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We study the quantum phase diagram of a Bose-Hubbard chain whose dynamics conserves both a boson
number and boson dipole moment, a situation which can arise in strongly tilted optical lattices. The conservation
of the dipole moment has a dramatic effect on the phase diagram, which we analyze by combining a field
theory analysis with DMRG simulations. In the thermodynamic limit, the phase diagram is dominated by various
types of incompressible dipolar condensates. In finite-sized systems, however, it may be possible to stabilize a
Bose-Einstein insulator: an exotic compressible phase which is insulating, despite the absence of a charge gap.
We suggest several ways by which these exotic phases can be identified in near-term cold-atom experiments.
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I. INTRODUCTION AND SUMMARY

Many of the most fascinating phenomena in quantum con-
densed matter physics arise from the competition between
kinetic energy and interactions, and it is therefore inter-
esting to examine situations in which the roles played by
either kinetic energy or interactions can be altered. One way
of doing this is by finding a way to quench the system’s
kinetic energy. This can be done with strong magnetic fields—
which allows one to explore the rich landscape of quantum
Hall phenomenology—or by engineering the system to have
anomalously flat energy bands, as has been brought to the
forefront of condensed matter physics with the emergence of
Moire materials [1].

A comparatively less well-understood way to quench
kinetic energy occurs when exotic conservation laws in-
hibit particle motion. One large class of models in which
this mechanism is operative are systems whose dynam-
ics conserves the dipole moment i.e., center of mass)
of the system’s constituent particles, in addition to to-
tal particle number [2,3]. This conservation law can be
easily engineered as an emergent symmetry in strongly
tilted optical lattices, where energy conservation facilitates
dipole-conserving dynamics over arbitrarily long prethermal
timescales [4–6] (other physical realizations are discussed
below).

Dipole conservation prevents individual particles from
moving independently on their own [Fig. 1(a)]. Instead, mo-
tion is possible in only one of two ways: first, two nearby
particles can push off of each other, and move in opposite di-
rections. This type of motion allows particles to hop over short
distances, since this process freezes out as the particles get far
apart. Second, a particle and a hole (where a hole is defined
with respect to a background density of particles) can team
up to form a dipolar bound state, which—by virtue of the fact
that it is charge neutral—may actually move freely, without

constraints. Dipole conservation thus forces the system’s ki-
netic energy to be intrinsically nonlinear, as the way in which
any given particle moves is always conditioned on the charge
distribution in its immediate vicinity. This leads to a blur-
ring of the lines between kinetic energy and interactions,
producing a wide range of interesting physical phenomena.
The effects of dipole conservation on quantum dynamics
have been explored quite intensely in recent years, with the
attendant kinetic constraints often leading to Hilbert space
fragmentation, slow thermalization, and anomalous diffusion
(e.g., Refs. [7–20]). On the other hand, there has been com-
paratively little focus on understanding the quantum ground
states of dipole conserving models [21–24]. Addressing this
problem requires developing intuition for how interactions
compete with an intrinsically nonlinear form of kinetic energy,
and understanding the types of states favored when the dipolar
kinetic energy dominates the physics.

One concrete step towards addressing these questions
was given in Ref. [21], which put forward the dipolar
Bose-Hubbard model (DBHM) as a representative model
that succinctly captures the effects of dipole conservation.
The DBHM is simply a dipole-conserving version of the
well-loved Bose Hubbard model, and displays a variety of
interesting phases with rather perplexing properties, all driven
by the physics of the dipolar bound states mentioned above.
Of particular interest is the Bose-Einstein insulator (BEI)
phase identified in Ref. [21], which is realized in the regime
where the nonlinear kinetic energy dominates. The BEI is
compressible and contains a Bose-Einstein condensate, but
remarkably is nevertheless insulating, and has vanishing su-
perfluid weight.

The aim of the present paper is to perform a detailed
investigation of the DBHM in one dimension, with the aim
of fully understanding the phase diagram and making con-
crete predictions for near-term cold atom experiments. We
are able to understand the entire phase diagram within a
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FIG. 1. (a) The restricted kinematics of dipole conservation. An
isolated boson cannot move (top), while two nearby bosons can
move only by coordinated hopping in opposite directions (mid-
dle). A boson and a hole (blue circle) can move freely in both
directions (bottom). (b) Approximate dipole conservation can be
engineered in tilted optical lattices with large tilt strength V . Energy
conservation then forbids single bosons from hopping (top), while
dipole-conserving hopping processes are allowed (bottom).

concise field theory framework, whose predictions we con-
firm with extensive DMRG simulations. We will see that the
physics of the DBHM in 1D is slightly different from the
2D and 3D versions, in that the BEI phase is absent in the
thermodynamic limit, being rendered unstable by a particular
type of relevant perturbation. However, if the bare strength
of these destabilizing perturbations is very small, it may be
possible to stabilize a BEI regime up to (potentially very large)
length scales. In the following, we will see various pieces of
numerical evidence that this indeed can occur at fractional
fillings.

The concrete model we will study in this paper is a mod-
ified version of the standard Bose-Hubbard model, with the
hopping terms modified to take into account dipole conserva-
tion:

HDBHM = −
∑

i

(
t3b†

i−1b2
i b†

i+1 + t4b†
i−1bibi+1b†

i+2 + H.c.
)

+ U

2

∑
i

n2
i , (1)

where ni = b†
i bi is the boson number operator on site i, and

t3,4 � 0 determine the strength of the dipole-conserving hop-
ping processes (see Sec. II for an explanation of how HDBHM

arises in the tilted optical lattice context). In this paper, we
will always work in the canonical ensemble, with the boson
density fixed at

ρ = n

m
, gcd(n, m) = 1, (2)

where we are working in units where the lattice spacing is
equal to unity. Our goal is to study the behavior of the ground
states of HDBHM as a function of t3,4/U and ρ.1

Let us now give a brief overview of our results. The phase
diagram we obtain is shown in Fig. 2(a) and contains a lot of

1See also Ref. [10] for a discussion of the ground state physics of
a dipolar spin-1 model, which in some aspects behaves similarly to
our model at half-odd-integer filling and small t3,4/U .

information. At the present juncture we will only mention its
most salient features, leaving a more detailed treatment to the
following sections.

Our first result is that—at least in the thermodynamic
limit—there is a nonzero charge gap to exciting single bosons
throughout the phase diagram. Regardless of t/U and ρ,
the boson correlation functions always decay as 〈b†

i b j〉 ∼
e−|i− j|/ξ , with the ground state being incompressible across
the entire phase diagram. This is rather remarkable, as the
system thus remains incompressible over a continuous range
of filling fractions, and moreover does so without disor-
der and with only short-ranged interactions. It manages to
do this by having vortices in the boson phase condense at
all points of the phase diagram, a situation which is made
possible by the way in which dipole conservation modifies
vortex energetics. This is of course in marked contrast to
the regular Bose-Hubbard model, which has a compressible
superfluid phase which is broken by incompressible Mott
insulators only at integer filling fractions and weak hopping
strengths [25].

While the statements in the above paragraph are correct in
the thermodynamic limit, the ubiquitous vortex condensation
just discussed may be suppressed in finite systems. This will
happen if the operators which create vortices can take a long
time to be generated under renormalization group (RG), be-
coming appreciable only at extremely large length scales. In
our model, this is particularly relevant at fractional fillings,
where a BEI seems to be realized in our DMRG numerics. In
Sec. V, we study this phenomenon from a different point of
view within the context of a dipolar rotor model.

The broad-strokes picture of our phase diagram is dictated
by the physics of neutral excitonic dipolar bound states of
particles and holes annihilated by the dipole operators:

di ≡ b†
i bi+1. (3)

As discussed above, the motion of these dipolar particle-hole
bound states is not constrained by dipole conservation. This
can be seen mathematically by noting that the hopping terms
in HDBHM can be written using the di operators as

Hhop = −
∑

i

(t3d†
i di+1 + t4d†

i di+2 + H.c.), (4)

and thus constitute conventional hopping terms for the dipolar
bound states. Since the dipolar bound states are allowed to
move freely, it is natural to expect that the most efficient
way for the system to lower its energy is for them to Bose
condense. Indeed, this expectation is born out in both our
field theory analysis and in our numerical simulations. The
result of this condensation is an exotic gapless phase we refer
to as a dipole condensate (DC). Unlike the superfluid that
occurs in the standard Bose-Hubbard model, the DC real-
ized here is formed by charge neutral objects, and in fact
actually has vanishing DC conductivity. This physics—where
composite bound states become gapless but the single-particle
gap is kept open—is also present in many types of corre-
lated pair-hopping models (see, e.g., Refs. [26–29]), where
an object like b†

i bi+1 condenses. The distinguishing features
of dipole-conserving models are that the bound states are
charge neutral and that the hopping of individual particles is
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FIG. 2. (a) Thermodynamic phase diagram of the 1D DBHM as a function of boson filling ρ and hopping strength t/U (with t4 = t3 ≡ t).
The blue region denotes a dipole condensate (DC) which for noninteger ρ has CDW order. In finite-sized systems and noninteger ρ̄, the DC
may give way to a Bose-Einstein insulator (BEI), although where exactly this occurs is likely nonuniversal. Red lines denote a different type
of DC marked as bDC (here b stands for bond-centered CDW; see text for details), whose existence relies on having a nonzero t4. Black
lines at integer ρ denote Mott insulators, and in the shaded pink region phase separation between the MI and bDC phases occurs. The green
region at largest t/U denotes the FBD phase. The small white circles signify the location of the phase boundary as obtained in DMRG. The
MI ↔ DC transitions are predicted to be of BKT type, while the nature of the transitions between the bDC and DC/BEI (yellow stars) is
currently unclear. (b) Plots of the real-space average density 〈ρi〉 for the four points marked on the phase diagram. (c) Entanglement entropy
in the DC phase (top) and the bDC (bottom). The red lines are c = 1 fits to the Calabrese-Cardy formula for the entanglement entropy
Si = (c/6) ln[(2L/π ) sin(π i/L)] for a finite chain of length L [30].

forbidden by symmetry; these facts are both key to under-
standing the physics of our model.

A second interesting feature of the DBHM is an instability
to an exotic glassy phase we dub the fractured Bose droplet
(FBD) phase. This instability occurs in the green region drawn
in the phase diagram of Fig. 2(a), and is in fact common
to all dipole-conserving boson models of the form Eq. (1).
It arises simply due to the

√
n factors appearing in b|n〉 =√

n|n − 1〉, b†|n − 1〉 = √
n|n〉. These factors mean that when

acting on a state of average density ρ, the dipolar hopping
terms in the Hamiltonian scale as −2(t3 + t4)ρ2 at large ρ,
precisely in the same way as the Hubbard repulsion term,
which goes as + 1

2Uρ2. Thus, when

t3 + t4 � U

4
, (5)

it is always energetically favorable to locally make ρ as large
as possible (in our phase diagram, DMRG finds an instability
exactly when this condition is satisfied). Once this occurs, the
lowest-energy state of the system will be one in which all the
bosons agglomerate into one macroscopic droplet [Fig. 2(b),
panel 4].

The physics of the FBD phase is actually much more inter-
esting than the above discussion might suggest: Rather than
simply forming a giant droplet containing an extensively large
number of bosons, dipole conservation means that the system
instead fractures into an interesting type of metastable glassy
state (the physics of which may underlie the observation of
spontaneous formation in the dipole-conserving 2D system of
Ref. [31]). Understanding the physics of this phase requires a
set of theoretical tools better adapted to addressing dynamical

questions and will be addressed in a separate upcoming work
[32] (see also the fractonic microemulsions of Ref. [22]).

The remainder of this paper is structured as follows. In
the next section (Sec. II), we briefly discuss various possible
routes for realizing the DBHM in experiments, focusing, in
particular, on the setup of tilted optical lattices. In Sec. III,
we develop a general field theory approach that we use to
understand the phase diagram in broad strokes. This approach,
in particular, allows us to understand the role that vortices in
the boson phase play in determining the nature of the phase
diagram. In Sec. IV, we discuss a few characteristic features
possessed by the DC, as well as how to detect its existence in
experiments. In Sec. V, we give a more detailed discussion of
how the exotic physics of the BEI may appear in small systems
due to finite-size effects. The following Secs. VI–VIII discuss
in detail the physics at integer, half-odd-integer, and generic
filling fractions, respectively. We conclude with a summary
and outlook in Sec. IX.

II. EXPERIMENTAL REALIZATIONS

Before discussing the physics of the DBHM Hamiltonian
Eq. (1) in detail, we first briefly discuss pathways for realizing
dipole conserving dynamics in experiment.

The simplest and best-explored way of engineering a
dipole conserving model is to realize HDBHM as an effective
model that describes the prethermal dynamics of bosons in
a strongly tilted optical lattice [4,5,7,8]. In this context, the
microscopic Hamiltonian one starts with is

Htilted = −tsp

∑
i

(b†
i bi+1 + b†

i+1bi ) +
∑

i

Vini + HU , (6)

195132-3



LAKE, LEE, HAN, AND SENTHIL PHYSICAL REVIEW B 107, 195132 (2023)

where HU denotes the Hubbard repulsion term, and V is
the strength of the tilt potential (which in practice is cre-
ated with a magnetic field gradient). In the strong tilt
limit where tsp/V,U/V � 1,2 energy conservation prevents
bosons from hopping freely, but does not forbid coordinated
hopping processes that leave the total boson dipole mo-
ment invariant [Fig. 1(b)]. Perturbation theory to third order
[5,11] then produces the dipolar model Eq. (1) with t3 =
t2
spU/V 2, t4 = 0, and an additional nearest-neighbor interac-

tion (2t2/V 2)
∑

i nini+1—see Appendix B for the details.3 A
nonzero t4 will eventually be generated at sixth order in per-
turbation theory (or at third order, if one adds an additional
nearest-neighbor Hubbard repulsion), but in the optical lattice
context we generically expect t4/t3 � 1.

Another possible realization of the 1D DBHM is in bosonic
quantum processors based on superconducting resonators
[38–40], where the dipolar hopping terms can be engineered
directly and there are no fundamental constraints on t3,4/U .
In this setup, there is no way to forbid single-particle hopping
terms on symmetry grounds alone, and generically the Hamil-
tonian will contain a term of the form

Hsp = −t0
∑

i

(b†
i+1bi + b†

i bi+1). (7)

The presence of such dipole-violating terms is actually not a
deal-breaker, as long as t0 is sufficiently small compared to
t3,4. Indeed, the fact that single bosons are gapped in both
the Mott insulators (MI) and the DC means that a sufficiently
small Hsp will always be irrelevant,4 a conclusion that we
verify in DMRG.

Despite the fact that t4 � t3 in the tilted lattice setup, the
DMRG simulations that we discuss below are performed with
a nonzero t4 (in fact, for simplicity, we simply set t4 = t3).
This is done because, in this paper, we are mainly concerned
with the equilibrium physics of generic dipole-conserving
Bose-Hubbard models rather than with the particular subfam-
ily thereof relevant to the tilted lattice setup. Models with
t4 = 0 are not fully generic because they can exhibit a type of
Hilbert space fragmentation not shared by models with t4 	= 0.
This is relevant at low fillings ρ̄ < 1, where fragmentation of
the t4 = 0 model occurs for similar reasons as in the spin-1
model of Ref. [8]. We also note that in a closely related
classical model with t4 = 0, ρ̄ = 1 was shown to be a critical
density below which thermalization ceases to occur [41] (with
t4 	= 0, the critical density is lower).

2See, e.g., Refs. [33–36] for discussions of tilted Bose-Hubbard
models in regimes with weaker V .

3An interesting aspect of the effective Hamiltonian in this setup is
that t3/U always scales as (tsp/V )2 � 1 [37]. One may worry that
this could lead to problems when trying to explore the full phase
diagram, since we will be unable to access regimes in which t3/U �
1. This, however, does not appear to be a deal-breaker, since all of
the action in the DBHM will turn out to occur at t3/U � 0.1 (and
at large fillings, the dipole condensate, in particular, turns out to be
realizable at arbitrarily small t3/U ).

4t0 will, however, be relevant in any BEI-like state which arises due
to finite-size effects, where it will lead to a crossover to a regime
resembling a 1D superfluid.

A detailed analysis of the ground-state physics in the tilted
lattice parametrization, where t4 � t3, is thus left to future
work. In any case, we expect the ground state physics to be
largely independent of t4 (especially when ρ̄ � 1), with the
main differences arising near certain phase transitions and at
certain filling fractions (as will be discussed in Sec. VII).

III. MASTER FIELD THEORY

In the remainder of the main text, we will fix

t3 = t4 ≡ t (8)

for concreteness, which matches the choice made in the nu-
merics discussed below. Those places where setting t4 = 0
qualitatively changes the physics will be mentioned explicitly.

In this section, we discuss a continuum field theory ap-
proach that we will use in later sections as a guide to
understand the phase diagram. Our field theory involves two
fields θ and φ, which capture the long-wavelength fluctuations
of the density and phase, respectively. In terms of these fields,
the boson operator is

b = √
ρeiφ, ρ = ρ + 1

2π
∂2

x θ, (9)

Note that density fluctuations are expressed as the double
derivative of θ (in the standard treatment [42], there is only
a single derivative). This gives the commutation relations:[

φ(x), ∂2
y θ (y)

] = 2π iδ(x − y). (10)

The reason for writing the fluctuations in the density in this
way will become clear shortly.

Before discussing how to construct our field theory, let us
discuss how φ, θ transform under the relevant symmetries at
play. Dipole symmetry leaves θ alone, but acts as a coordinate-
dependent shift of φ, mapping U (1)D : φ(x) 
→ φ(x) + λx for
constant λ. Thus, ei∂xφ is an order parameter for the dipole
symmetry, since

U (1)D : ei∂xφ 
→ eiλei∂xφ. (11)

The operators ei∂xθ , eiθ create vortices5 in the phase φ

and its gradient ∂xφ, respectively, which can be shown using
the commutation relation Eq. (B10). Vortices in ∂xφ are not
necessarily objects that we are used to dealing with, but indeed
they are well-defined on the lattice [43], and are the natural
textures to consider in a continuum limit where ∂xφ becomes
smooth but φ does not (a limit that dipole symmetry forces
us to consider, as this turns out to be relevant for describing
the DC).

In a background of charge density ρ, vortices carry mo-
mentum 2πρ, and so a translation through a distance δ acts as
Tδ : ei∂xθ 
→ ei2πδn/mei∂xθ (recall that ρ = n/m). To understand
this, consider moving a vortex created by ei∂xθ (x) through
a distance δ to the right. Doing so passes the vortex over
an amount of charge equal to ρδ, which in our continuum
notation is created by an operator proportional to eiδρφ(x).
Since ei∂xθ (x)eiδρφ(x) = ei2πδρeiδρφ(x)ei∂xθ (x), a phase of ei2πδρ is

5Since we are in 1D, it is more correct to use the word instanton,
but we will stick to vortex throughout.
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accumulated during this process. Consistent with this, a more
careful analysis in Appendix A shows that

Tδ : θ (x) 
→ θ (x + δ) + 2πρxδ. (12)

For our discussion of the phases that occur at fractional fill-
ings, we will also need to discuss how θ transforms under both
site- and bond-centered reflections Rs and Rb = T1/2RsT1/2.
Using Eq. (12) and the fact that Rs : ρ(x) 
→ ρ(−x), we see
that

Rs : θ (x) 
→ θ (−x),
(13)

Rb : θ (x) 
→ θ (−x) − π

2
ρ.

We now need to understand how to write a field theory
in terms of φ and θ which faithfully captures the physics of
HDBHM. The most naive approach is to rewrite HDBHM as

HDBHM = t
∑

i

(∣∣bi+1bi−1 − b2
i

∣∣2 + |bi+2bi−1 − bibi+1|2
)

+
∑

i

(
(U/2 − t )n2

i −t (nini+1 + nini+2 + nini+3)
)
,

(14)

and to then perform a gradient expansion. Using the repre-
sentation Eq. (9) and keeping the lowest order derivatives of
θ and φ, this produces a continuum theory with Hamiltonian
density

H = KD

2

(
∂2

x φ
)2 + u

2

(
∂2

x θ
)2

, (15)

where we have defined the dipolar phase stiffness KD and
charge stiffness u as

KD ≡ 4ρ2t, u ≡ U − 8t

(2π )2
. (16)

Taking the above Hamiltonian density H as a starting point
and integrating out θ produces the Lagrangian of the quantum
Lifshitz model studied in Refs. [21,44], which describes the
BEI phase,

LBEI = Kτ

2
(∂τφ)2 + KD

2

(
∂2

x φ
)2

, (17)

where Kτ ≡ 1/(8π2u).
The steps leading to Eq. (17) miss an essential part of the

physics, since they neglect vortices in the phase φ (as well as
vortices in the dipole phase ∂xφ). In the regular Bose-Hubbard
model, vortices can be accounted for using the hydrodynamic
prescription introduced by Haldane in Ref. [42]. Using our
representation of the density fluctuations as ∂2

x θ/2π , a naive
application of this approach would lead to a Lagrangian con-
taining cosines of the form cos(l∂xθ ), l ∈ N. This, however,
turns out to not fully account for the effects of vortices in
the DBHM, which require that the terms cos(lθ ) be added as
well. The exact prescription for including vortices is worked
out carefully in Appendix A using lattice duality, wherein we
derive the effective Lagrangian

LDBHM = i

2π
∂τφ

(
2πρ + ∂2

x θ
) + KD

2

(
∂2

x φ
)2 + u

2

(
∂2

x θ
)2

− yD,4m cos(4mθ ) − ym cos(m∂xθ ), (18)

where the coupling constants yl , yD,l are given by the l-fold
vortex and dipole vortex fugacities

yl ∼ e−l2c
√

KD/u, yD,l ∼ e−l2cD
√

KD/u, (19)

where c, cD are nonuniversal O(1) constants (Appendix A
contains the derivation). The appearance of m in the term
ym cos(m∂xθ ) is due to Eq. (12), which ensures that the
leading translation-invariant interactions are those which cre-
ate m-fold vortices (recall ρ = n/m). The factor of 4 in
yD,4m cos(4mθ ) is due to the bond-centered reflection sym-
metry Rb which shifts θ according to Eq. (13) (with cos(mθ )
being the most relevant cosine of θ in the absence of Rb

symmetry).
From the above expression Eq. (16) for u, we see that an

instability occurs when

t > tFBD ≡ U

8
, (20)

which is precisely the condition given earlier in Eq. (5). When
t > tFBD, u becomes negative, and the system is unstable
against large density fluctuations—this leads to the glassy
phase discussed in the Introduction. In the rest of this paper,
we will restrict our attention to values of t for which u > 0,
where the above field theory description is valid.

To understand the physics contained in the Lagrangian
LDBHM, the first order of business is to evaluate the importance
of the cosines appearing therein. It is easy to check that at
the free fixed point given by the quadratic terms in LDBHM

[the first line of Eq. (18)], cos(lθ ) has ultra-short-ranged
correlations in both space and time, for any l ∈ Z. This is,
however, not true for cos(l∂xθ ), whose correlation functions
are constant at long distances, regardless of l . This means that
cos(m∂xθ ) is always relevant, implying that ∂xθ will always
pick up an expectation value in the thermodynamic limit, and
that vortices will condense at all rational fillings. This is phys-
ically quite reasonable due to dipole symmetry forbidding a
(∂xφ)2 term in Eq. (18), implying that vortices in φ do not
come with the usual logarithmically divergent gradient energy.

Strictly speaking, this ubiquitous vortex condensation thus
prevents the existence of a phase in which the low-energy
physics is dictated solely by the phase field φ and conse-
quently preempts the BEI phase (which in the thermodynamic
limit can only be realized in d > 1 spatial dimensions).6 That
said, if the vortex fugacity ym is extremely small (as is likely
at filling fractions with large m), then the destabilizing cosine
ym cos(m∂xθ ) will be important only at large distances, lead-
ing to a BEI regime emerging on intermediate length scales.
As we discuss in Sec. VII, there is evidence for this occurring
in our DMRG numerics at fractional filling, while in Sec. V
this is shown to occur in a rotor model that mimics the physics
of HDBHM at large densities.

We now consider what happens when the strength of the
cos(m∂xθ ) term flows to become large enough to impact the

6This fact actually has an avatar in 2D classical elasticity theory,
where it shows up as the instability of smectics towards nematics.
Indeed, integrating out φ in Eq. (18) yields an exact analog of the
Lagrangian describing a 2D smectic [45], with cos(∂xθ ) the operator
sourcing dislocations.

195132-5



LAKE, LEE, HAN, AND SENTHIL PHYSICAL REVIEW B 107, 195132 (2023)

low-energy physics. Expanding cos(m∂xθ ) to quadratic order
and integrating out φ, we arrive at the Lagrangian

LDC = 1

8π2KD
(∂τ θ )2 + m2ym

2
(∂xθ − 〈∂xθ〉)2

− yD,4m cos(4mθ ).

(21)

The scaling dimension of the remaining cosine is

�cos(4mθ ) = 8

√
mKD

ym
. (22)

When �cos(4mθ ) > 2, this cosine can be dropped, leading to a
free quadratic theory for θ . This theory describes the DC men-
tioned in the Introduction. Indeed, in this phase dipolar bound
states condense and exhibit quasi-long-range order (QLRO),
with ei∂xφ correlators decaying algebraically. On the other
hand, individual bosons remain gapped, and the charge com-
pressibility vanishes (more details will be given in Sec. IV).
When �cos(4mθ ) < 2, on the other hand, cos(4mθ ) is relevant,
and θ acquires an expectation value. This consequently pro-
liferates vortices in ∂xφ, destroying the DC and leading to a
gapped phase.

IV. SIGNATURES OF THE DIPOLE CONDENSATE

Before embarking on a more detailed tour of the phase
diagram, we first briefly discuss the physical properties of the
DC and how it might be detected in near-term experiments on
tilted optical lattices.

We start with the claim made at the beginning of our tour
of the phase diagram, namely, that single bosons are gapped
in the DC, and that the DC—despite being gapless—is, in
fact, an incompressible insulator. We are now in a position to
back this up by calculating correlation functions of b ∼ eiφ .
Following the procedure outlined in Appendix A, one can
show that the infra-red (IR) correlation functions of eiφ , which
we write as Ceiφ (τ, x) ≡ 〈eiφ(τ,x)e−iφ(0,0)〉, are

ln Ceiφ (τ, x) = −
∫

q,ω

q2ym(1 − cos(qx − ωτ ))
(ω2 + q2)2(ω2 + 4π2q2ymKD)

. (23)

Just from dimension counting, we see that the integral is IR
divergent for all nonzero τ, x, and, as such, eiφ correlators are
ultralocal in space-time. For example, when x = 0 we obtain

ln Ceiφ (τ, 0) = − 1

4(1 + ς )2

∫
ω

1 − cos(ωτ )

|ω|3 , (24)

where we have defined ς ≡ 2π
√

ymKD. This integral diverges
logarithmically even as τ → 0, so the boson correlation func-
tions are indeed ultralocal, and single bosons are gapped.

Next we consider correlation functions of di ∼ ei∂xφ , the
dipole order parameter. At equal times, we find

ln Cei∂xφ (0, x) = 2 + ς

4ς (1 + ς )2

∫
q

1 − cos(qx)

|q|

→ 2 + ς

8πς (1 + ς )2
ln(x), (25)

so ei∂xφ has power-law correlations with a nonuniversal ex-
ponent depending on ς , with the dipole order parameter thus

exhibiting QLRO,

〈d†
i d j〉 ∼ |i − j|−α, (26)

with α a nonuniversal Luttinger parameter varying continu-
ously within the DC phase. Since the effective IR theory for
the DC has dynamical exponent z = 1, correlations in time
behave similarly, as do correlation functions of ei∂τ φ .

The density-density response is obtained simply from cor-
relation functions of ∂2

x θ , yielding

χρρ (ω, q) = q4

ω2/(4π2KD) + q2/ym + m2
D

, (27)

where we have allowed for a nonzero effective dipole mass
mD, which vanishes when dipoles condense and is nonzero
otherwise. At small q, the charge compressibility thus van-
ishes as

κ ≡ χρρ (ω, q)|ω=0,q→0 =
{

ymq2 DC

q4/m2
D else.

(28)

The equal-time density-density correlation function χ (q) ≡
χρρ (t = 0, q) obtained from Eq. (27) goes as

χ (q) ∝
{|q|3 DC

q4 else.
(29)

Finally, dipole symmetry ensures that the DC conductivity
vanishes [21], so the system always is insulating.

Given the above, what is the best pathway for detecting
the DC phase in experiments? This question is slightly sub-
tle, since as we have shown, the DC is an incompressible
insulator. One approach would be to directly measure the
density-density response function. From the above expression
for κ , this, however, requires resolving the difference between
χρρ vanishing as q2 and as q4, which may be difficult to do in
practice.7

An alternate diagnostic is obtained by probing correla-
tion functions of the integrated charge density

∫ x dx′ (ρ(x′) −
ρ ) = ∂xθ (x)/2π , which counts the density of dipolar bound
states at x. Since ∂xθ is the density of the objects that con-
dense in the DC, it possesses power-law correlation functions
in the DC and exponentially decaying correlation functions
elsewhere:〈(∫ x2

x1

dx′ (ρ(x′) − ρ )

)2
〉

∼
{

1
|x1−x2|2 DC

e−|x1−x2|/ξ else,
(30)

giving a sharper distinction between the two phases. Quantum
gas microscopes [46], which can directly read off the density
ρi on each site, are an ideal platform for measuring this type
of correlation function.

7Note that this situation is softer by q2 than that of the regular Bose-
Hubbard model, for which κ ∼ q2 in the MI, and κ ∼ const in the
“superfluid” (in quotes since there is no superflow in 1D).
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V. FINITE-SIZE EFFECTS
AND THE BOSE-EINSTEIN INSULATOR

As we saw in Sec. III, vortices in φ condense at all ra-
tional fillings due to vortex operators cos(m∂xθ ) inevitably
destabilizing the free z = 2 fixed point Eq. (17) which gov-
erns the BEI. However, as discussed above, the bare strength
of these vortex operators ym ∼ e−m2c

√
KD/u can easily be ex-

tremely small. If ym is small enough, finite-size effects can
cut off the RG flow at a scale where the renormalized coef-
ficient of cos(m∂xθ ) is still small. In this case, the physics
of the BEI has a chance to survive,8 and as we will see in
Sec. VII, there is some evidence for this occurring in our
DMRG numerics at fractional filling. In this section, we first
briefly discuss some of the physical signatures of the BEI,
and then show how it can, in principle, be stabilized in finite-
sized systems by studying its emergence in a dipolar rotor
model.

A. The physics of the BEI

When discussing the BEI, we can compute with the quan-
tum Lifshitz model Eq. (17) (see Ref. [44] for a recent
discussion of various ways to interpret this continuum field
theory).

To determine whether the BEI has a nonzero charge gap,
we first compute the boson spectral function. At coincident
spatial points, the boson correlator in time is evaluated as

ln Ceiφ (τ, 0) = 1

23/2
(
KDK3

τ

)1/4

∫
ω

1 − cos(ωτ )

|ω|3/2

= 1

2
√

π
(
KDK3

τ

)1/4

√
|τ |,

(31)

so the boson operators b ∼ eiφ decay exponentially in imagi-
nary time as

Ceiφ (τ, 0) = e−c
√

τ , c ≡ 1

2
√

π
(
KDK3

τ

)1/4 . (32)

This tells us that the boson operators b ∼ eiφ have short-
ranged correlation functions (in time as well, with Ceiφ (0, x) ∼
e−cx by the z = 2 nature of the fixed point). However, this does
not by itself imply that the bosons are gapped. To determine
the charge gap, we need to compute the boson spectral func-
tion A(ω) by Fourier transforming, send ω → −iω + 0+, and
take the imaginary part of the resulting expression. This yields

A(ω) = − 1

π
Im

[∫
τ

e−iωτCeiφ (τ, 0)

]
ω→−iω+ε

≈ c
2π3/2

e− c2

4|ω|

|ω|3/2
, (33)

8Since ei∂xθ always has LRO, one can always Taylor expand the
cos(∂xθ ) appearing in the action. Only the first terms in this expan-
sion are relevant, and thus one could imagine tuning to a multicritical
point where both (∂xθ )2 and (∂xθ )4 are absent. This gives a way
of realizing BEI even in the thermodynamic limit, provided one is
willing to accept the fine-tuning of two parameters. We thank A.
Kapustin and L. Spodyneiko for this remark.

FIG. 3. The function f (ω) = e−1/(4ω)/ω3/2, which is propor-
tional to the boson spectral function A(ω) in the BEI phase. Note
that despite appearances, f (ω) 	= 0 for all ω 	= 0.

which has an interesting essential singularity as ω → 0, with
the function f (ω) = e−1/(4ω)/ω3/2 shown in Fig. 3. Thus,
while the spectral weight is suppressed dramatically at low
frequencies, A(ω) 	= 0 for all nonzero ω, and, strictly speak-
ing, the bosons are gapless.

In accordance with the (barely) nonvanishing charge gap,
the BEI is also checked to be compressible, with

κ = Kτ − K2
τ

(∫
τ,x

eiqx〈∂τφ(τ, x)∂τφ(0, 0)〉
)

q→0

= Kτ .

(34)

On the other hand, calculating the equal-time density-density
correlators gives

χ (q) ∝ q2, (35)

which differs from the |q|3 dependence in the DC (29).
Despite being a continuous symmetry, and despite being

in one dimension, dipole symmetry is actually spontaneously
broken in the BEI at T = 0 [21,47,48]: indeed, correlations of
the dipole order parameter ei∂xφ go as

Cei∂xφ (0, x) ∼ e
− ∫

q,ω
q2 1−cos(qx)

ω2Kτ +q4KD
x→∞−−−→ 1, (36)

as the integral in the exponential is IR finite [cf. the power
law behavior in the DC phase Eq. (25)], implying a nonzero
expectation value |〈di〉| 	= 0. This does not contradict the
Mermin-Wagner theorem, which allows dipole symmetry to
be spontaneously broken in 1D at T = 0 [21,47,48], provided
that the compressibility is nonzero [which in the BEI it is,
according to Eq. (34)].

B. The BEI in a rotor model

We now demonstrate how the physics of the BEI can
emerge in finite-sized systems. We will work at large integer
fillings, and at hopping strengths below those set by the in-
stability Eq. (5). In this regime, the DBHM can be studied by
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way of the rotor model

H = U

2

∑
i

n2
i − J

∑
i

cos
(
�2

xφi
)
, (37)

where [eiφi , n j] = δi, jeiφ . Note that in this model the in-
stability towards the FBD phase will be absent (since the
microscopic degrees of freedom are rotors, rather than
bosons).

This model can be easily simulated with classical Monte
Carlo techniques, as we can equivalently study the 2D classi-
cal rotor model

H = −J
∑

i

(
cos(�τφ) + cos

(
�2

xφ
))

, (38)

where J = √
J/U . One advantage of doing this is that the

compressibility—which is nonzero only in the BEI phase—is
easy to evaluate (unlike in DMRG, where the calculation of
static response functions is generally rather difficult).

Results of these simulations for square systems of linear
size L = 16, . . . , 128 are shown in Fig. 4. In the top panel, we
plot the dipolar magnetization

MD = 1

L2

〈√√√√(∑
i

cos(�xφi )

)2

+
( ∑

i

sin(�xφi )

)2〉
,

(39)

which can be used to detect the transition into the DC. We
see from the plot that MD onsets at a coupling Jc,DC that
converges to Jc,DC ≈ 1.25 at large L.

In the bottom panel of Fig. 4, we plot the compressibility

κ = J
L2

∑
i

〈cos(�τφ)〉 − J 2

L4

∑
i, j

〈sin(�τφi ) sin(�τφ j )〉,

(40)

which is zero in the MI and DC, but nonzero in the BEI. We
see clearly from the plot that a nonzero compressibility onsets
after some critical value Jc,BEI > Jc,DC, with the gap between
Jc,BEI and Jc,DC becoming monotonically larger with increas-
ing system size (with Jc,BEI − Jc,DC ∝ ln(L) for the system
sizes available in our numerics). Extrapolating this trend, we
see that the BEI disappears in the thermodynamic limit but
survives at finite L, entirely in accord with the theoretical
expectations of Sec. III.

VI. INTEGER FILLINGS: MOTT INSULATORS
AND DIPOLE CONDENSATES

We now turn to a slightly more detailed look at various
parts of the phase diagram, starting at integer fillings (m = 1).

A. Dipolar mean-field theory

The physics at integer filling is rather simple: as the
strength of the hopping terms is increased, a (continuous)
transition—driven by the condensation of dipoles—occurs
between the MI and the DC. The location of this transition
can be identified in mean-field theory by proceeding as in
Ref. [21]. We start by writing the hopping terms in the DBHM

FIG. 4. The dipolar magnetization (top) and compressibility
(bottom) obtained from Monte Carlo simulations of the rotor model
Eq. (38).

Hamiltonian Eq. (1) as

Hhop = −
∑
i, j

b†
i bi+1[A]i jb

†
j+1b j, (41)

where the matrix A is defined as

[A]i j = t (δ j,i+1 + δi, j+1 + δi, j+2 + δ j,i+2). (42)

To determine where the transition into the DC occurs, we
decouple the hopping term in terms of dipole fields Di as

Hhop = −
∑

i

(b†
i bi+1Di + (Di )

†b†
i+1bi ) +

∑
i, j

(Di)
†[A]−1

i j D j .

(43)

We then integrate out the bosons and obtain an effective action
for the Di, with the transition being identified with the point
where the mass of the Di fields changes signs. The manipu-
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FIG. 5. DMRG results at filling ρ̄ = 2: (a) Chemical potentials μ+ and μ− (see text for definitions) versus t/U . The asymmetry
μ+ − μ− vanishes for t � tDC ≈ 0.05U . (b) Energy gap in the same boson number sector, which scales as 1/L, indicating that the
dynamical exponent z = 1. (c) Equal-time density-density correlation function versus momentum q in the DC phase. (d) The boson
(left) and dipole (right) connected correlation functions at various values of t/U . The boson correlators decay exponentially at all
t/U , while the dipole correlators switch to a slow power-law decay in the DC phase. (e) Bond dimension dependence of the dipole-
dipole connected correlator deep in the DC phase. χ = 512 provides a good fit to a (small) power law, while for χ = 128 256 the
correlators are mean-field-like and decay exponentially. Panels (a)–(c) were obtained using finite DMRG with χ = 256 and a small single-
particle hopping of t0/U = 10−4; periodic boundary conditions were imposed for (c). Panels (d), (e) were obtained with infinite DMRG
and t0/U = 10−5.

lations are straightforward and are relegated to Appendix C,
where we show that the transition occurs at

tDC,m f = U

4n(n + 1)
. (44)

The natural expectation from theory is that this transition is
of the BKT type, although we leave a detailed study of the
critical point to future work.

B. DMRG: Results and interpretation

DMRG simulations largely conform with the above mean-
field picture. Before discussing the results, we briefly note
that to aid in the convergence of DMRG, we have found
it useful to add a small amount of dipole-violating single-
particle hopping t0 (t0/U � 10−4) via the term Hsp of Eq. (7).
From our field theory treatment, we expect Hsp to be an
irrelevant perturbation throughout the phase diagram,9 given

9Except in the BEI, where Hsp is relevant and eventually drives the
system to a conventional Luttinger liquid. Despite the fact that the

that the analysis of Sec. IV predicts a nonzero charge
gap in every phase. This prediction is borne out in our
numerics [Fig. 5(d)]: the decay of 〈b†

i b j〉 softens with in-
creasing t/U , but decays exponentially even deep in the
DC. In keeping with this, the perturbation Eq. (7) is not
observed to qualitatively change any features of the phase
diagram.

The most straightforward way of identifying the DC phase
is by examining connected correlation functions 〈d†

i d j〉c of the
dipole operators di = b†

i bi+1, which exhibit QLRO in the DC
and are short-ranged in the MI.

First, consider unit boson filling, n = 1. Since in our nu-
merics we set t3 = t4, the mean-field estimate Eq. (44) of
the transition from MI to DC gives tDC,mf/U = 1/8, which

BEI may effectively emerge at fractional fillings due to DMRG not
fully capturing the thermodynamic limit, 〈b†

i b j〉 is nevertheless ob-
served to always decay exponentially for all values of t0 we consider,
indicating that the presence of Hsp indeed has no effect on the IR
physics.
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interestingly matches exactly the value set by the instability
of Eq. (20). Thus, for n = 1 we are not guaranteed to see a
DC, as mean-field theory predicts a direct transition from the
MI to the FBD phase. This is indeed what occurs in DMRG,
with the MI extending all the way up until the transition into
the FBD phase.

While the instability that occurs when t � tFBD is inde-
pendent of n, the mean-field prediction for the DC transition
scales as 1/n2, and so for all n > 1 we expect a DC to
be present between the MI and FBD phases. Indeed, our
numerics find that 〈d†

i d j〉c displays a sharp crossover from
a rapid exponential decay to a slow power-law falloff at a
critical value of tDC, which for n = 2 is tDC ≈ 0.05U [see
Fig. 5(d)]. Despite the fact that we are in 1D—where quantum
fluctuations are strongest—this value agrees quite well with
the mean-field prediction, which for the parameters used in
Fig. 5 gives tDC,mf = U/24 ≈ 0.042U .

Deep in the DC phase, fitting the 〈d†
i d j〉c correlators to

the functional form 1
|i− j|α e−|i− j|/ξ gives small power-law ex-

ponents and extremely large correlation lengths. Deep in
the DC phase the connected correlators plotted in Fig. 5(d)
ultimately fall off exponentially at large distances, and the
dipole operators have a nonzero expectation value 〈di〉 	= 0.
Since the DC is incompressible, only QLRO is possible in
the DC [unlike in the compressible BEI; see the discussion
around Eq. (36)].

The ultimate exponential decay of 〈d†
i d j〉c and the nonzero

value of 〈di〉 are thus simply due to DMRG not fully capturing
the gapless fluctuations that ultimately reduce the dipole order
from long-ranged to quasi-long-ranged. This is not surprising,
as the suppression of LRO is logarithmically weak in the
system size L: estimating the fluctuations in the standard way
gives

〈di〉 ∼ 〈ei∂xφ〉 ∼ 〈di〉mf
(
1 − 1

2 〈(∂xφ)2〉)
∼ 〈di〉mf(1 − α ln L), (45)

with α a nonuniversal constant determined by the correlator
Eq. (25), and 〈di〉mf the dipole expectation value in the mean
field. In iDMRG, for the purposes of Eq. (45) we can think of
the bond dimension χ as producing an effectively finite L, and
we thus expect that the LRO should be (slowly) suppressed
with increasing χ . This is indeed what we observe, with the
exponential decay at χ = 256 giving way to more-or-less pure
power-law behavior by the time χ = 512 [Fig. 5(e)] (the very
weak decay is due to being very deep in the DC phase).

Another result of our field theory analysis is the predic-
tion Eq. (29) that the static charge-charge correlator vanishes
as χ (q) ∝ |q|3 in the DC. Figure 5(c) shows χ (q) obtained
from DMRG deep in the DC phase, which indeed vanishes
polynomially with q. For the system size used to compute
this correlator (L = 64), extracting the precise exponent is
difficult, and a fit to χ (q) ∝ q2 naively appears to work
better. Interestingly, χ (q) ∝ q2 is, in fact, precisely the de-
pendence we expect in the BEI (see Sec. V). We, however,
do not interpret this as evidence of a BEI phase that is
stabilized by finite-size/finite bond dimension effects. One
reason for this is that we do not see dipole correlators that
convincingly have LRO, with |〈di〉| very small and suppressed
with increasing bond dimension. Another reason comes from

our measurement of the energy gap scaling, as we now
discuss.

In addition to correlation functions, we also directly mea-
sure the chemical potentials

μ+ ≡ Eg(N + 1) − Eg(N ),

μ− ≡ Eg(N ) − Eg(N − 1), (46)

obtained as the ground-state energy difference of N , N + 1,
and N − 1 bosons, respectively. Focusing on n = 2, plots of
μ± versus t/U are shown in Fig. 5(a), where the asymmetry
μ+ − μ− is shown to vanish at a certain critical value which
agrees well with that obtained by looking at the onset of
QLRO in the dipole correlators. Since

μ+ − μ− = Eg(N + 1) + Eg(N − 1) − 2Eg(N ), (47)

the fact that μ+ = μ− in the DC phase can be under-
stood simply as a consequence of the DC possessing gapless
particle-hole excitations.

To probe the particle-hole excitation energy more carefully,
we examined the energies of the ground state and the first-
excited states within the same N-particle sector. As shown in
Fig. 5(b), the energy difference scales as �E ∼ 1/L, consis-
tent with the dynamical exponent z = 1 as predicted by our
field-theory treatment of the DC. Note that z = 1 is not what
is expected in the BEI, which has z = 2; we thus take this as
evidence that—at least for this filling—DMRG is able to fully
account for the perturbations that render the BEI unstable in
the thermodynamic limit.

Further supporting evidence is obtained by computing the
entanglement entropy, which is shown in the bottom panel of
Fig. 2(c). The dipolar nature of the Hamiltonian means that
the presence of spatial boundaries has a large effect on the
entanglement entropy near the chain ends, preventing a fit
to the Calabrese-Cardy formula [30] from working over the
entire chain length. If, however, we ignore the boundaries and
only fit the interior ∼80% of the chain, we obtain a good
fit with central charge c = 1, again matching what our field
theory analysis predicts for the DC.

VII. HALF-INTEGER FILLING: PAIR HOPPING MODELS
AND CHARGE DENSITY WAVES

We now come to the case of half-odd-integer fillings (m =
2). We will see that general theoretical considerations lead to
the possibility of having two distinct types of dipole conden-
sates distinguished by their patterns of symmetry breaking:
one spontaneously breaks site-centered reflections Rs and is
realized at small t , while the other spontaneous breaks Rb and
can arise at larger t (the Rs-breaking DC exists only when t4
is nonzero, and is thus unlikely to occur in the optical lattice
setup).

In this section, we will see how these two types of DCs
can be understood within the theoretical framework developed
above. Our DMRG results will be seen to confirm the exis-
tence of the Rs-breaking DC phase at small t , but for ρ > 1
and at large t we seem to observe an effective BEI phase
instead of the Rb-breaking DC. As discussed above, the BEI
is presumably eventually unstable in the thermodynamic limit,
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but the limitations of our numerics prevent us from seeing this
instability directly.

We first consider what happens at the smallest values of t
(the regions denoted by bDC in Fig. 2(a); this terminology
will be explained below). As far as the Hubbard repulsion
is concerned, the lowest energy states are those with boson
number (n ± 1)/2 on each site, and for t/U � 1 we can
consequently restrict our attention to the effective spin-half
single-site subspace:

H1/2 = {|↓〉 ≡ |(n − 1)/2〉, |↑〉 ≡ |(n + 1)/2〉}. (48)

When restricted to H1/2, the Hamiltonian reduces to10

H1/2 = −t4
(n + 1)2

4

∑
i

σ+
i σ−

i+1σ
−
i+2σ

+
i+3 + H.c., (49)

where the σ±
i act on H1/2. While we are still setting t3 = t4 =

t , we have written t4 above to emphasize that H1/2 is trivial at
leading order if t4 = 0, since the t3 hopping term has no matrix
elements that act within the H1/2 subspace.

This spin model has appeared extensively in the lit-
erature, where it has been used to understand Krylov
fracture, and—when the σ±

i are replaced by spinless fermion
creation/annihilation operators—as a way of probing quan-
tum Hall physics [10,11,49,50]. The ground state of H1/2 can
be thought of as a correlated breathing pattern of the state
|· · · ↓↓↑↑↓↓↑↑ · · ·〉, i.e., a linear combination of this state
and all states obtained from it under the action of all powers
of H1/2. States of this form allow the bosons room to locally
resonate back and forth and thus lower their kinetic energy,
while states like |· · · ↑↓↑↓ · · ·〉 are annihilated by H1/2 and
carry a large kinetic energy cost. We are thus prompted to
define the effective spins |̃↑〉i ≡ |↑↓〉2i,2i+1, |̃↓〉i ≡ |↓↑〉2i,2i+1
[10,11]; in this representation, the effective Hamiltonian is
simply

H1/2 = −t4
(n + 1)2

4

∑
i

σ̃+
i σ̃−

i+1 + H.c., (50)

where the σ̃±
i operate on H̃1/2 = {|̃↑〉, |̃↓〉}. Thus, in the

limit where we can project into H̃1/2, the dipole-conserving
spin-1/2 model Eq. (49) can, in fact, simply be solved by
fermionization.

As a result, the phenomenology of the small t/U phase
is easy to describe. For example, the dipole order parameter
di becomes σ̃+

i if i ∈ 2Z, while it acts outside of H̃1/2 if i ∈
2Z + 1. This results in the correlation function of the dipole
operators taking the form

〈d†
i d j〉 ∝ (1 + γ (−1)i )(1 + γ (−1) j )

1

|i − j|β , (51)

where β is a nonuniversal Luttinger parameter depending on
t/U , and γ � 1 is another nonuniversal parameter controlling

10Adding a nearest-neighbor Hubbard repulsion U ′ results in the
addition of the term U ′

8

∑
i(σ

z
i σ z

i+1 + 4nσ z
i ), the presence of which

leads to a period-2 charge density wave (CDW) at the smallest values
of t4/U ′, which at intermediate t4/U ′ melts and gives way to the
gapless state described below.

the strength of the oscillations. This form for the correlator
is confirmed by DMRG (performed at ρ = 3/2), with both
γ and β decreasing with larger t/U [Fig. 6(d), right]. These
oscillations can be thought of as producing a bond-centered
CDW (hence the b in bDC), breaking site-centered reflections
(Rs) but not bond-centered ones (Rb). In contrast to dipole
correlators, density correlation functions are nonoscillatory,
and 〈ni〉 = n/2 is observed to be uniform throughout the small
t/U phase [Fig. 2(b), panel 2], in keeping with the fact that
〈σ z

i 〉 = 0 in the ground state of Eq. (50). Single bosons re-
main gapped in the bDC, and 〈b†

i b j〉 decays extremely rapidly
with |i − j| [Fig. 6(d), left]. The existence of a DC is further
confirmed by measurements of the chemical potentials μ±,
with μ+ = μ− for all t/U [Fig. 6(a)], consistent with the
particle-hole symmetry of the DC.

The resonating processes described above allow the sys-
tem to somewhat reduce its kinetic energy, but the motion
of charges is still constrained by the projection into H̃1/2.
As t is increased, one theoretically expects that it eventually
reaches a value t� at which a phase transition into a distinct
type of Rb-breaking DC occurs [in the region denoted simply
as DC in the phase diagram of Fig. 2(a)]. In terms of the
above spin-1/2 model defined on H1/2, the existence of a
transition between the two types of DC can be understood as
follows.

The projection from H1/2 to H̃1/2 eliminated the states
|+〉i ≡ |↑↑〉2i,2i+1 and |−〉i ≡ |↓↓〉2i,2i+1, which we now
bring back. It is easy to convince oneself that neither of these
states can propagate freely by themselves under the dynamics
described by Eq. (49). However, the bound states |+〉i|−〉i+1

or |−〉i|+〉i+1 can propagate [11], provided that they move
in a background which is ferromagnetic in terms of the ↑̃, ↓̃
spins (namely, all |̃↑〉 spins in the case of the |+−〉 bound state
or all |̃↓〉 spins in the case of |−+〉). These bound states are
created by the dipole operators d2i+1 when they act on H̃1/2.
This means that increasing t will have the effect of promoting
the formation and propagation of these bound states. Further
lowering of the kinetic energy is thus achieved by letting the
|±∓〉 bound states propagate on top of a background of either
|̃↑↑̃ · · ·〉 or |̃↓↓̃ · · ·〉.

When translated back into the original boson variables,
the ferromagnetic states in H̃1/2 correspond to product states
in which 〈ni〉 = (n + (−1)i )/2, thereby producing a period-2
site-centered CDW. This CDW differs from the bond-centered
CDW at t < t� by its pattern of symmetry breaking, breaking
Rb but preserving Rs.

We close this section by taking a more detailed look at our
DMRG results for m = 2. For all n, our DMRG finds the Rs-
breaking bDC phase at small t/U , as expected. At half filling
(n = 1), the bDC phase is observed to extend all the way up
to tFBD, while for n > 1 we observe a transition at a value of
t� < tFBD.

However, instead of transitioning into the Rb-breaking DC,
our numerics find a transition into a BEI-like phase where the
dipoles develop LRO [|〈di〉| 	= 0, Fig. 6(c)]. This picture is
supported by the equal-time density correlator (not shown),
which has a good fit to χ (q) ∝ q2 at small q [cf. Eq. (35)]. As
discussed at length above, seeing a BEI here is presumably
due to DMRG’s inability to capture the true thermodynamic
limit of the flow of cos(2∂xθ ), at least barring any serendipi-
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FIG. 6. DMRG results at filling ρ̄ = 3/2: (a) Chemical potentials μ+ and μ− versus t/U . μ+ = μ− for all t/U , as expected from the
particle-hole symmetry of the DC. (b) energy gap in the same boson number sector, indicating a dynamic exponent of z = 1. (c) DC amplitude
as a function of t/U . (d) boson (left) and dipole (right) connected dipole correlation functions, at various values of t/U . The boson correlators
decay exponentially for all t/U . In the bDC phase (t � t� ≈ 0.065U ) the dipole correlators oscillate at momentum π , while the oscillations
disappear at t > t�. (e) Expectation value of the boson density at different sites i. The grey boxes are taken at t < t�, while the other two curves
are taken at t > t�, showing (weak) period-2 CDW order. All DMRG hyperparameters are the same as in Fig. 5.

tous fine-tuning which happens to exactly eliminate the (∂xθ )2

term from Eq. (21). Complicating this picture slightly is the
fact that the observed energy gap appears to scale as � ∼ 1/L
even at rather large values of t/U [Fig. 6(b)], which indicates
a dynamic exponent of z = 1, different from the BEI value of
z = 2. It thus seems possible that our numerics are simply ac-
cessing a crossover regime in which the terms that destabilize
the BEI are present but have not yet flowed to their (large)
fixed-point values. In any case, the difference between the
putative DC regions at ρ = 3/2 and ρ = 2 is thus observed
to be quite large, with the former showing fairly large signs of
BEI physics and the latter appearing to be a DC throughout.
Why exactly there is such a large difference between these
two fillings in DMRG is currently unclear to us.

VIII. GENERIC FILLING: PHASE SEPARATION

Finally, we briefly address the case of generic fillings [for
the Hamiltonian Eq. (1), generic means any m > 2]. In the
absence of longer-ranged Hubbard interactions—which are
not present in our simulations but appear in our field theory
by way of the terms cos(mθ )—the system will not be able to
form a CDW in the limit of zero hopping strength. Instead,
we find numerically [Figs. 2(b) and 7(a)] that the system
tends to phase separate into regions of MI and regions of

Rs-breaking condensate (although this situation may be mod-
ified in models with t4 = 0). When t/U is sufficiently large,
the phase-separated regime is replaced by a phase possessing
nonoscillatory dipole correlators 〈d†

i d j〉 and nonzero period-
m CDW order. An example of this is shown in Fig. 7(b),
which shows the boson density as a function of position at
ρ = 2.2 = 11/5, displaying (weak) period-5 CDW order as
expected. We have not attempted to ascertain precisely where

FIG. 7. DMRG results at filling ρ̄ = 2.2: (a) Expectation value
of the boson density ρi as a function of position i at small t/U in the
phase-separated regime. (b) ρi in the DC, showing (weak) period-5
CDW order.
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any BEI physics may occur in our numerics when m > 2,
since where exactly this happens is rather nonuniversal.

IX. SUMMARY AND OUTLOOK

In this paper, we have explored the consequences of dipole
moment conservation on the quantum ground states of in-
teracting bosonic chains. Dipole conservation quenches the
system’s kinetic energy in a way rather distinct from the stan-
dard tricks of large magnetic fields or artificially engineered
flat bands, with the quenched kinetic energy being a mix of
kinetic energy and interactions. This quenching leads to sev-
eral different types of exotic gapless condensates at small and
intermediate hopping strengths. At strong hopping strengths,
our model develops an instability towards an unusual type of
glassy ergodicity-breaking phase, which will be the subject of
upcoming work [32].

A clear next step is to realize the DBHM in experi-
ment. Currently, the most promising experimental platform
seems to be in optical lattices, where a strong tilt poten-
tial can be created with a magnetic field gradient, enabling
dipole-conserving dynamics over a long prethermal timescale.
Recent studies on tilted Fermi Hubbard chains [4,5] and a
tilted quasi-2D boson system [31] have focused on studying
dynamical consequences of emergent dipole conservation fol-
lowing quantum quenches. To explore the quantum ground
states of these models, one needs only to prepare a Mott
insulating state at large tilt and t = 0, and then adiabatically
increase the hopping strength t . Beyond tilted optical lattices,
it is also possible to directly engineer a dipole-conserving
Hamiltonian using bosonic quantum processors [38–40], and
it seems fruitful to investigate whether or not any other natural
realizations exist.

The constraints imposed by dipole conservation have the
attractive feature that they rely only on the existence of
a single additional conservation law to be operative, and
thus do not depend on any particular fine-tuning of the sys-
tem’s Hamiltonian. That said, one should not necessarily
limit oneself to kinematic constraints that arise from sim-
ple conservation laws, as there are many ways in which
more exotic types of kinematic constraints could be designed
in principle (e.g., using the Floquet driving protocols of
Ref. [51]). For example, one could consider models of the
form

H = −t
∑

i

�ib
†
i bi+1 + U

2

∑
i

n2
i , (52)

where �i is a projector built out of boson number operators on
sites near i, which projects onto the subspace in which motion
is possible (this is similar to, e.g., the model of Ref. [52],
where the constraints were placed not on boson hopping, but
on boson creation/annihilation). Is there a guiding principle
which helps us understand the ground-state physics of models
like this?

A related question is to what extent models with Hilbert
space fragmentation can be studied using field theory tech-
niques similar to those used in this paper. If we enforce strict
fragmentation in our model by, e.g., setting sharp cutoffs
nmax, rmax on the local Hilbert space dimension and the max-
imum range of the dipolar hopping terms in H [7,8], does

this necessitate any modifications to our field-theory analysis?
Questions of this form, along with the results of the present
paper, lead us to believe that it is currently an opportune
time for understanding the ground states of kinematically
constrained many-body systems.

Note added. Recently, we became aware of a related study
of the 1D DBHM [53], which appeared concurrently with the
present version of this paper. We are particularly grateful to
the authors of Ref. [53] for correcting an important mistake
in the original arXiv posting of this paper, which incorrectly
claimed that DMRG showed evidence for an incompressible
state at ρ = 3/2, t > t�.
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APPENDIX A: LATTICE DUALITY

In this Appendix, we will use a slightly modified version
of standard particle-vortex duality (see, e.g., Ref. [54] for a
review) to derive a field theory that can be used to understand
the phase diagram of the 1D DBHM. The manipulations to
follow are quite similar to the ones performed when dualizing
a classical 2D smectic [45], the theory of which shares many
parallels with the present dipole conserving model.

Our starting point is the imaginary-time lattice model

L = in∂τφ + (2π )2u

2
(n − ρ )2 − KD cos

(
�2

xφ
)
, (A1)

where φ ≈ φ + 2π is a compact scalar field identified with
the phase mode of the b bosons as in Eq. (9), n is an operator
conjugate to eiφ that parametrizes density fluctuations (not to
be confused with the n in ρ = n/m), and the definitions of
the couplings u, KD are as in Eqs. (16) (we will restrict our
attention throughout to the case where u > 0). This lattice
model arises from taking the rotor limit of HDBHM, which
strictly speaking is valid only at large average fillings [since
the n appearing in Eq. (A1) has eigenvalues valued in Z, rather
than in N]. Nevertheless, the rotor limit suffices to understand
much of the qualitative physics of the regular Bose-Hubbard
model at all densities, and we will see that in the present
context it does a similarly good job at explaining the phase
diagram.
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If we could Taylor expand the cosines in Eq. (A1), we
would obtain a quantum Lifshitz model, which is the field
theory of the BEI phase described in Ref. [21] and investigated
in detail in Ref. [44]. However, the legitimacy of such an
expansion rests on the assumption that vortices in φ can be
ignored,11 and as we will see in the following, this is actually
never the case in the thermodynamic limit.

To understand the effects of vortices we switch to a 2+0d
space-time lattice and villainize the above Lagrangian, giving

L = iρ(�τφ − mτ − Aτ ) + 1

8π2u
(�τφ − mτ − Aτ )2

+ KD

2

(
�2

xφ − mx − �xAx
)2 + ihφ, (A2)

where the mτ , mx ∈ 2πZ are path-summed over, and we have
added the background field Aμ = (Aτ , Ax ) as well as the
source field h = ∑

i qiδ(x − xi )δ(τ − τi ), qi ∈ Z, which will
be used to calculate correlation functions. mτ lives on the
temporal links of the lattice, while mx and h live on the sites.
If desired, we could also couple to a background gauge field
AD

μ for the U (1)D dipole symmetry. However, AD
τ is rather

ill-defined (as only the total dipole charge, rather than local
dipole density, is well-defined), while AD

x enters in the same
way as does �xAx, and therefore is redundant.

We then integrate in a R-valued vector field J = (Jτ , Jx )
which lives on the links of the lattice:

L = 4π2uJ2
τ

2
+ J2

x

2KD
+ i(Jτ + ρ )(�τφ − mτ − Aτ )

+ iJx
(
�2

xφ − mx − �xAx
) + ihφ, (A3)

where we have chosen to write the temporal part of J as Jτ + ρ

for later convenience.
Integrating out φ tells us that

�τ Jτ − �2
xJx = h ⇒ Jτ = 1

2π

(
�2

xθ − �τ

∇2
h

)
,

Jx = 1

2π
(�τθ + ∇−2h), (A4)

where θ is defined on the temporal links, and we have let
∇2 ≡ −�2

τ − �2
x denote the lattice Laplacian. We then sub-

stitute this expression for Jμ into the above Lagrangian, and
recognize that the terms which mix h and mτ , mx can be
ignored on the grounds that they are linear combinations of
delta functions with weights valued in i2πZ. Therefore, we
may write

L = u

2

(
�2

xθ − �τ∇−2h
)2 + 1

8π2KD
(�τθ + ∇−2h)2

− i
θ

2π

(
�2

xmτ − �τ mx
) − i

Aτ

2π

(
�2

xθ − �τ∇−2h
)

− i
�xAx

2π
(�τθ + ∇−2h) − iρ(mτ + Aτ ). (A5)

11Unlike in the setting of, e.g., Refs. [44,55], it is not appropriate
for us to work with a model that excludes vortices by hand.

From the coupling to Aτ , we see that the density is repre-
sented in this approach as

ρ = ρ + 1

2π
�2

xθ, (A6)

agreeing with Eq. (9) in the main text. Note that as φ is di-
mensionless, [u] = [�τ/�x] and [KD] = [�τ/�

3
x], implying

that [θ ] = [1/�x], consistent with the above expression for ρ.
Equation (A6) implies that an infinitesimal spatial transla-

tion by an amount μ(x) acts on θ as

Tμ : θ (x) 
→ (1 − �xμ)θ (x + μ)+2πρ

∫ x

−∞
dx′ μ(x′)+ · · · ,

(A7)

where the · · · are terms higher order in μ and its derivatives.
Formally, Eq. (A7) can be derived by requiring that ρ(x)
transform as a density under a spatially varying translation
through μ(x), viz. by requiring that

Tμ : ρ(x) 
→ (1 + �xμ)ρ(x + μ) (A8)

to linear order in �xμ and derivatives thereof. Indeed, drop-
ping higher derivatives of μ, we see that under Eq. (A7),

ρ 
→ ρ + 1

2π
�2

x

(
(1 − �xμ)θ (x + μ)+2πρ

∫ x

−∞
dx′ μ(x′)

)
= ρ(1 + �xμ) + 1

2π
(1 − �xμ)�2

xθ (x + μ)

= ρ(1 + �xμ) + 1

2π
(1 − �xμ)(1 + �xμ)2�2

x+μθ (x + μ)

= (1 + �xμ)

(
ρ + 1

2π
�2

x+μθ (x + μ)

)
= (1 + �xμ)ρ(x + μ), (A9)

as required. In particular, for uniform translations �xμ = 0,
we have

Tμ : θ (x) 
→ θ (x + μ) + 2πρxμ,

�xθ (x) 
→ �xθ (x + μ) + 2πρ. (A10)

We will find it helpful to define the field

� = θ + πρx2, (A11)

which satisfies �2
x� = 2πρ and which is invariant under in-

finitesimal translations to linear order (the order we have given
the action of Tμ to), in that Tμ : �(x) 
→ �(x + μ) + O(μ2).
We may thus write the part of L involving mτ , mx as

L ⊃ −im�, m ≡ �2
xmτ − �τ mx

2π
. (A12)

Now the object m is an integer satisfying
∫

m = ∫
xm = 0,

where
∫

implicitly means a discrete sum over space-time
lattice points. In the usual approach to particle-vortex duality,
one would only have the constraint

∫
m = 0 (net zero vortex

number); here the extra constraint
∫

xm has the effect of
enforcing zero dipole moment of the objects created by eiθ

(which turn out to be vortices of �xφ). However—as in the
standard case—the physically correct thing to do is to simply
ignore the topological constraint on the sum over m, and to
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then use cosines of θ,�xθ to softly enforce the delta function
constraints implemented by the sum over m.

In more detail, the cosine terms are generated as follows.
Until now, all of our manipulations have been exact and we
have remained on the lattice. To obtain a useful EFT, we
need to integrate out short-distance degrees of freedom and
produce an effective action for slowly varying fields, giving a
theory with a suitable continuum limit. To do this, from the

sum over m we select out those configurations which involve
products of terms involving products of a small number of ei�

operators. For us, the important operators are ei� itself and
ei�x�; other operators are either already taken into account by
the free part of the action (e.g., ei�2

x�) or else will end up being
irrelevant in the final continuum theory (e.g., ei�2

τ �). Keeping
only the configurations of m that generate these terms, the
partition function is

Z =
∞∏

q,r=0

∞∑
nq,nr=0

2nq+nr

nq!nr!

〈 ∫ nq,nr∏
j,k=1

dx j dτ j dxk dτk cos(q�(τ j, x j )) cos(r�x�(τk, xk ))

〉
, (A13)

where the expectation value is with respect to the free
(quadratic) part of the lattice action for θ .

The θ fields implicitly [via Eq. (A11)] appearing in the
above expression for Z are not the variables we aim to write
our EFT in terms of, as they are defined on the lattice and
contain fluctuations at short scales. To obtain a field theory, we
decompose θ = θs + θ f into slow and fast components, where
the division between slow and fast occurs at a short-distance
cutoff of 1/� � a in space (we do not impose any cutoff
in frequency, partly for convenience and partly because the

important distinctions between the various cosines we will
generate will be spatial).

We will regulate the products of cosines appearing in
Eq. (A13) by tiling the space-time lattice into patches of linear
size �−1, requiring that no two operator insertions appear
within a distance of �−1 from one another. The correlation
functions of θ f are local in space-time, falling off in τ over
the timescale �−2/

√
uKD and falling off in x over �−1. For

the purposes of this discussion, it is sufficient to approximate
this behavior as giving

〈eiqθ f (τ,x)/ae−iqθ f (τ ′,x′ )/a〉 ∼
{

e−q22π

√
KD/u

�a2 (τ, x) and (τ ′, x′) in same patch
0 else,

(A14)

where the factor in the exponential comes from doing the inte-

gral
∫
R dω

∫ a−1

�
dq (q4/Kτ + ω2/KD)−1, and where we have

momentarily restored the lattice spacing a. This exponential
factor defines the dipole vortex fugacity (this terminology will
become clear shortly),

yD ≡ 2e−cD
√

KD/u, (A15)

where the nonuniversal constant cD = π/(�a2) in the present
crude model. Correlators of eir�xθ f give a similar result, but
with yD replaced by the vortex fugacity y, defined as

y ≡ 2e−c
√

KD/u, (A16)

with c = π� in the present model.
Performing the integral over θ f in Eq. (A13) simply adds

factors of (yq2

D )nq (yq′2
)nq′ and replaces occurences of θ with θs

(which we consequently relabel as θ ). The last thing to do is
to recognize that while θ is now (by construction) a slowly-
varying field (i.e., slowly varying on the scale of the lattice
spacing), � is not if ρ 	= 0. Cosines cos(q�), cos(r�x�) thus
oscillate rapidly on the lattice scale and can be dropped, unless
q, rρ ∈ N, in which case cos(q�) = cos(qθ ), cos(r�x�) =

cos(r�xθ ).12 Let us write the average density as

ρ = n/m, m, n ∈ N, gcd(m, n) = 1. (A17)

The cosines in Eq. (A13) can be re-exponentiated, and after
we drop those which vary rapidly on the lattice scale, we
obtain the effective continuum Lagrangian

L = u

2

(
�2

xθ − �τ∇−2h
)2 + 1

8π2KD
(�τθ + ∇−2h)2

− i
Aτ

2π

(
�2

xθ − �τ∇−2h
) − i

�xAx

2π
(�τθ + ∇−2h)

−
∑

q∈mN

(yD,4q cos(4qθ ) + yq cos(q�xθ )), (A18)

where yq ∝ yq2
and yD,q ∝ yq2

D [and the factor of 4 in cos(4qθ )
is due to the action of Rb reflection symmetry Eq. (13)].
After dropping the background fields, this agrees with the
Lagrangian Eq. (18) quoted in the main text (after integrating
out φ in the later).

At any rational filling, the cosines of �xθ destabilize the
z = 2 free fixed point of the quantum Lifshitz model that one
arrives at upon Taylor expanding the cosines in Eq. (A1).

12From Eq. (A11), one might think that cos(m�) would be transla-
tion invariant only if nρ ∈ 4πN, but this is only because we have not
been writing the O(μ2) piece of the transformation of θ under Tμ.
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Indeed, it is easy to check that at this fixed point, eiq�xθ has
LRO for all q, and hence the leading nonlinearity cos(m�xθ )
will always be relevant,13 giving a nonzero expectation value
to �xθ . Note that as �xθ is charged under translation, transla-
tion will generically be spontaneously broken, with the system
having some kind of CDW order at all noninteger rational
fillings.

After expanding cos(m�xθ ), we obtain

L = m2ym

2
(�xθ − 〈�xθ〉)2 + u

2

(
�2

xθ − �τ∇−2h
)2

+ 1

8π2KD
(�τθ + ∇−2h)2 + i

Ax

2π
�x�τθ

− i
Aτ

2π
�2

xθ − yD,4m cos(4mθ ), (A19)

where we have dropped the unimportant coupling between Aμ

and h and kept only the leading cosine of θ , whose scaling
dimension is

�cos(4mθ ) = 8m2

√
KD

yD,m
. (A20)

When this cosine is irrelevant, we obtain a free z = 1 compact
scalar, which describes the DC. When it is relevant, the DC
is destroyed, leading to a Mott insulator at integer filling or
a translation-breaking state with gapped dipoles at noninteger
rational filling. However, since yD,m is exponentially small in
m2√KD/u, the scaling dimension Eq. (A20) can be made ex-
tremely large (particularly at nearly incommensurate fillings
and large densities [as KD ∝ ρ2]), thus, in principle, leading
to a DC which extends down nearly to t = 0. Similarly, al-
though we have concluded that in the thermodynamic limit
this system is always incompressible, the flow away from the
free z = 2 theory (which is compressible) can be very weak,
due to the smallness of yD,m. Indeed, the results of Sec. V
give a numerical study indicating that finite-size effects can be
strong enough to prevent the cos(m�xθ ) term from growing
to the point where it dominates the physics, leaving a range of
parameters where the system is effectively compressible and
describable by the quantum Lifshitz model.

Finally, we use Eq. (A19) to compute correlation functions
of exponentials of φ (and derivatives thereof) in the DC.
Setting Aμ = 0 and integrating out θ , the free energy as a
function of the source h is seen to be

ln Z[h] = − 1

2

∫
q,ω

|hq,ω|2 1

(ω2 + q2)2

(
ω2

Kτ

+ 1

KD

−
(

q2

Kτ

+ 1

KD

)2
ω2

ω2/KD + q2m2ym + q4/Kτ

)
,

(A21)

where Kτ ≡ 4π2/u, KD ≡ 4π2KD. Since we are only inter-
ested in the IR behavior of the correlators in question, we can

13We focus solely on cos(m�xθ ) not because it is more relevant
than cos(lm�xθ ) for integer l > 1 but because the bare coefficients
of these terms are expected to be exponentially suppressed with l .

drop the q2/Kτ , q4/Kτ , and ω2/Kτ terms; this then gives us
the result quoted in Eq. (23).

APPENDIX B: DIPOLAR HOPPING FROM A STRONGLY
TILTED POTENTIAL

Consider bosons hopping on a 1D lattice tilted by a strong
potential V :

H =
∑

i

(
−t0(b†

i bi+1 + b†
i+1bi ) − μni

+ U

2
ni(ni − 1) + U ′

2
nini+1 + Vini

)
≡ Ht + HU + HV ,

(B1)

where HU includes the chemical potential and both the on-site
U and nearest-neighbor U ′ Hubbard interactions. While the
bare value of U ′ will essentially always be negligible in optical
lattice setups, we include a nonzero U ′ in the subsequent
calculations for the purposes of illuminating the structure of
the terms produced by the perturbation theory expansion, and
because a sizable U ′ could very well be present in other
physical realizations outside of the optical lattice context.

In the limit V � t0,U , this theory has emergent dipole
conservation over a prethermal timescale which is exponen-
tially large in V/t [7]. Our goal is to perform a rotation
into a basis in which the Hamiltonian commutes with the
dipole chemical potential V

∑
i ini up to some fixed order in

t0/V,U/V , and to derive the strength of the resulting dipole-
hopping terms. This calculation has already been performed
for the closely related fermionic models of Refs. [5,11]; below
we simply perform the generalization of these calculations to
the present bosonic model.

As in Refs. [5,11], we use a Schrieffer-Wolf transformation
to rotate the Hamiltonian into a basis where it commutes with
the dipole term HV , working perturbatively in t0/V,U/V . We
write the transformed Hamiltonian as

e�He−� =
∑
k�0

1

k!
Adk

�(H ), (B2)

where Ad�(·) = [�, ·] and � is anti-Hermitian.
Note that it is already clear that interactions are required for

producing a nonzero dipolar hopping term. Indeed, without
the interaction term, H is built solely of two-body terms—we
can thus choose � to be a two-body operator, and Adk

�(H )
will consequently always itself be built from two-body op-
erators, which can only either be purely on site or dipole
nonconserving. In fact, if we just take

� = �t ≡ t0
V

∑
i

(b†
i bi+1 − b†

i+1bi ), (B3)

it is easy to check that when U = U ′ = 0,

[�t , H] = [�t , HV ] = t0
∑

i

(b†
i bi+1 + b†

i+1bi ) = −Ht .

(B4)

Since this is just the negative of the hopping term, the
first-order part Ad�(HV ) dutifully kills Ht . Moreover, since
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[�t , [�t , Ht + HV ]] = 0, the effective Hamiltonian stops
at linear order, and we simply obtain Heff = e�t (Ht +
HV )e−�t = HV , which is purely on site. This means that
when U = U ′ = 0, no effective dipole hopping terms are
generated—there is perfect destructive interference between
all putative hopping processes, and no such processes are
generated to all orders in perturbation theory.

Let us then bring back the interactions. We take

� =
∞∑

n=1

�n, (B5)

where �n is order n in t0/V,U/V,U ′/V , and we set �1 = �t .
We fix the second-order term �2 by requiring that it cancels
the off-diagonal (with respect to dipole charge) terms gener-
ated when commuting �1 = �t against HU . Specifically, we
require

[�2, HV ] = −(1 − P )[�t , Ht + HU ](1 − P ), (B6)

where 1 − P projects onto the off-diagonal component. Keep-
ing terms to third order in this expansion, Heff becomes [11]

Heff = HV + HU + [�2, HU ] + 1
2 [�2 − �t , Ht ] + [�3, HV ]

+ 1
3 [�t , [�t , Ht ]] + 1

2P[�t , Ht ]P . (B7)

We then need the commutators [�t , Ht ], [�t , HU ], the evalua-
tion of which is straightforward. Define the hopping operators

T ±
i, j ≡ b†

i b j ± b†
jbi, (B8)

which among other identities satisfy∑
i

[T ±
i,i+1, n j] = T ∓

j−1, j − T ∓
j, j+1,

[T ±
i,i+1, HV ] = V T ∓

i,i+1, (B9)∑
j

[
T s

i,i+1, T s′
j, j+1

] = T −ss′
i,i+2 − T −ss′

i−1,i+1 + (s − s′)(ni+1 − ni ).

Then

[�t , Ht ] = t2

V

∑
i

(b†
i+2bi+ 2ni+1+ b†

i bi+2−(i → i + 1)) = 0,

[�t , HU ] = tU

2V

∑
i

{ni, T +
i−1,i − T +

i,i+1} + tU ′

2V

×
∑

i

((T +
i−1,i − T +

i,i+1)ni+1+ni(T
+

i,i+1 − T +
i+1,i+2)).

(B10)

Note that [�t , HU ] is purely off-diagonal, so the insertions of
1 − P in Eq. (B6) have no effect and can be ignored.

We now determine �2 via Eq. (B6), which by virtue of the
above now reads

[�2, HV ] = −[�t , HU ]. (B11)

This can be done in a rather brute force way by expanding
�2 as a general linear combination of all four-boson operators
which are allowed to contribute, but it is simpler to simply
use the middle identity in Eqs. (B9) as inspiration, noting that
one only need flip the T +s to T −s in Eqs. (B10) to make
everything work out,

�2 = − t0U

2V 2

∑
i

{ni, T −
i−1,i − T −

i,i+1} − t0U ′

2V 2

×
∑

i

((T −
i−1,i − T −

i,i+1)ni+1 + ni(T
−

i,i+1 − T −
i+1,i+2)),

(B12)

which is purely off-diagonal.
The effective Hamiltonian to cubic order is then

Heff = HV + HU + [�2, HU ] + 1
2 [�2, Ht ] + [�3, HV ].

(B13)

�3 is chosen to kill the off-diagonal part of [�2, HU ] + 1
2 [�2, Ht ].14 It is easy to see that [�2, HU ] is purely off-diagonal,

while [�2, Ht ] can have diagonal components, as both �2, Ht are off-diagonal. Therefore, the diagonal part P[�2, Ht ]P survives
in Heff, which to cubic order is consequently

Heff = HV + HU + 1
2P[�2, Ht ]P . (B14)

All that remains is therefore the calculation of P[�2, Ht ]P . This is

1

2
P[�2, Ht ]P = t2

0

4V 2

∑
i

P[U ({ni, [T −
i−1,i − T −

i,i+1, T +
j, j+1]} + {T −

i−1,i − T −
i,i+1, [ni, T +

j, j+1]}) + U ′((T −
i−1,i − T −

i,i+1)[ni+1, T +
j, j+1]

+ [T −
i−1,i − T −

i,i+1, T +
j, j+1]ni+1 + ni[T

−
i,i+1−T −

i+1,i+2, T +
j, j+1] + [ni, T +

j, j+1](T −
i,i+1 − T −

i+1,i+2))]P, (B15)

which we evaluate using Eqs. (B9) together with

PT −
i−1,iT

−
i,i+1P = −(

b†
i−1b2

i b†
i+1 + H.c.

)
, P (T −

i−1,iT
−

i+1,i+2)P = −(bi−1b†
i b†

i+1bi+2 + H.c.) (B16)

to write

1

2
P[�2, Ht ]P = t2

0

V 2

∑
i

(−2(U − U ′/2)n2
i +2(U − U ′)nini+1 + U ′nini+2 − U ′b†

i−1bibi+1b†
i+2 − (U − U ′)b†

i−1b2
i b†

i+1 + H.c.
)
,

(B17)

14This is not just an arbitrary choice: �3 cannot be chosen to cancel any of the diagonal terms, as one can show that if [O, HV ] 	= 0, then
[HV , [O, HV ]] 	= 0 for any boson operator O—thus [�3, HV ] must necessarily be off-diagonal.
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and so the effective dipolar Hamiltonian to cubic order in t0/V,U/V is

HDBHM = −
∑

i

(
t2
0 (U − U ′)

V 2
b†

i b2
i+1b†

i+2 + t2
0U ′

V 2
b†

i−1bibi+1b†
i+2 + H.c.

)
+

∑
i

(−(μ + U/2) + iV )ni

+
∑

i

((
U

2
− 2t2

0 (U − U ′/2)

V 2

)
n2

i +
(

U ′ + 4t2
0 (U − U ′)

V 2

)
nini+1 + t2

0U ′

V 2
nini+2

)
.

(B18)

Note, in particular, that the effective three-site hopping term has strength t3 proportional to the difference of the on-site and
nearest-neighbor interaction strengths, while the strength t4 of the four-site hopping term is proportional to U ′, and is thus only
present when the microscopic model has nearest-neighbor repulsive interactions.15

APPENDIX C: MEAN-FIELD THEORY
FOR THE DIPOLE CONDENSATE

In this Appendix, we use mean field theory to estimate the
critical hopping strength at which the transition from the Mott
insulator to the DC occurs.

We proceed as in Appendix B of Ref. [21]. We start by writ-
ing the hopping term in the microscopic Hamiltonian Eq. (1)
as

Hhop = −
∑
i, j

b†
i bi+1[A]i jb

†
j+1b j, (C1)

where the matrix A is defined as

[A]i j = t3(δ j,i+1 + δi, j+1) + t4(δi, j+2 + δ j,i+2). (C2)

To determine where the transition into the DC occurs, we
decouple the hopping term in terms of dipole fields Di as

Hhop = −
∑

i

(b†
i bi+1Di + (Di)

†b†
i+1bi ) +

∑
i, j

(Di )
†[A]−1

i j D j .

(C3)

We then integrate out the boson fields bi to produce an ef-
fective action for the D variables. We will only be interested
in obtaining the effective action to quadratic order in D and
derivatives thereof, which we parametrize as

S2 =
∫

dτ dx (w|∂τ D|2 + KD|∂xD|2 + r|D|2). (C4)

In terms of bi correlation functions, perturbation theory yields

S2 = − 1

2

∫
dτ1 dτ2 〈T [HDb(τ1)HDb(τ2)]〉

+
∫

dτ
∑
i, j

(Di )
†[A]−1

i j D j, (C5)

with HDb ≡ −∑
i b†

i bi+1Di + H.c., and where the expectation
value above is taken with respect to the ground state of the
site-diagonal Mott insulating Hamiltonian

Hon site = 1
2

∑
i

(Uni(ni − 1) + U ′nini+1). (C6)

In what follows, we will assume that at t = 0, the system
realizes a Mott insulator with n > 0 bosons per site, whose
ground state we write as |MIn〉 ≡ ⊗

i |n〉i.
The first term in S2 is calculated as

∫
dω

2π

∑
i

|Di(ω)|2
∫

dτ eiωτ 〈T [(b†
i bi+1)(τ )(bib

†
i+1)(0)]〉

=
∫

dω

2π

∑
i

|Di(ω)|2
∫

dτ eiωτ
∑

l

(�(τ )e−τ (El −E0 )|〈MIn|b†
i bi+1|l〉|2 + �(−τ )eτ (El −E0 )|〈MIn|b†

i+1bi|l〉|2)

=
∫

dω

2π

∑
i

|Di(ω)|2
∑

l

|〈MIn|b†
i bi+1|l〉|2

(
1

iω + El − E0
+ 1

−iω + El − E0

)
, (C7)

where E0 is the ground-state energy of Hon site and l runs over all of Hon site’s eigenstates. The only nonzero terms in the sum have

|〈MIn|b†
i+1bi|l〉|2 = n(n + 1), El − E0 = U − U ′

2
, (C8)

and so we may expand in small ω and write∫
ω

∑
i

|Di(ω)|2
∫

dτ eiωτ 〈T [(b†
i bi+1)(τ )(bib

†
i+1)(0)]〉 = 2n(n + 1)

U − U ′/2

∫
dω

2π

∑
i

|Di(ω)|2
(

1 − ω2

(U − U ′/2)2

)
. (C9)

15At least to the present order. Since an effective nearest-neighbor repulsion is generated at third order even at U ′ = 0, an effective t4 term
will always be generated at sixth order.
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This determines the coefficient w of the time derivative term
appearing in Eq. (C4) as

w = n(n + 1)

(U − U ′/2)3
. (C10)

Note that as anticipated in Eq. (C4) no linear time derivative
term of the form D†∂τ D appears, due to the fact that spatial
reflection acts as a particle-hole symmetry on the dipoles.

To derive r and KD, we write A−1A = 1 as

t3([A−1]i, j−1 + [A−1]i, j+1) + t4
(
[A]−1

i, j+2 + [A]−1
i, j−2

) = δi, j,

(C11)

which tells us that∑
jl

[A]−1
jl ei(p j−ql ) = δp,q

2(t3 cos(q) + t4 cos(2q))
. (C12)

Expanding in small q and using the ω-independent part of
Eq. (C9), we obtain

r = 1

2(t3 + t4)
− n(n + 1)

U − U ′/2
. (C13)

The mean-field transition thus occurs when

t3 + t4 = U − U ′/2

2n(n + 1)
, (C14)

so at fixed U,U ′ the transition occurs at a hopping strength
that scales with n as 1/n2. This estimate turns out to be in
remarkably good agreement with numerics; see Fig. 2.

If we use the expressions for t3, t4 as derived in Ap-
pendix B, the transition is estimated to occur at a single-
particle hopping strength of

tsp = V

√
1 − U ′/2U

2(1 + 2n2 + n)
. (C15)

Thus the presence of the nearest-neighbor repulsion and a
large average density n both help to push the transition down
to smaller values of tsp.
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