band insulator
without breaking symmetry.

However, we are more interested in the nontrivial case
when the fermions carry different charges qA �= qB. For ex-
ample, let us consider the case of qA = 1 and qB = 3. Then
the anomaly cancellation condition in Eq. (8) requires νA =
−3νB, i.e., the electronlike Fermi volume in the A band must
be three times as large as the holelike Fermi volume in the B
band to cancel the FS anomaly. Defining the fermion operators
ckA, ckB in the momentum space by the Fourier transforma-
tion:

ckA =
∑

i

ciAe−iki, ckB =
∑

i

ciBe−iki, (9)

the desired band structure can be effectively described by the
following band Hamiltonian (suppressing the interaction for
now):

H =
∑

k

(c†
kAεkAckA + c†

kBεkBckB), (10)

with the band dispersions [see Fig. 1(b)]:

εkA = k2 − (3kF )2

2mA
, εkB = −k2 − k2

F

2mB
. (11)
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TABLE I. Charge assignments of low-energy fermions. See also
the model in Ref. [69] on the same charge assignments.

Fermion Chirality U(1)V U(1)A U(1) 3V +A
2

U(1) 3V −A
2

ca sgn va qV
a qA

a
1
2 (3qV

a + qA
a ) 1

2 (3qV
a − qA

a )

cAR −1 (left) 1 3 3 0
cBR −1 (left) 3 −1 4 5
cBL +1 (right) 3 1 5 4
cAL +1 (right) 1 −3 0 3

Here, we assume mA, mB > 0. The Fermi momentum kF =
|νB|π is set by the filling |νB| which is typically an irrational
number (without fine-tuning). The key feature is that the
Fermi momenta of the A and B energy bands must have a 3 : 1
ratio that matches the inverse charge ratio (qA/qB)−1 precisely.
In this case, the energy band hybridization is forbidden by the
charge U(1) symmetry as the two bands now carry different
charges. Even if the band hybridization is spontaneously gen-
erated at the price of breaking the U(1) symmetry, it does not
gap the FL because the FSs of the two bands are no longer
nested at the Fermi level, such that the band hybridization
will only create some avoided energy band crossing below
the Fermi level. Then the system remains metallic because the
(upper) hybridized band still crosses the Fermi level.

One can show that it is impossible to symmetrically
gap the FL by any fermion bilinear terms in this charge-
compensated two-band system with qA = 1 and qB = 3,
even if the FS anomaly has already been canceled by
the charge-compensated filling νA = −3νB. Although the
anomaly vanishes (i.e., there is no obstruction toward gapping
in principle), the symmetry is still restrictive enough to forbid
any fermion bilinear gapping term, such that the only possible
gapping mechanism rests on nonperturbative fermion interac-
tion effects.

To see this, we can single out the low-energy chiral
fermions near the four Fermi points:

cAR = c(3kF )A, cBR = c(−kF )B,

cBL = c(kF )B, cAL = c(−3kF )A, (12)

where A, B label the bands that they originated from and L, R
label their chiralities (i.e., left- or right-moving), according to
Fig. 1(b). Like Eq. (1), the low-energy effective Lagrangian
density reads

L =
∑

a

c†
a(i∂t + vai∂x )ca, (13)

where the index a sums over the four Fermi point labels AR,
BR, BL, and AL. Here, va denotes the Fermi velocity near the
Fermi point a.

The original U(1) × Z symmetry at the lattice fermion
level reduces to the emergent U(1)V ×ZF

2
U(1)A symmetry for

the low-energy chiral fermions ca (see Appendix A for more
explanations):

U(1) ⇒ U(1)V : ca → exp
(
iqV

a φV
)
ca,

Z ⇒ U(1)A : ca → exp
(
iqA

a φA
)
ca. (14)

Table I summarizes their charge assignment under U(1)V

and U(1)A, where the vector U(1)V symmetry is just the
charge U(1) symmetry, and the axial U(1)A symmetry is an
emergent symmetry corresponding to the lattice translation
symmetry Z. Alternatively, they can be recombined into the
U(1) 3V +A

2
× U(1) 3V −A

2
symmetry, such that it becomes obvi-

ous that all fermion bilinear back-scattering terms (either the
Dirac mass c†

acb or the Majorana mass cacb for a �= b and
a, b ∈ {AR, BR, BL, AL}) are forbidden by the symmetry be-
cause they are all charged nontrivially under the U(1) 3V +A

2
×

U(1) 3V −A
2

symmetry due to the distinct charge assignment to
every chiral fermion. Given this situation, the only hope to
gap the FL is to evoke the SMG mechanism that generates the
mass for all chiral fermions by nonperturbative multifermion
interactions.

C. SMG interaction and RG analysis

It is worth mentioning that the charge-compensated two-
band model with qA = 1 and qB = 3 essentially regularizes
the 3-4-5-0 chiral fermion model [70,71] on a pristine 1D lat-
tice (without introducing any compact extra dimensions). The
emergent U(1) 3V ±A

2
symmetries act as the lattice translations

decorated by appropriate internal U(1) rotations, described by
the following Z symmetry groups (parameterized by integer
n ∈ Z) at the lattice level (see Appendix A for derivation):

Z

(
f or

3V ± A

2

)
:

{
ciA → exp(±i3kF n)c(i+n)A,

ciB → exp(±i9kF n)c(i+n)B.
(15)

The 3-4-5-0 model is a toy model for studying the long-
standing problem: the lattice regularization of the chiral
fermion theory in high-energy physics [55,72–79]. Many
variants of the model are studied in the lattice community
(see references therein [80,81]). This model is anomaly-
free—perturbative local gauge anomaly free within any linear
combination of the U(1)V ×ZF

2
U(1)A checked by the Adler-

Bell-Jackiw method [82,83], perturbative local gravitational
anomaly free because of the zero chiral central charge cL −
cR = 0, also nonperturbative global anomaly free from any
gauge or gravitational fields checked by the cobordism [84].
However, it was known much later that symmetric gapping
can only be achieved by minimally six-fermion interactions
among the four flavors of 3-4-5-0 fermions. The SMG inter-
action was proposed by Wang and Wen [46,51], which was
later discussed by Tong [85] and only recently verified by the
density matrix RG (DMRG) [86,87] numerical simulation in
Ref. [88].

Given the existing knowledge about the SMG interaction in
the 3-4-5-0 chiral fermion model, we can map the Wang-Wen
interaction [46,51] back to our lattice model following the
correspondence listed in Table I, which gives us the following
SMG interaction (see Appendix B for more details):

Hint = g
∑

i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A + H.c. (16)

This is a six-fermion interaction across three adjacent sites on
the 1D lattice. It describes the process that first annihilates
both A- and B-type fermions on the center site (which anni-
hilates four units of charges on the site i) and then separately
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FIG. 2. The renormalization group (RG) flow of the coupling g
and the scaling dimension 
int of the SMG interaction. The abbrevi-
ations stand for the following terminology: SMG for symmetric mass
generation, FL for Fermi liquid, EFL for ersatz FL, LL for Luttinger
liquid.

converts A-type fermions to B-type fermions on the two adja-
cent sites (which creates two units of charges on each of the
site i − 1 and i + 1), such that the U(1)V charge is conserved.
The interaction is also manifestly translation and reflection
symmetric, so the full U(1)V × (Z � Z2) symmetry is pre-
served by the interaction as expected. With this interaction, we
claim that the lattice model in Eq. (6) will exhibit an (ersatz)
FL to SMG insulator transition when the interaction strength
g exceeds a finite critical value gc.

To show that the proposed interaction in Eq. (16) in-
deed drives the FL to a gapped interacting insulator, we
bosonize [89,90] the fermion operator ca ∼ : exp(iϕa) : (with
a ∈ {AR, BR, BL, AL}) and cast the lattice model to an effec-
tive Luttinger liquid (LL) theory, described by the following
Lagrangian density:

L = 1

4π
(∂tϕ

ᵀK∂xϕ − ∂xϕ
ᵀV ∂xϕ) +

∑
α=1,2

gα cos
(
lᵀα ϕ

)
,

(17)

where ϕ = (ϕAR, ϕBR, ϕBL, ϕAL )ᵀ are compact scalar bosons.
The K matrix and the lα vectors are given by

K =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦, l1 =

⎡
⎢⎢⎣

1
−2

1
2

⎤
⎥⎥⎦, l2 =

⎡
⎢⎢⎣

2
1

−2
1

⎤
⎥⎥⎦.

(18)

As shown in Appendix B, the six-fermion interaction Hint in
Eq. (16) translates to the cosine terms g1 and g2 in the LL
theory in Eq. (17), with g1 = g2 = g enforced by the Z2 re-
flection symmetry (as the Z2 transformation exchanges the g1

and g2 terms). The RG flow in the log energy scale  = − ln �

is given by [91,92]

dg

d
= (2 − 
int )g,

d
−1
int

d
= π2g2, (19)

where 
int is the scaling dimension of the SMG interaction.
The RG flow diagram is shown in Fig. 2.

At the FL fixed point, we have 
int = 1
2 lᵀα lα = 5 > 2,

meaning that the SMG interaction is perturbatively irrelevant.
If the bare coupling g (the interaction strength at the lattice
scale) is weak (g < gc), it will just flow to zero and disap-
pear in the IR theory. However, the scaling dimensions of
all operators will be renormalized as the coupling g flows
toward zero. Therefore, the FL fixed point will be deformed
into the LL fixed-line, along which the fermion quasiparticle
is no longer well defined, but the system remains gapless. De-
spite the different dynamical properties, the LL still preserves
all the kinematic properties (e.g., emergent symmetries and
anomalies) as the FL, which can be unified under the concept
of ersatz FL (EFL) [11].

If the bare coupling g is strong enough (g > gc), the scal-
ing dimension 
int can be reduced to 
int < 2 such that the
SMG interaction becomes relevant and flows strong. As the
cosine term in Eq. (17) gets strong, the corresponding vertex
operators exp(ilᵀα ϕ) (α = 1, 2) condense. Any other operators
that braid nontrivially with the condensed operators will be
gapped, which includes all the fermion operators. Therefore,
the system enters the SMG insulating phase with all fermion
excitations gapped without breaking the U(1) × (Z � Z2)
symmetry. This has been confirmed by the DMRG simu-
lation in Ref. [88] for a related model using the domain
wall fermion construction, where it has been verified that the
fermion two-point function indeed decays exponentially in the
SMG phase—a direct piece of evidence for the gap genera-
tion. On the lattice level, this corresponds to condensing the
six-fermion bound state by developing the ground state ex-
pectation value of 〈c†

(i−1)Bc(i−1)AciBciAc†
(i+1)Bc(i+1)A〉 �= 0. So

the gapping is achieved by the multifermion condensation
(involving more than two fermions), which is distinct from
the fermion bilinear condensation in the conventional gapping
mechanisms of FLs (such as the band hybridization or Cooper
pairing mechanisms).

The RG analysis also indicates that the EFL-to-SMG
insulator transition (at g = gc) is of the Berezinskii-Kosterlitz-
Thouless (BKT) [93–95] transition universality in (1+1)D.

The above analysis established the FS SMG phenomenon
in the lattice model in Eq. (6) [equipped with the gapping
interaction in Eq. (16)]. The significance of this lattice model
is that it provides a pristine 1D lattice regularization of the
3-4-5-0 chiral fermion model by using lattice translation to
realize the axial U(1)A symmetry at low energy. In contrast
to the domain wall fermion constructions [51,55,88], our con-
struction does not require the introduction of a (2+1)D bulk to
realize the chiral fermions as boundary modes. Such a pristine
1D lattice regularization is advantageous for the numerical
simulation of chiral fermions, as the model contains no redun-
dant bulk (or mirror) fermions, such that the computational
resources can be used more efficiently. We will leave the
numerical exploration of this model to future research.

III. FS SMG IN (2+1)D

A. (2+1)D Fermi liquid and Fermi surface anomaly

Given the example of FS SMG in (1+1)D, we would like
to further explore similar physics in higher dimensions. The
most important low-energy features of a (2+1)D FL are the
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gapless fermions on its 1D FS. Suppose we parametrize the
1D FS kF (θ ) ∈ ∂VF by a continuous and periodic parameter
θ , such that kF (θ + 2π ) = kF (θ ) (where we do not require θ

to literally represent the geometrical angle, as the FS may not
be a perfect circle in general). The fermions cθ on the FS have
an emergent symmetry described by the loop group of U(1)
[11,12], denoted as LU(1), under which

LU(1) : cθ → exp[iφ(θ )]cθ , (20)

where the U(1) phase factor exp[iφ(θ )] is a smooth function
of θ with the periodicity exp[iφ(θ + 2π )] = exp[iφ(θ )]. Both
the (global) charge U(1) and the translation symmetries R2

are subgroups of LU(1):

U(1) : cθ → eiqφcθ , R2 : cθ → exp[i δx · kF (θ )]cθ , (21)

assuming the fermions cθ carry charge q under the global U(1)
symmetry and are translated by the vector δx ∈ R2.

The presence of the FS causes a mixed anomaly between
the U(1) and translation symmetries [96], which is character-
ized by the anomaly index:

q

2(2π )2

∮
dθ (kF × ∂θkF )3 = qVF

(2π )2
= qν, (22)

where VF stands for the Fermi volume in the momentum
space, and ν is the filling factor. If the FS anomaly is non-
vanishing, it is impossible to trivially gap out the FL without
breaking any symmetry or developing any topological order.
The FS SMG is only possible if the FL system contains multi-
ple FSs of opposite anomaly indices, such that their anomalies
cancel as a whole.

B. Kagome-triangular lattice model

We present a concrete lattice model to demonstrate the FS
SMG in (2+1)D. Consider two types of spinless fermions
labeled by A and B that are charged under a global U(1)
symmetry with charges qA = 1 and qB = 3, respectively. The
A-type (or B-type) fermion is defined on a kagome (or trian-
gular) lattice. As depicted in Fig. 3(a), the kagome and the
triangular lattices lie on top of each other, with the site I of
the triangular lattice aligned with the upper triangle �I on the
kagome lattice. We will use the lowercase letters i, j (or the
uppercase letters I, J) to label the kagome (or the triangular)
lattice sites.

The lattice model is described by the following Hamilto-
nian:

H = HA + HB + Hint,CF,

HA = −tA
∑
〈i j〉

(c†
i c j + H.c.) − μA

∑
i

c†
i ci,

HB = −tB
∑
〈IJ〉

(c†
I cJ + H.c.) − μB

∑
I

c†
I cI ,

Hint,CF = −g
∑

I

∑
i jk∈�I

(c†
I cic jck + H.c.), (23)

where 〈i j〉 (or 〈IJ〉) denotes the nearest-neighboring link on
the A (or B) lattices, and i jk ∈ �I stands for the three A-sites
i, j, k at the vertices of the upper triangle surrounding the

FIG. 3. (a) In the real space, we design the overlapping kagome
(A) and triangular (B) lattices. The green triangle marks out the unit
cell. In the momentum k space, we draw many contours to represent
various equal energy curves of the energy band, at different filling
levels (equally spaced by 1

8 filling fraction). We illustrate the A-type
(in blue) and B-type (in red) Fermi surfaces (FSs) (b) at a general
filling such as νA = 3

8 and νB = 7
8 (= − 1

8 ), or (c) at a special filling
νA = νB = 3

4 (= − 1
4 ) where the FSs coincide.

B-site labeled by I . The model has a U(1) symmetry that acts
as

U(1) : ci → eiφci, cI → ei3φcI . (24)

The Hamiltonian in Eq. (23) preserves the internal U(1) sym-
metry and all symmetries of the kagome-triangular lattice
(most importantly, the lattice translation symmetry).

The model in Eq. (23) describes the two types of fermions
hopping separately on their corresponding lattices. Because
every unit cell contains four sites (three from the kagome
lattice and one from the triangle lattice), the hopping model
will give rise to four energy bands (three bands for A-type
fermions and one band for B-type fermions). The chemical
potentials μA and μB are adjusted to ensure the desired filling
of these fermions. We will focus on a simple case when only
the lowest A-type (kagome lattice) bands and the single B-type
(triangular lattice) bands are filled by filling fractions νA and
νB, respectively, such that the FS only involves two of the four
bands.

The A- and B-type fermions are coupled together only
through a four-fermion interaction Hint,CF in Eq. (23) that
fuses three A-type (charge-1) fermions to one B-type (charge-
3) fermions (and vice versa) within each unit cell. We will
call it a charge fusion (CF) interaction. The CF interaction
breaks the separate U(1) charge conservation laws for A- and
B-type fermions in the hopping model to a joint U(1) charge
conservation, associated with the symmetry action in Eq. (24).
Similar interactions also appear in a recent study [97] of
quantum breakdown.

Without interaction (g = 0), the system is in a FL phase.
According to Eq. (22), the FS anomaly cancellation condition
requires

qAνA + qBνB = 0 mod 1. (25)

Given the charge assignment of qA = 1 and qB = 3, it requires
νA = −3νB. There is no further requirement on the choice of
νA itself. With a generic choice of filling (assuming νA < 3/4)
as in Fig. 3(b), the A-type fermions (on the kagome lattice)
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will form an electronlike FS, whose Fermi volume is three
times as large as that of the holelike FSs formed by the
B-type fermions (on the triangular lattice). Although the FL
has a vanishing FS anomaly, the charge U(1) and the lattice
translation symmetries are still restrictive enough to forbid
any gap opening on the free-fermion level. For example, any
pairing (charge-2e superconducting) gap will break the U(1)
symmetry. The only possibility to gap the FL relies on the
multifermion interaction.

We claim that the CF interaction Hint,CF in Eq. (23) is a
valid SMG interaction that drives the FL into a trivially gaped
insulator without breaking symmetry (or developing any topo-
logical order). To see this, we go to the strong coupling limit
by taking g → ∞. Of course, the chemical potentials μA, μB

must increase correspondingly to keep the fermion fillings
fixed. The model Hamiltonian decouples to each unit cell in
the strong coupling limit:

H =
∑

I|i jk∈�I

−μA(ni + n j + nk ) − μBnI − g(c†
I cic jck + H.c.),

(26)

where ni = c†
i ci (and nI = c†

I cI ) denotes the fermion number
operator. Within each unit cell, there are only two relevant
states |1110〉 and |0001〉 (in the Fock state basis |nin jnknI〉)
acted upon by the Hamiltonian. Their hybridization will pro-
duce the ground state in each unit cell. The full-system ground
state will be the following direct product state:

|SMG〉 =
⊗

I

(
√

p|1110〉 +
√

1 − p|0001〉)I , (27)

where p = 1
2 [1 + −3μA+μB√

(−3μA+μB )2+4g2
] is the probability to ob-

serve the |1110〉 state in the unit cell, which is tunable by
adjusting μA, μB relative to g. The fermion fillings (per unit
cell) in the ground state |SMG〉 will be

νA = 3p, νB = 1 − p = −p mod 1, (28)

which automatically satisfies the anomaly cancellation con-
dition νA = −3νB (as it should be). The ground state |SMG〉
is nondegenerated and gapped from all excited states (with a
gap of the order g). It also preserves the charge U(1) and all
the lattice symmetries and does not have topological order.
Therefore, we have explicitly shown that the system ends up
in the SMG insulator phase as g → ∞. As a gapped phase, we
expect it to be stable against perturbations (such as the hop-
ping terms tA, tB) over a finite region in the parameter space.
The SMG phase is a strongly interacting insulating phase,
which has no correspondence in the free-fermion picture.

Having established the FL (metallic) phase at g = 0 and
the SMG insulator phase at g → ∞, there must be an SMG
transition (an interaction-driven metal-insulator transition) at
some intermediate coupling strength gc. However, the nature
of the transition is still an open question, which we will leave
for future numerical study. In the following, we will only
analyze the SMG transition at a special filling: νA = νB = 3

4 ,
where the FSs coincide precisely and take the perfect hexagon
shapes, as shown in Fig. 3(c). This allows us to gain some
analytic control of the problem.

C. RG analysis of the SMG transition

In this subsection, we analyze the interaction effect in
Eq. (23) when the filling is νA = νB = 3

4 . In this case, the FS
of the system contains three Van Hove singularities (VHSs),
also known as hot spots, located at three distinct M points,
as shown in Fig. 3(c). This allows us to study the interac-
tion effects using the hot-spot RG method at the one-loop
level [98–105]. The hot-spot RG approach assumes that the
low-energy physics emerges from the correlated effects of
fermions near the VHSs, where the density of states diverges.
This divergence leads to the a high instability toward gap
opening.

Under RG, the CF interaction Hint,CF will generate two
types of density-density interactions at the one-loop level,
namely, Hint,AA = ∑

i, j nin j and Hint,AB = ∑
i,I ninI , as well

as other (less important) exchange interactions. These density-
density interactions are more important in the sense that they
will in turn contribute to the correction of Hint,CF. Therefore,
we should include Hint,CF, Hint,AA, Hint,AB altogether in the RG
analysis and study the RG flow jointly.

To proceed, we transform the interactions into the momen-
tum space. The fermion operators are labeled by the flavor
index S = A, B and the hot-spot index α, β ∈ {1, 2, 3} (refer-
ring to the three different VHSs). We note that Hint,CF would
vanish if it is naively restricted to the hot spots because the
momentum conservation requires multiple A-type fermion op-
erators to appear on the same hot spot, which violates the Pauli
exclusion principle of fermions. Thus, we need to introduce
point splitting in the momentum space around each hot spot.
Our strategy is to further split the A-type fermion into three
modes As labeled by s = 1, 2, 3, and define the interaction:

Hint,CF = grs

∑
α

εi jkc†
BαcAiαcAjαcAkα

+ grt

∑
α �=β

εi jkc†
BαcAiαcAjβcAkβ + H.c., (29)

where grs and grt are the CF interaction decomposed into
different momentum transfer channels: the intra-hot-spot scat-
tering grs and the inter-hot-spot scattering grt.

These CF interactions receive corrections from the follow-
ing density-density interactions at the one-loop level:

Hint,AA + Hint,AB = gas

∑
α,st

nAsαnAt α + (As ↔ At )

+ gbt

∑
α �=β,s

nBαnAsβ + (As ↔ B)

+ H.c. + . . . , (30)

where . . . refers to the other interactions that are decoupled
from grs, grt, gas, gbt in the RG equations. The scattering pro-
cesses of these four important interactions are illustrated in
Fig. 4. The complete set of all possible interactions is pre-
sented in Appendix C.

We derive the RG equations based on the systematic ap-
proach developed in Ref. [106]. Since we are interested in the
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FIG. 4. Scattering of fermions between Van Hove singularities
(VHSs) by (a) density-density interactions gbt (red), gas (blue) and
(b) nonvanishing processes grs (yellow), grt (green) of Hint,CF. Thin
(or thick) arrows correspond to A-type (or B-type) fermions.

flow of Hint,CF, the relevant part of the RG equations reads

dgbt

d
= 2d0dABg2

bt,
dgas

d
= −2g2

as,

dgrs

d
= −6gasgrs,

dgrt

d
= 4d0dABgbtgrt − 2gasgrt. (31)

where the RG parameter is defined by the Cooper-pairing
susceptibility of A-type fermions  = χpp,AA(k = 0, E ) ∼
ν0 ln2(�/E ), in which ν0 ln(�/E ) is the diverging density
of states at the VHS, E is the running energy scale, and �

is the high-energy cutoff. Here, d0 = dχph,AA(Q)/d � 1 is
the nesting parameter of A-type fermions, which saturates
to one in the perfectly nested limit (d0 → 1). In our case,
different VHSs are half-nested (only one of the two cross-
ing FSs is perfectly nested between every pair of different
VHSs), so d0 = 1

2 is a suitable estimation. Similarly, we define
dAB = dχpp,AB(0)/d, which depends on the energies of A-
and B-type fermions near the VHS. The full RG equations and
details are listed in Appendix C.

According to the one-loop RG equations, if the density-
density interactions gbt, gas are initially zero, then the CF
interactions grs, grt remain marginal along the RG flow. How-
ever, if we turn on small density-density interactions gbt, gas

with correct signs (gbt > 0 or gas < 0), the CF interactions
grs, grt will be marginally relevant. The solutions of the RG
equations in Eq. (31) are

gbt() = gbt(0)

1 − 2d0dABgbt(0)
, gas() = gas(0)

1 + 2gas(0)
,

grs() = grs(0)

[1 + 2gas(0)]3
,

grt() = grt(0)

[1 + 2gas(0)][1 − 2d0dABgbt(0)]2
. (32)

As the RG parameter  increases under the RG flow, the cou-
pling strengths can diverge at some critical scale c, when any
of the denominators in Eq. (32) vanish. The critical scale is
set by the bare density-density interaction strengths gbt(0) and
gas(0), but the CF interaction strengths grs, grt diverge faster
than the density-density interactions as the critical scale is
approached. Therefore, the RG fixed points are characterized
by the behavior of grs, grt.

FIG. 5. The renormalization group (RG) phase diagram with re-
spect to the density-density interactions gas, gbt. In the Fermi liquid
(FL) phase, the gapping interaction flows to zero. In the symmet-
ric mass generation (SMG) phase, the gapping interaction flows to
infinity.

Depending on the bare density-density interaction
strengths gas(0) and gbt(0), the system can flow toward
different RG fixed points, as shown Fig. 5. When
gas(0) > 0 and gbt(0) < 0, all interactions flow to
zero, which corresponds to the FL fixed point. When
gas(0) < min[0,−d0dABgbt(0)], both CF interactions grs, grt

flow to infinity, which should correspond to the SMG phase
according to the previous lattice model analysis. However,
we also find a region in the phase diagram, described by
gbt > max(0,−gas/d0dAB), where grs → 0 and grt → ∞,
i.e., flowing toward different limits. We are not sure how
to interpret the physical meaning of this RG fixed point. It
might still be in the SMG phase as one interaction still flows
strong, but it could as well end up in a spontaneous symmetry
breaking (SSB) phase that breaks the LU(1) symmetry since
the A- and B-type FSs have pretty strong nesting instability.
This might also be an artifact of the hot-spot RG method, as
it does not fully capture all low-energy fermionic degrees of
freedom of the FS.

Admittedly, it is not possible to determine whether the full
FS is gapped using the hot-spot RG analysis alone. This is
because the hot-spot RG approach only considers the fermions
near the VHSs and not the FS freedom away from the VHSs.
To determine whether the strong coupling fixed point is a fully
gapped state, we have to rely on lattice model analysis in
the strong coupling limit. The exact ground-state solution in
Eq. (27) provides evidence to support the argument that the
strong coupling fixed point is indeed a fully gapped state.

To improve, functional RG [107–110] might provide a
better resolution of the FS and remove the uncertainty in the
phase diagram in Fig. 5. A recent study [111] has demon-
strated the functional RG method in a triangle lattice model
with spinless fermions. The same technique might apply to
our model as well. However, we will leave such a study for
future research.

By tuning gas(0) across zero on the gbt(0) < 0 side, one
can drive a FL-to-SMG transition. The gapping interaction
is marginally relevant at the transition point. According to
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FIG. 6. Classification of Fermi surface (FS) reconstruction
mechanisms, based on the LU(1) loop group symmetry. Symmet-
ric FS reconstruction (SFSR) contains two broad classes: (1) FS
symmetric mass generation (SMG) if the total FS anomaly is can-
celed and (2) FS topological mass generation (TMG) if the total FS
anomaly is matched by topological order with low energy topological
field theory.

the solution of the RG equations in Eq. (32), the coupling
diverges at the critical scale c ∼ ν0 ln2(�/
SMG) when the
denominator [1 + 2gas(0)lc] vanishes. This implies that the
SMG gap 
SMG (the energy gap between the ground state and
the first excited state) opens up as [112,113]


SMG ∼ � exp

[
− c√

gas(0)ν0

]
, (33)

where � is the ultraviolet (UV) cutoff energy scale, ν0 is the
coefficient in front of the diverging density of state at the VHS,
and c is some nonuniversal constant.

IV. SUMMARY AND DISCUSSION

In this paper, we propose the concept of FS SMG: a mech-
anism to gap out FSs by nonperturbative interaction effects
without breaking the LU(1) symmetry. This phenomenon can
only happen when the FS anomaly is canceled out in the
fermion system. We present (1+1)D and (2+1)D examples of
FS SMG. We expect that the mechanism can generally occur
in all dimensions.

FS SMG belongs to a broader class of phenomena, called
the symmetric FS reconstruction (SFSR), as summarized in
Fig. 6. The SFSR is in contrast to the more conventional
symmetry-breaking FS reconstruction, where the FS is recon-
structed (or gapped) by developing SSB orders. Depending
on the cancellation of the FS anomaly, the SFSR further splits
into two classes: the FS SMG if the anomaly vanishes or the
FS topological mass generation (TMG) if the anomaly does
not vanish. The former class, the FS SMG, is the focus of
this paper. The latter class, the FS TMG, is also discussed in
the literature, where the nonvanishing FS anomaly is absorbed
by an anomalous topological quantum field theory, such that
the SFSR is achieved by developing the corresponding topo-
logical order. This gives rise to deconfined/fractionalized
FL (FL∗) [114–116] or orthogonal metal [117–119].

Symmetry extension [120] has provided a unified framework
to understand TMG and SMG for bosons or fermions of
zero Fermi volume [121–126], where the symmetric gapping
can be achieved by extending the symmetry group to lift
any gapping obstruction that was otherwise imposed by the
symmetry. Similar constructions can be applied to understand
SFSR more generally.

FS SMG deforms an anomaly-free (charge-compensated)
FL state to a fully gapped product state. Although the result-
ing SMG gapped state does not have nontrivial features like
topological order, the SMG transition from the FL phase to
the SMG phase can still be quite exotic. The SMG transition
of relativistic fermions has been proposed as a deconfined
quantum critical point [127,128], where the physical fermion
fractionalizes to bosonic and fermionic partons with emer-
gent gauge fluctuations at and only at the critical point. It
is conceivable that similar scenarios might apply to the FS
SMG transition as well, where deconfined FL (orthogonal
metal) could emerge at the critical point. The lattice models
presented in this paper lay the ground for future theoretical
and numerical studies of the exotic SMG transition in these
models.

It is also known that the fermion single-particle Green’s
function has symmetry-protected zeros at zero frequency in
the SMG phase [129–132]. It will be interesting to investigate
further the Green’s function structure in the FS SMG phase.
Whether the SMG interaction will replace the original FS (a
loop of poles) with a loop of zeros in the Green’s function is
still an open question to explore.

Another potential experimental connection is to apply the
FS SMG to understand the nature of pseudogap phases, which
is an exotic state of electrons where the FS is partially gapped
without obvious symmetry breaking. It has been observed in
many correlated materials. The recent proposal of the ancilla
qubit approach [133,134] for pseudogap physics draws a con-
nection between the pseudogap metal-to-FL transition with
the FS SMG transition in the ancilla layers, as both transi-
tions are described by field theories of fermionic deconfined
quantum critical points [127,128,135–137]. The FS anomaly
constrains the dynamical behavior of such field theories and
can potentially shed light on the open problem of pseudogap
transition in correlated materials.
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APPENDIX A: EMERGENT U(1) SYMMETRIES
IN THE (1+1)D TWO-BAND MODEL

Start from the definition of charge U(1) (parameterized
by a periodic angle φ ∈ [0, 2π )) and lattice translation Z
(parameterized by an integer n ∈ Z) symmetries as defined
in Eq. (7):

U(1) : ciA → exp(iqAφ)ciA, ciB → exp(iqBφ)ciB;

Z : ciA → c(i+n)A, ciB → c(i+n)B. (A1)

Follow the definition in Eq. (9) of the fermion operators in the
momentum space:

ckA =
∑

i

ciAe−iki, ckB =
∑

i

ciBe−iki, (A2)

where the wave number k ∈ [−π, π ) is a dimensionless pe-
riodic variable defined in the first Brillouin zone. (Note: the
dimensionful momentum p should be related to the dimen-
sionless wave number k by p = h̄k/a, with a being the lattice
constant, and the site coordinate x ∈ R is related to the site
index i ∈ Z by x = ai, such that the Fourier factor e−ipx/h̄ =
e−iki is consistent with the quantum mechanics convention.) It
is straightforward to show that the U(1) × Z symmetry acts in
the momentum space as

U(1) : ckA → exp(iqAφ)ckA, ckB → exp(iqBφ)ckB;

Z : ckA → eiknckA, ckB → eiknckB. (A3)

Apply these transformations to the low-energy fermion near
the four Fermi points. According to Eq. (12):

cAR = c(3kF )A, cBR = c(−kF )B,

cBL = c(kF )B, cAL = c(−3kF )A, (A4)

Eq. (A3) becomes

U(1) :

⎧⎪⎪⎨
⎪⎪⎩

cAR → exp(iqAφ)cAR,

cBR → exp(iqBφ)cBR,

cBL → exp(iqBφ)cBL,

cAL → exp(iqAφ)cAL;

Z :

⎧⎪⎪⎨
⎪⎪⎩

cAR → exp(3ikF n)cAR,

cBR → exp(−ikF n)cBR,

cBL → exp(ikF n)cBL,

cAL → exp(−3ikF n)cAL.

(A5)

Because kF = |νB|π is almost always (i.e., with probability
1) an irrational multiple of π (because |νB| is almost always
an irrational number without fine tuning), kF n mod 2π can
approach any angle in [0, 2π ) (with 2π periodicity) as close
as we want (given n ∈ Z). This allows us to define two angular
variables φV and φA, both are periodic in [0, 2π ):

φV = φ, φA = kF n mod 2π, (A6)

then Eq. (A5) can be compactly written as

UV symmetry ⇒ IR symmetry

U(1) ⇒ U(1)V : ca → exp
(
iqV

a φV
)
ca,

Z ⇒ U(1)A : ca → exp
(
iqA

a φA
)
ca, (A7)

for a = AR, BR, BL, AL, enumerating over the four Fermi
point labels, together with the charge vectors (given that qA =
1 and qB = 3):

qV =

⎡
⎢⎢⎣

qA

qB

qB

qA

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
3
3
1

⎤
⎥⎥⎦, qA =

⎡
⎢⎢⎣

3
−1

1
−3

⎤
⎥⎥⎦. (A8)

Therefore, the global charge U(1) symmetry is simply rein-
terpreted as the U(1)V vector symmetry, and the translation
symmetry (described by a noncompact Z group) in the UV
becomes an emergent U(1)A axial symmetry (described by a
compact U(1) group) in the IR. The symmetry transformation
in Eq. (A7) precisely matches Eq. (14) with the correct charge
assignment as listed in Table I.

Recombining the charge vectors of U(1)V and U(1)A, we
can define two alternative emergent U(1) symmetries, denoted
as U(1) 3V ±A

2
with the charge vectors:

q
3V ±A

2 = 1
2 (3qV ± qA), (A9)

as their names implied. More explicitly, the charge vectors
match the chiral charge assignments for the 3-4-5-0 fermions:

q
3V +A

2 =

⎡
⎢⎢⎣

3
4
5
0

⎤
⎥⎥⎦, q

3V −A
2 =

⎡
⎢⎢⎣

0
5
4
3

⎤
⎥⎥⎦. (A10)

The fermions are expected to transform under U(1) 3V ±A
2

as
(parameterized by the periodic angles φ± ∈ [0, 2π ))

U(1) 3V ±A
2

: ca → exp

[
i
1

2

(
3qV

a ± qA
a

)
φ±

]
ca. (A11)

This can be viewed as the combined transformation of U(1)V

and U(1)A with the vector rotation angle φV and the axial
rotation angle φA given by

φV = 3
2φ±, φA = ± 1

2φ±, (A12)

as can be verified by comparing Eq. (A11) with Eq. (A7).
Now we can connect these rotation angles back to the original
U(1) × Z symmetry of the lattice fermions using the relation
in Eq. (A6):

φ = 3
2φ±, ± 1

2φ± = kF n mod 2π. (A13)

Eliminate φ± from the equations, and we obtain the relation:

φ = ±3kF n mod 2π, (A14)

for the U(1) 3V ±A
2

symmetries. Therefore, to reproduce the IR
emergent U(1) 3V ±A

2
symmetries, the corresponding UV sym-

metries (at the lattice level) must be implemented such that
every n-step translation should be followed by a charge U(1)
rotation with the rotation angle φ = ±3kF n. Thus, we estab-
lish the following correspondence between the IR and UV
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symmetries:

IR symmetry ⇒ UV symmetry

U(1) 3V ±A
2

⇒ Z

(
3V ± A

2

)
:

{
ciA → exp(±3iqAkF n)c(i+n)A,

ciB → exp(±3iqBkF n)c(i+n)B.

(A15)

Here, the compact U(1) symmetries in the IR get mapped
to the noncompact symmetries Z in the UV because the UV
symmetries are parameterized by the integer variable n ∈ Z.
Given that qA = 1 and qB = 3, Eq. (A15) becomes Eq. (15),
as claimed in the main text. Therefore, the 3-4-5-0 chiral
fermion model is indeed realized by the (1+1)D two-band
lattice model at low energy.

APPENDIX B: WANG-WEN INTERACTION

In the bonsonization language, the Wang-Wen interaction
is described by

Lint =
∑

α=1,2

gα cos
(
lᵀα ϕ

)
, (B1)

with ϕ = (ϕAR, ϕBR, ϕBL, ϕAL )ᵀ and the interaction vectors
given by

l1 =

⎡
⎢⎢⎣

1
−2

1
2

⎤
⎥⎥⎦, l2 =

⎡
⎢⎢⎣

2
1

−2
1

⎤
⎥⎥⎦. (B2)

Mapping back to the chiral fermions by the correspondence
ca ∼ : exp(iϕa) :, the interaction reads

Hint = g1

2
(cARcBL )(c†

BRcAL )2 + H.c.

+ g2

2
(cBRcAL )(cARc†

BL )2 + H.c. (B3)

According to Eq. (12) and using the inverse Fourier transfor-
mation:

cAR = c(3kF )A =
∑

i

ciA exp(3ikF i),

cBR = c(−kF )B =
∑

i

ciB exp(−ikF i),

cBL = c(kF )B =
∑

i

ciB exp(ikF i),

cAL = c(−3kF )A =
∑

i

ciA exp(−3ikF i). (B4)

Plugging Eq. (B4) into Eq. (B3), the interaction becomes

Hint =
∑

i1,··· ,i6
gi1···i6

(
c†

i1Bci2A
)(

ci3Bci4A
)(

c†
i5Bci6A

) + H.c.,

(B5)

with

gi1···i6 = g1

2
exp[ikF (i1 − 3i2 + i3 + 3i4 + i5 − 3i6)]

+ g2

2
exp[ikF (−i1 + 3i2 − i3 − 3i4 − i5 + 3i6)].

(B6)

Notice that, under lattice reflection symmetry Z2 : ciA →
c(−i)A, ciB → c(−i)B, g1 and g2 map to each other. To simplify,
we can impose the reflection symmetry which requires g1 =
g2 = g. Then the coupling coefficient is

gi1···i6 = gcos [kF (i1 − 3i2 + i3 + 3i4 + i5 − 3i6)]. (B7)

The dominant s-wave interaction is given by

i1 − 3i2 + i3 + 3i4 + i5 − 3i6 = 0, (B8)

such that gi1···i6 = g is uniform. We seek a local interaction
that has minimal span on the lattice. The optimal solution of
Eq. (B8) is given by

i1 = i2 = i − 1, i3 = i4 = i, i5 = i6 = i + 1, (B9)

for any choice of i. With this solution in Eq. (B9), Eq. (B5)
reduces to

Hint = g
∑

i

c†
(i−1)Bc(i−1)AciBciAc†

(i+1)Bc(i+1)A + H.c., (B10)

which is the SMG interaction in Eq. (16) proposed in the main
text.

APPENDIX C: FULL RG EQUATIONS

We start with the interaction Hint,CF:

Hint,CF = grs

∑
α

εi jkc†
BαcAiαcAjαcAkα

+grt

∑
α �=β

εi jkc†
BαcAiαcAjβcAkβ + H.c. (C1)

Under RG, the following density-density and exchange inter-
actions will be generated:

Hint,AA = gas

∑
α,st

nAsαnAt α + gat

∑
α �=β,st

nAsαnAt β

+gae

∑
α �=β,st

c†
Asα

cAsβc†
At β

cAt α

+(As ↔ At ) + H.c., (C2)

and

Hint,AB = gbs

∑
α,s

nBαnAsα + gbt

∑
α �=β,s

nBαnAsβ

+gbe

∑
α �=β,s

c†
BαcBβc†

Asβ
cAsα + (As ↔ B) + H.c.

(C3)
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There is an additional density-density interaction that will
correct Hint,AA, Hint,AB:

Hint,BB = gbb

∑
αβ

nBαnBβ − c†
BαcBβc†

BβcBα. (C4)

Putting all interactions together, the complete RG equa-
tions are

dgbb

d
= 4d0dBBg2

bb + 3d0g2
be,

dgbs

d
= −2dABg2

bs + 9g2
rs

2
+ g2

rt,

dgbt

d
= 2d0dABg2

bt,

dgbe

d
= −6d0gaegbe + 2d0gatgbe + 4d0dBBgbbgbe

+3grsgrt + g2
rt

2
,

dgas

d
= −2g2

as,

dgat

d
= 2d0g2

at − d0dABg2
rt,

dgae

d
= −d0dABg2

rt + 4d0gaegat − 6d0g2
ae − 2d0dBBg2

be,

dgrs

d
= −6gasgrs,

dgrt

d
= 4d0dABgbtgrt − 2gasgrt,

where dAB = dχpp,AB(0)/d, dBB = dχpp,BB(0)/d. These
ratios depend on the energies of A- and B-type fermions
near the VHSs. The two types of fermions have similar band
structures, which can be approximated as EA,B

k = εA,B f (k).

The ratios are then given by dAB = 2|εA|
|εA|+|εB| and dBB = |εA|

|εB| .
If A- and B-type fermions have the same band structure, then
dAB = dBB = 1.
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