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Spatial symmetries can enrich the topological classification of interacting quantum matter and endow sys-
tems with nontrivial strong topological invariants (protected by internal symmetries) with additional “weak”
topological indices. In this paper, we study the edge physics of systems with a nontrivial shift invariant,
which is protected by either a continuous U(1)r or discrete Cn rotation symmetry, along with internal U(1)c

charge conservation. Specifically, we construct an interface between two systems that have the same Chern
number but are distinguished by their Wen-Zee shift, and, through analytic arguments supported by numerics,
we show that the interface hosts counterpropagating gapless edge modes that cannot be gapped by arbitrary
local symmetry-preserving perturbations. Using the Chern-Simons field theory description of two-dimensional
Abelian topological orders, we then prove sufficient conditions for continuous rotation symmetry protected
gapless edge states using two complementary approaches. One relies on the algebraic Lagrangian subalgebra
framework for gapped boundaries, while the other uses a more physical flux insertion argument. For the case
of discrete rotation symmetries, we extend the field theory approach to show the presence of fractional corner
charges for Abelian topological orders with gappable edges, and we compute them in the case in which the
Abelian topological order is placed on the two-dimensional surface of a Platonic solid. Our work paves the
way for studying the edge physics associated with spatial symmetries in strongly interacting symmetry enriched
topological phases.
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I. INTRODUCTION

Symmetry protected topological (SPT) phases offer a rich
playground for studying the interplay between symmetry and
topology in strongly correlated quantum matter [1–3]. The-
oretically, the classification and characterization of both SPT
and symmetry enriched topological (SET) states in two spatial
dimensions (2 + 1D) is well understood in the case when
the protecting symmetry G is purely internal, such as U(1)c

charge conservation, or Z2 spin-flip symmetries [1,4–16].
However, many physical systems of interest additionally pos-
sess spatial symmetries, which play an important role in
protecting nontrivial bulk topological properties of 2 + 1D
gapped many-body quantum systems [17–26].

Prominent among these invariants is the continuum Wen-
Zee shift S [27], which is protected by combined U(1)c charge
conservation and SO(2) ≡ U(1)r spatial rotation symmetries.
A nontrivial Wen-Zee shift manifests as a nonzero Hall vis-
cosity coefficient ηH = h̄

4 Sn̄, where n̄ is the particle number
density [28], and as a fractional charge bound to conical
defects of the rotational symmetry [29]. Recently, a discrete
analog of the Wen-Zee shift was identified in crystalline sys-
tems, where the full rotation symmetry is broken to a discrete
subgroup [30–33]. A nonzero discrete shift manifests, for in-
stance, in the form of fractionally quantized charges at lattice
disclinations in the bulk [32]; further bulk invariants, includ-
ing a quantized charge polarization, have also been studied
in this context [34]. Thus, systems with mixed internal and

spatial symmetries G = U(1)c × Gspace can possess topologi-
cal invariants in addition to the Chern number, such that even
systems with identical Chern numbers can be distinguished
through their crystalline topological invariants, which reflect
the “weak” topology of the phase.

While much progress has been made regarding bulk crys-
talline indices, the edge physics associated with nontrivial
continuum and discrete shift invariants remains less under-
stood, particularly away from the noninteracting limit. This
represents a crucial hole in our understanding, since a key
experimental signature of topological phases with a bulk gap
is the presence of gapless modes localized at edges or cor-
ners. For systems with both internal and spatial symmetries,
one can also consider interfaces between two phases with
identical strong topological invariants but distinct weak topo-
logical indices. This suggests the intriguing possibility that
an interface between two systems with, e.g., identical Chern
numbers but distinct crystalline invariants, could host gapless
edge states protected by the relevant spatial symmetry, which
would provide a crisp, experimentally relevant signature of
weak topological indices in quantum many-body systems with
nontrivial strong invariants.

In this paper, we identify the edge manifestations of the
continuum and discrete shift invariants in interacting sys-
tems, and we provide general arguments for their robustness
against arbitrary local symmetry preserving perturbations. In
the continuum case, we demonstrate the presence of rotation-
symmetry protected gapless edge modes at the interface
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FIG. 1. Schematic of a stack of two continuum quantum Hall
systems S1,S2 on a disk with chemical potentials μ1, μ2 which are
plotted as functions of r2. Black lines correspond to Landau levels
without an external potential. The values of (C, S) for each system
are written for r � R and r � R.

between two quantum Hall systems with identical Chern num-
ber but distinct shifts. We provide an analytic argument for
this result and supplement it with numerical analysis that
supports our conclusions. For systems with intrinsic Abelian
topological order, we provide a general understanding of
the edge physics using Chern-Simons field theory for SET
phases. In the case of discrete rotation symmetries, we use
the same field theory approach to show that in systems with
a gappable edge, the discrete shift leads to fractional corner
charges localized at the vertices of 2d polygons. We further
provide a formula to compute the fractional corner charges
when any Abelian topological order is placed on the surface
of a 3d convex regular polyhedron (a Platonic solid). These
results apply to a broad class of gapped quantum many-body
phases with charge conservation and rotation (continuous or
discrete) symmetries, both with or without intrinsic (Abelian)
topological order.

II. QUANTUM HALL STATES IN LANDAU LEVELS

As a concrete example that illustrates our key finding,
we consider an interface between two stacks of continuum
Landau levels (LLs) such that the Chern number C on either
side of the interface is equal while the total Wen-Zee shift S
differs by 1. Our construction is described schematically in
Fig. 1, where the system has a pair of topological invariants
(C, S) = (2, 1) for radius r � R (for some fixed R), while for
r � R the invariants are (C, S) = (2, 2). For the first system
in the stack, there is a chiral edge mode localized at r ∼ R
since the Chern number increases by 1 across the interface;
likewise, a counterpropagating chiral edge mode results from
the second system since its Chern number decreases across
the interface. Generically, these edge modes can be gapped by
arbitrary local U(1)c preserving perturbations. Here, we will
show that these counterpropagating zero-energy edge states
are in fact protected by rotation symmetry and cannot be
gapped by local rotation symmetry-preserving perturbations;

they are the boundary manifestation of the nontrivial shift
invariant.

Consider a stack of two decoupled quantum Hall systems,
each placed on a disk with area a � R2 and subject to the
same uniform magnetic field B. The Hamiltonian for system
i (i = 1, 2) is

Hi = (pi + eAi )2

2m
− μi(ri ), (1)

where Ai = B
2 (−yi, xi, 0) (symmetric gauge), μi(ri ) is a

slowly varying, radially symmetric chemical potential, and we
set h̄ = c = 1. The single-particle states for each system are
given by two harmonic oscillators [35]:

|n, m〉i := (a†
i )n(b†

i )m

√
n!m!

|0, 0〉i , (2)

where a†
i , b†

i are raising operators for the LL index n and
another index m, respectively, where the angular momentum
index � = m − n. In this representation, the Hamiltonian is

H =
∑

i

Hi =
∑

i

[(
a†

i ai + 1

2

)
ωc − μi(ri )

]
, (3)

where ωc = eB/m is the cyclotron frequency. The radial oper-
ators r̂2

i satisfy

r̂2
i = 2�2

B(1 + b†
i bi + a†

i ai − aibi − a†
i b†

i ), (4)

where �B = 1/
√

eB = 1/
√

ωc is the magnetic length; the an-
gular momentum operator is given by

Ji = b†
i bi − a†

i ai. (5)

These relations are explained further in Appendix A. Note
that J = J1 + J2 commutes with H , since any radial potential
conserves angular momentum.

The chemical potentials

μi(ri ) = 2 + (−1)i+1

2
ωc + (−1)i+1K tanh

r̂2
i − R2

i

ξ 2
(6)

(with 0 < K < 1
2ωc and R1, R2 ≈ R � �B) are chosen to en-

sure that for r � R only the lowest LL lies below zero energy
in both systems 1 and 2. However, for r � R, both of the
n = 0, 1 LLs lie below E = 0 in system 1, while in system 2
there are no LLs below E = 0. This implies that upon stacking
the two systems, the total Chern number of the filled LLs is
C = 1 + 1 = 2 for r � R and C = 2 + 0 = 2 for r � R.

We can similarly study the Wen-Zee shift. Using the fact
that the shift within the nth LL (n = 0, 1, 2, . . . ) is n + 1

2
[27], we see that if Si is the shift in system i, S1

r�R = S2
r�R =

1
2 , S1

r�R = 1
2 + 3

2 = 2, and S2
r�R = 0. Thus, the total shift for

the system is Sr�R = 1 and Sr�R = 2. Hence, this configu-
ration gives an interface at r ∼ R between two systems with
identical Chern numbers, but shifts that differ by 1.

Absent any interactions, we expect that the full system
must have two zero-energy states |ψ1〉 , |ψ2〉 localized at
r ≈ R with well-defined angular momenta �1, �2, where �i =
〈ψi| Ji |ψi〉. This is confirmed in Fig. 2, which shows the
spectrum of the full system (red and blue points correspond
to states in systems 1 and 2, respectively). Now, if we found
that �1 = �2, we would be able to gap out these edge states
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FIG. 2. Spectrum of the stacked LL system as a function of 〈r2〉.
Red and blue points correspond to states from systems 1 and 2,
respectively. Parameters are mmax = 600, R2

1 = 602, R2
2 = 598,

K = 0.4, ξ 2 = 200. In this case, �1 − �2 = −6. Dashed black lines
indicate the approximate linear dispersion for the edge modes
[see Eq. (11)], which show excellent agreement with numerics.

through rotationally symmetric perturbations. However, we
numerically observe that �1 cannot be made equal to �2 as
long as |ψ1〉 , |ψ2〉 are at the same radius, i.e., 〈ψ1| r̂2

1 |ψ1〉 =
〈ψ2| r̂2

2 |ψ2〉 = R2. This can be achieved by suitably tuning
R1, R2. We note that in the limit where ξ is large, we find that
�1 − �2 = −2; as ξ is decreased, |�1 − �2| increases such that
the ξ → ∞ limit provides a lower bound of 2 on the differ-
ence |�1 − �2|. As we discuss below, the limiting value has a
simple analytic interpretation. Now, if instead 〈ψ1| r̂2

1 |ψ1〉 �=
〈ψ2| r̂2

2 |ψ2〉, the value of |�1 − �2| can be changed arbitrar-
ily; however, when we adjust parameters to set �1 = �2, we
numerically find that the spatial separation between the zero-
energy edge states exceeds their localization length (∼�B)
so that no local rotation symmetric edge perturbation can
gap them out (without closing the bulk gap). Moreover, as
the potential becomes steeper (ξ decreases), we find that the
separation between the zero-energy states increases, such that
the matrix element 〈ψ1|V (r̂) |ψ2〉 for any local operator is
algebraically suppressed. Thus, our numerical observations
support our claim that these zero-energy edge states are robust
against arbitrary local rotation symmetric perturbations which
do not close the bulk gap.

We can intuitively understand the limiting case as follows.
If the chemical potential varies extremely slowly (that is, ξ

is very large), there is no mixing between different Landau
levels, and so to a good approximation each edge state |ψ〉i
has a well-defined value of n∗

i and m∗
i , with angular momen-

tum �i = m∗
i − n∗

i . Now for any state |n, m〉i, we have from
Eqs. (4) and (5) that

i 〈n, m|
(

r̂2
i

2�2
B

− Ji − 1

)
|n, m〉i = 2n. (7)

Therefore using Eq. (7), with 〈ψi| r̂2
i |ψi〉 = R2, we obtain

�1 − �2 = 〈ψ1| J1 |ψ1〉 − 〈ψ2| J2 |ψ2〉 = 2(n∗
2 − n∗

1 ) = −2.

(8)

We can also obtain the same result analytically from the
time-independent Schrödinger equation. Exploiting the radial
symmetry of the problem and writing the wave function as
ψ (r, θ ) = u(r)ei�θ√

r
, we obtain the radial Schrödinger equation in

standard WKB form:

∂2
r u(r) − Q�(r)u(r) = 0, (9)

where

Q�(r) =
(

m2ω2
c r2

4
+ m�ωc

2
− 1/4 − �2

r2
− 2m(E + μi(r))

)
.

(10)

We now consider the limit Ri � ξ � �B, which corresponds
to the limit in which the number of flux quanta passing
through radius Ri is large: Nφ (Ri ) = eBπR2

i /2π � 1. Note
that this is equivalent to assuming that ωc is the largest scale in
the system, so we should reproduce the results of the preced-
ing argument. In this limit, a standard WKB analysis [36,37]
reveals the presence of a linearly dispersing, exponentially
localized mode near r ≈ Ri for each system:

E (i)
n0,�

≈
(

n0 − 1 + (−1)i+1

2

)
ωc

+ (−1)i+1 KR2
i

ξ 2

(
2n0 + � + 1

Nφ (Ri )
− 1

)
. (11)

Since this approximation holds only for E (i) � ωc, we must
pick the principal quantum number n0 = 1 (n0 = 0) for the
first (second) system, for which this approximate expression
shows excellent agreement with numerics (see the dashed
black lines in Fig. 2).

Setting E = 0, we find the angular momenta �i of the zero
modes,

�i = R2
i

2�2
B

− 2 + (−1)i. (12)

Let us first consider the case when R1 = R2. Then, the differ-
ence between the angular momenta of the zero modes is

�1 − �2 = −2, (13)

which verifies our claim that these counterpropagating modes
cannot be gapped by any rotation-symmetry-preserving per-
turbations since they possess distinct angular momenta, at
least when they are localized at the same boundary.

We now consider the case when R1 �= R2, and we assume
that the zero-energy states have identical angular momenta
�1 = �2 = �, for which Eq. (12) implies R2

1 − R2
2 = 4�2

B. Nu-
merically, we observe that this is the minimal amount by
which the zero modes can be separated while equating their
angular momenta, which occurs when ξ is made large (this
is consistent with the fact that the analytic approximation
holds when ξ � �B). Assuming this minimal separation, if we
found that the wave-function overlap between the zero-energy
states is nonvanishing, a rotation invariant perturbation would
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be able to gap them out, contradicting our claim. However,
note that the radial component of the zero-mode wave func-
tions takes the form [36,37]

ψ i
n0,�

(r) ∼ 1√
Ri

Hn0

(
r − Ri

�B

)
exp

(
− (r − Ri )2

2�2
B

)
, (14)

[where Hn(x) is the nth Hermite polynomial]. If the difference
in shift were trivial, the two zero modes would share the
same principal quantum number n∗; since the overlap between
ψ1

n∗,� and ψ2
n∗,� saturates to an O(1) constant even in the limit

Ri � �B, these edge states would not be protected. However,
in our setup it is crucial that the principal quantum number
n0 for the two states differs by 1 (reflecting the difference
in the shift), such that the overlap between ψ1

1,� and ψ2
0,�

(with R2
2 − R2

1 = 4�2
B) scales as O(�B/R1) in the limit Ri � �B

(where this analysis holds). Given that a valid edge perturba-
tion is not allowed to close the bulk gap ∼ωc, this argument
supports our claim that the counterpropagating edge states are
robust against any local perturbations that respect rotational
symmetry.

We have thus provided analytic arguments supported
by numerical simulations to demonstrate the existence of
rotation-symmetry protected counterpropagating gapless edge
modes which are localized at the interface between two quan-
tum Hall systems with identical Chern numbers but distinct
shift invariants. We have not yet proven that a nonzero relative
shift necessarily implies gapless edge modes; this will be done
in the next section using a field-theory approach that does not
rely on the details of any microscopic model.

The protocol devised here provides a clear, experimentally
viable route for probing the (difference in) weak topological
indices of systems with identical strong topological invari-
ants. Finally, we note that our results are not restricted
to nonrelativistic Landau levels—indeed, we expect that an
interface between relativistic Landau levels with identical
Chern numbers but distinct shift invariants will also result
in rotation-symmetry protected gapless edge states (see, e.g.,
Ref. [38] for a discussion of the Wen-Zee shift in 2 + 1D
Dirac fermions).

III. GAPLESS EDGE STATES IN THE DISK GEOMETRY

Motivated by the model study discussed above, we now
investigate the general theory of rotation protected edge states
in the disk geometry, focusing on the case of Abelian quantum
Hall states with both U(1)c charge conservation and a con-
tinuous spatial rotational symmetry U(1)r . In the framework
of Abelian Chern-Simons theory and edge chiral boson edge
states [39], we shall derive and prove sufficient conditions for
gapless edge states protected by rotation symmetry U(1)r . We
work on a disk geometry to ensure compatibility with U(1)r .
Here, we will not consider discrete translation symmetry, al-
though we expect that our discussion can be straightforwardly
generalized to include the additional weak invariants that are
protected by Z2 translations [22,34].

A. Field theory of edge states in the disk geometry

We consider a generic two-dimensional (2 + 1D) Abelian
topological order enriched with both the charge conservation

symmetry U(1)c and a continuous spatial rotational symmetry
U(1)r � SO(2). This theory is described by the following
multicomponent Abelian Chern-Simons theory [40]:

Lbulk = −εμνλ

4π
KI,JaI

μ∂νaJ
λ + εμνλ

2π
tI Aμ∂νaI

λ + εiμν

2π
sIωi∂μaI

ν,

(15)

where we follow the Einstein convention to always sum over
repeated indices. KI,J is an NK × NK integer-valued symmetric
matrix, which is invertible for a gapped topological order. A
and ω are gauge fields for the U(1)c and U(1)r symmetries,
respectively.1 �t and �s are known as the charge and spin vectors
of the Abelian topological order, characterizing the charge and
angular momentum carried by quasiparticles in the topologi-
cal order [39]. tI are all integers, while sI can be either integers
or half-integers in bosonic or fermionic systems, respectively
[27].

Upon integrating out the gauge fields aI , we obtain the
following effective response theory [22,42]:

Leff = σxy

4π
εμνλAμ∂νAλ + S

2π
εμνλAμ∂νωλ + �s

4π
εμνλωμ∂νωλ,

(16)

σxy = tT K−1t ; S = sT K−1t ; �s = sT K−1s. (17)

Here, we have ignored the contribution from the “framing
anomaly” discussed in Ref. [42].

We now place the system on a disk of radius R, preserving
the U(1)r rotational symmetry. Quantizing the above Chern-
Simons theory on an open disk D of radius R leads to a
constraint εi j∂iaI

j = 0 in the bulk, and hence aI
j = ∂ jφ

I . This
leads to the following effective Lagrangian density on the
circular edge parametrized by the coordinate x = Rθ , with
θ ∈ [0, 2π ] � S1:

Ledge = −KI,J

4π
∂xφ

I∂tφ
J + tIεμν

2π
Aμ∂νφ

I + sI

2π
ωx∂tφ

I + · · · ,

(18)

where · · · represent the nonuniversal energetic terms. Here-
after, we shall use the polar angle θ and the edge coordinate
x = θR interchangeably to parametrize the edge states on
the disk of radius R. The chiral bosons satisfy the following
commutation relation:

[φI (x), ∂yφ
J (y)] = −2π iδ(x − y)K−1

I,J . (19)

The charge density on the edge is given by

ρc = tI
2π

∂xφ
I , (20)

and similarly the spin angular momentum density on the edge
is written as

ρs = sI

2π
∂xφ

I . (21)

1The field theory treats the spatial rotation symmetry U(1)r effec-
tively as an internal symmetry. This assumption is discussed further
in, e.g., Refs. [19,41].
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Under a U(1) charge rotation by phase α, a generic edge
excitation V̂�l ∼ e i lI φI (x,t ) transforms as

e i α
∫

ρ(x)dxV�l e
− i α

∫
ρ(x)dx = e− i αlI K−1

I,J tJV�l . (22)

In other words, the above edge excitation V�l carries a U(1)c

charge of

Q�l = −lI K
−1
I,J tJ . (23)

Similarly, the U(1)r spatial rotation is generated by the total
angular momentum

Lz = − i∂θ +
∫

ρs(x)dx. (24)

Under a spatial rotation by angle α, the edge excitation V̂�l
transforms as

e i αLzV�l (x)e− i αLz = e− i αlI K−1
I,J sJV�l (x + Rα). (25)

In other words, a rotational-invariant edge excitation

V�l,n ≡
∫ 2π

0
dθe− i nθV�l (x = θR) (26)

carries angular momentum

Lz(�l, n) = n − lI K
−1
I,J sJ . (27)

Below, we present and derive three sufficient conditions
for gapless edge states in the disk geometry, protected by
U(1)c × U(1)r symmetries. We derive each condition using
two different approaches: the first one is based on the suffi-
cient and necessary conditions for a gapped open boundary
introduced in Ref. [43], while the second derivation is based
on the Lieb-Schultz-Mattis-Oshikawa type flux insertion
argument [44].

B. Sufficient conditions for gapless edge states

In the absence of any symmetry, in Ref. [43] Levin estab-
lished the following theorem regarding the robustness of edge
excitations of 2 + 1D Abelian topological orders, as described
by Eq. (18) (see also Ref. [45]). The edge states of a 2 + 1D
Abelian topological order described by Chern-Simons theory
[Eq. (15)] with matrix K can be gapped if and only if there
exists a Lagrangian subgroup [46,47] M = {mi} of integer
vectors mi, defined by the following two conditions:

(i) mT
i K−1mj = 0 mod 1, ∀ mi, mj ∈ M.

(ii) For any quasiparticle labeled by an integer vector �l , it
either satisfies �l ∈ M (i.e., �l = ∑

i cimi), or it has nontrivial
braiding statistics with at least one element in M (i.e., ∃ mi ∈
M such that mT

i K−1l �= 0 mod 1).
Reference [43] also provided the explicit form of the

backscattering terms (also called the Higgs terms [48]) that
gap out the edge states if both conditions are satisfied:2

Lb.s. =
∑
{�i}

U�i (x) cos
(
�I

i KI,Jφ
J − fi(x)

)
, (28)

2Here, f (x) is any periodic function which is smooth along any
smooth part of the boundary but can have discontinuities at corners
when only Cn rotation symmetry is present.

where the null vectors {�i} satisfy �T
i K� j = 0, ∀ i, j [43].

The physical meaning of an element �mi ∈ M of the La-
grangian subgroup is a bosonic quasiparticle V�m ∼ e i mI φI

which condenses on the gapped edge, in the sense that the
edge operator V�m has a long-range ordered correlation func-
tion on the gapped edge [43]:

lim
|x−y|→∞

〈e i mI φ
I (x)e− i mI φ

I (y)〉 �= 0, ∀ �m ∈ M. (29)

While the above theorem applies to edge states without any
symmetry, below we consider how the presence of continuous
U(1)c × U(1)r symmetries adds new constraints for obtaining
a symmetrically gapped edge.

First of all, we consider the U(1)c symmetry associated
with charge conservation. In this case, in order for the gapped
edge to preserve U(1)c symmetry, any charged operator must
have a short-ranged correlation function, since otherwise the
U(1)c symmetry is spontaneously broken. Assuming a gapped
symmetric edge, due to the property Eq. (29), we must have

mT K−1t = 0, ∀ m ∈ M (30)

otherwise there will be long-range ordered correlations for the
U(1)c-charged operator e i mI

i φ
I
, a signature for the spontaneous

breaking of the charge U(1)c symmetry. We now show that a
fractional Hall conductance

σxy = tT K−1t �= 0 mod 1 (31)

is a sufficient condition for gapless edge states. We consider
an edge excitation V�t associated with the charge vector �t . By
definition (i) of the Lagrangian subgroup M, the fractional
Hall conductance Eq. (31) dictates that �t /∈ M. On the other
hand, the relation Eq. (30) states that �t has trivial braiding with
all elements of M. This contradiction to condition (ii) of a
Lagrangian subgroup suggests that a gapped edge preserving
U(1) symmetry is impossible. Meanwhile, a continuous U(1)
symmetry cannot be spontaneously broken in one spatial di-
mension. Thus, Eq. (31) is a sufficient condition for gapless
edge modes in 2 + 1D Abelian topological orders [Eq. (15)].

It is now straightforward to generalize the above arguments
to U(1)r spatial rotational symmetry. For the long-range order
of V�mi operators (or more precisely, 〈V †

�mi,ni=0V�mi,ni=0〉 �= 0)
to not spontaneously break U(1)r rotational symmetry
[Eq. (25)], we must require that

mT K−1s = 0, ∀ m ∈ M (32)

Now, following the same argument as in the case of U(1)c

symmetry, we find

sT K−1s �= 0 mod 1 (33)

as another sufficient condition for gapless edge states in the
disk geometry.

Finally, in the presence of the full U(1)c × U(1)r symme-
try, assuming a gapped symmetric edge, in order for both �t
and �s to satisfy condition (ii) of a Lagrangian subgroup, it is
straightforward to show that

S = tT K−1s �= 0 mod 1. (34)

Thus, a fractional Wen-Zee shift S is also a sufficient condition
for gapless edge states in the disk geometry.
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C. Flux insertion arguments

Above, using the necessary and sufficient conditions for
a gapped edge without any symmetry [43], we showed that
the presence of U(1)c × U(1)r symmetry gives rise to extra
necessary conditions for obtaining a gapped symmetric edge.
In particular, we derived the sufficient conditions Eqs. (31),
(33), and (34) for gapless edge states in the disk geometry,
protected by the U(1)c × U(1)r symmetry. In this derivation,
we required (31), (33), and (34) to have a nonzero fractional
part, relying on the braiding statistics argument of Ref. [43],
which only detects fractional statistics. Below, we provide an
alternative proof based on the flux insertion argument [44],
which allows us to expand the sufficient conditions and simply
requires (31), (33), or (34) to be nonzero.

As a warm-up exercise, we first derive a well-known result:
the edge states of a quantum Hall state must be gapless if it has
a nonzero Hall conductance [49–51], i.e.,

σxy = tI K
−1
I,J tJ �= 0. (35)

To prove this conclusion, we first assume a gapped symmetric
edge, and then we use the flux insertion argument to derive
a contradiction. If the edge states can be gapped out without
symmetry breaking, there will be a unique many-body ground
state in the disk geometry, separated from the rest of the
spectrum by a finite energy gap. The finite gap allows us to
adiabatically thread a total U(1) flux of � through the disk,
e.g., uniformly over the bulk of the disk, without closing the
gap. Now that the low-energy subspace of the whole system
is effectively spanned by the edge excitations described by
Eq. (18), we focus on how the adiabatic flux insertion process
influences the edge states. To be specific, we assume that
the edge states are symmetrically gapped out by adding the
following generic local terms to the Lagrangian density:

δLedge(x = θR) =
∑
{�li}

VK�l0 (θ0 = θ )
∫ Nv∏

i=1

[
dθi

2π
VK�li (θ + θi )

]

× T{�li}({θi}). (36)

While U(1)c symmetry Eq. (22) imposes the constraint∑
i

lT
i t = 0, (37)

the U(1)r rotational symmetry Eq. (25) requires∑
i

lT
i s = 0. (38)

Adiabatic insertion of uniform flux � (in units of �0
2π

= h̄/e)
in the bulk leads to a vector potential of Aθ = �/2π on the
circular edge of the disk, which modifies the edge Hamilto-
nian Eq. (36) as

T̃{�li}({θi}) = e i Aθ

∑Nv
i=1 θi lT

i t T{�li}({θi}). (39)

After the � = 2π flux insertion, the above change to the edge
Hamiltonian can be absorbed by the following large gauge
transformation [44,52]:

U0 = e i
∫

dxtI φI (x). (40)

In other words, the 2π -flux-inserted Hamiltonian H (� = 2π )
is related to the original zero-flux Hamiltonian through

U0H (� = 2π )U −1
0 = H (� = 0). (41)

In the presence of a finite energy gap, the adiabatic flux inser-
tion process relates the unique ground states of H (� = 0) and
H (� = 2π ) by the large gauge transformation, up to a phase
e i α ∈ U(1):

|� = 0〉 = e i αU0 |� = 2π〉 . (42)

However, note that the total U(1)c charge Eq. (20) on the edge
does not commute with U0:

U0

( ∫
ρc(x)dx

)
U −1

0 =
∫

ρc(x)dx − tT K−1t . (43)

In other words, the total U(1)c charge of the edge ground
state changes under the flux insertion process, contradicting
our assumption of a unique gapped ground state on the edge.
Therefore, it is impossible to have a gapped symmetric edge
with a nonzero Hall conductance (35).

We can now straightforwardly generalize this argument
and similarly relax the constraint in Eq. (34). Note that the
total angular momentum Eq. (24) does not commute with U0

either:

U0LzU
−1
0 = Lz − sT K−1t . (44)

Therefore, if

S = sT K−1t �= 0 (45)

it is impossible to have a gapped edge that preserves both
U(1)c and U(1)r symmetry. This mixed anomaly of U(1)c ×
U(1)r symmetry provides another sufficient condition for gap-
less edge states on a disk geometry.

Unlike the adiabatic insertion of U(1)c flux which can be
implemented both in microscopic lattice models and in the
continuum field theory as shown above, to insert the U(1)r

flux of the spatial rotational symmetry, one needs to create
conical defects [29]; in practice, this is subtle to carry out
in a microscopic lattice model. However, the continuum field
theory Eq. (18) of the edge states permits us to conveniently
insert a U(1)r flux �r ,3 after which the modified edge Hamil-
tonian Eq. (36) becomes

T̃ ′
{�li}({θi}) = e

i �r
2π

∑Nv
i=1 θi lT

i sT{�li}

({(
1 + �r

2π

)
θi

})
. (46)

We assume a gapped symmetric edge, when both the chiral
central charge c− and the charge Hall conductance vanish, and
adiabatically insert a 2π flux of U (1)r symmetry. As before,
the adiabatic insertion of 2π flux can be absorbed by the
following large gauge transformation:

U ′
0 = eθ∂θ + i

∫
dxsI φI (x). (47)

3Although the U(1)r and U(1)c symmetry are treated on an equal
footing as internal symmetries in the bulk effective field theory
Eq. (15), their fluxes have different manifestations on the edge states.
In particular, the spatial U(1)r flux includes a rescaling of the angle
variable θ in contrast to the global U(1)c flux.
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Since the total angular momentum Eq. (24) of the edge states
is not preserved during the flux insertion process,

U ′
0Lz(U ′

0)−1 = Lz − sT K−1s, (48)

it is impossible to have a gapped edge preserving U(1)r sym-
metry. We have hence proved the third sufficient condition

sT K−1s �= 0 (49)

for gapless edge states in the disk geometry, protected by the
spatial rotation symmetry U(1)r .

IV. DISCRETE ROTATIONAL SYMMETRY
AND CORNER CHARGES

In this section, we investigate geometries beyond the disk
geometry discussed above. In particular, we compute the cor-
ner charges of Abelian topological orders on a 2d regular
polygon, and on the 2d surface of a three-dimensional (3D)
regular polyhedron (i.e., a Platonic solid). Note that while
corner charges have mostly been discussed in the context of
free-fermion higher-order topological insulators in 2d and 3D
[21,53–61], our results apply more generally in the presence
of strong interactions.

First, we discuss an Abelian topological order [given by
Eq. (15)] on a regular polygon of n sides (i.e., an n-gon),
where the continuous spatial rotational symmetry U(1)r is
broken down to a discrete n-fold rotation Cn. If the topological
order has a gappable edge [43] with vanishing charge and ther-
mal Hall conductance (c− = σxy = 0), the gapless edge states
protected by conditions (45) or (49) can be gapped out on the
n open edges of an n-gon. Nevertheless, such a Cn-symmetric
n-gon will exhibit corner charges. To be specific, the following
backscattering term [see Eq. (28)]:

Hb.s. =
∑
{�i}

U�i

∫ 2π

0
dθ cos

[
�T

i Kφ(θ ) − fi(θ )
]
,

fi(θ + 2π/n) = fi(θ ) + 2π

n
�T

i s (50)

can gap out the edge modes while preserving the Cn sym-
metry, where we have chosen fi(θ ) to be constants along
each edge which jumps across each corner. The Cn symmetry
can be verified using the transformation rule Eq. (25). As
usual, we use the polar angle θ ∈ [0, 2π ] � S1 to label the
coordinate of the chiral boson fields {φI (θ )} on the open
edges of the n-gon. Using the commutation relations Eq. (19)
and transformation under rotational symmetry Eq. (25), it is
straightforward to show that each corner (at θ = θ0) of the
n-gon is associated with the following vertex operator:

DCn (θ0) ∼ e i sI φ
I (θ0 )/n. (51)

Using the U(1)c symmetry transformation Eq. (22), we then
find that the corner charge is given by4

QCn = −1

n
tT K−1s = −S

n
mod 1. (52)

4Here, we do not consider the effect of discrete translation symme-
tries, which can contribute additional terms to the effective response
theory; see, e.g., [22,34].

TABLE I. The five distinct Platonic solids in three dimensions,
and the fractional charge Eq. (54) localized on each vertex when a
2 + 1D topological order [given by Eq. (15)] is placed on their 2d
surfaces.

Platonic solids n m V Q(n,m)

Tetrahedron 3 3 4 S/2
Cube 4 3 8 S/4
Octahedron 3 4 6 S/3
Dodecahedron 5 3 20 S/10
Icosahedron 3 5 12 S/6

Next, we consider the case where the 2 + 1D Abelian
topological order is placed on the 2d surface of a 3D convex
regular polyhedron (also known as a Platonic solid). The faces
of each Platonic solid are congruent regular n-gons, and each
vertex is shared by m faces. The five distinct Platonic solids
are summarized in Table I, where the number F of faces, V =
nF/m of vertices, and E = nF/2 of edges satisfy the Euler
characteristic of V − E + F = 2 for 3D convex polyhedrons.
Therefore, the vertex number is given by

V = 4n

2(m + n) − mn
. (53)

In a Platonic solid, each vertex is joined by m corners of n-
gons. As detailed in Appendix B, a direct calculation based on
concrete edge gapping terms leads to the following fractional
charge accumulated on each vertex:

Q(n,m) = 2(m + n) − mn

2n
S mod 1. (54)

This is consistent with the prediction of the Wen-Zee term
[27], namely that since each corner of the Platonic solid has
a Gaussian curvature of 4π/V , the charge accumulated at the
corner should be given by

Q(n,m) = 4π

V

S

2π
= 2(m + n) − mn

2n
S mod 1, (55)

the same as produced by the direct calculation. Note that
Eq. (52) only applies for 2 + 1D topological orders with a
gappable edge [43], whose charge and thermal Hall conduc-
tance must vanish, so that each side of the 2d n-gon can be
gapped out. In contrast, Eq. (54) applies to a generic 2 + 1D
topological order irrespective of whether it has a gapped edge
or not.

V. CONCLUDING REMARKS

In summary, we have studied the boundary excitations of
interacting quantum phases with arbitrary 2 + 1D Abelian
topological orders that preserve both charge U(1)c and spatial
rotation U(1)r symmetries, for different geometries. In the
disk geometry, which preserves the continuous U(1)r sym-
metry, we derived three sufficient conditions (35), (45), and
(49) for gapless edge states using Chern-Simons field the-
ory. We also demonstrated these results explicitly through a
microscopic calculation for quantum Hall states in Landau
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levels, where we showed the presence of rotation symmetry
protected gapless edge modes on the interface between two
systems with identical Chern numbers but distinct Wen-Zee
shifts. In the 2d regular polygon geometry, where the U(1)r

symmetry is broken down to a discrete Cn rotational symme-
try, we further derived the general formula Eq. (52) for the
fractional charge bound to each corner, under the condition
of a gappable edge with vanishing Hall conductance. Using
this result, we computed the fractional charge Eq. (54) bound
to each vertex of a Platonic solid, when an arbitrary Abelian
topological order is placed on the 2d surface of the Platonic
solid.

While we have focused on Abelian quantum Hall states
in this work, one natural future direction is to generalize it
to non-Abelian topological orders. Moreover, in the case of
discrete Cn rotational symmetry, the Wen-Zee term [27,30]
considered in this work is only applicable to the cases in which
Cn symmetry does not permute anyons in the topological or-
der. When distinct anyons are transformed into each other by
the Cn symmetry, more exotic non-Abelian corner states can
emerge [62–65]. More broadly, our work opens the door for
studying interfaces between strongly interacting systems (ei-
ther with or without intrinsic topological order) which possess
the same strong SPT invariants (such as the Chern number)
but distinct weak invariants (such as the shift). We expect that
similar results can be obtained for the remaining weak invari-
ants (such as the charge polarization) that appear in the formal
classification of 2 + 1D topologically ordered systems with
U(1)c charge conservation, Z2 translation, and Cn discrete
rotation symmetries [22]. We leave a thorough investigation
of the edge manifestations of the remaining weak topological
indices to future work.

Note added. During the completion of this work, we be-
came aware of a related work [66] that considers the boundary
response of higher-order topological insulators with C4 rota-
tion symmetry. Our work agrees where it overlaps.
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APPENDIX A: BACKGROUND ON THE NUMERICAL
CALCULATION

In the main text, we studied a stack of two LL systems
with radially varying potentials. Here, we explain how to
model one such system, following the procedure delineated
in Ref. [35]. Note that the Hamiltonian for noninteracting
fermions in a background magnetic field described by the
vector potential A and a radial potential V (r) is

H = (p − eA)2

2m
+ V (r), (A1)

where A is chosen to be in the symmetric gauge. We first
express this Hamiltonian in the Landau quantized picture for
a general choice of V .

This is done by rewriting H in terms of two indepen-
dent harmonic-oscillator degrees of freedom. Let â, â† be
the operators that lower/raise the LL index n. Let b̂, b̂† be
the operators that lower/raise a second quantum number m.
The angular momentum in this representation is given by
� = m − n. In the symmetric gauge, each eigenstate (when

V = 0) can be written in the form |n, m〉 := (a† )n(b†)m√
m!n!

|0, 0〉.
Then we have

a |n, m〉 = √
n |n − 1, m〉 , (A2)

a† |n, m〉 = √
n + 1 |n + 1, m〉 , (A3)

b |n, m〉 = √
m |n, m − 1〉 , (A4)

b† |n, m〉 = √
m + 1 |n, m + 1〉 . (A5)

In this basis, the kinetic term of H is simply

h̄ωc
(
a†a + 1

2

)
. (A6)

Now, we want to express the radial potential V in this basis as
well. Note that x̂, ŷ can be written in terms of these operators
as

x̂ + iŷ√
2�B

= i(a − b†), (A7)

x̂ − iŷ√
2�B

= −i(a† − b). (A8)

This implies that

r̂2 = 2�2
B(1 + a†a + b†b − ab − a†b†). (A9)

In particular,

r̂2

�2
B

|n, m〉 = 2(n + m) |n, m〉

− 2
√

mn |n − 1, m − 1〉
− 2

√
(n + 1)(m + 1) |n + 1, m + 1〉 . (A10)

We see that r̂2 conserves the angular momentum � = m − n.
We can now express r̂2 in the basis of |n, m〉, diagonalize
it, and obtain a set of eigenstates |φ j〉 , j = 1, 2, . . . , with
eigenvalues r2

j (which we assume increase with the index j).
Let � be the eigenvector matrix associated with r̂2, and D be
the diagonal matrix with Dii = r2

i . Then, for a general radial
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FIG. 3. An illustration of how a 2d square-shaped plane can be
made by sewing four squares together around one vertex. If only
three squares are sewed together around the vertex (neglecting the
dashed square), one corner of a 3d cube is formed.

potential, we can write V (r̂2) = �V (D)�−1. This gives us the
matrix for the desired V in the |n, m〉 basis.

APPENDIX B: COMPUTING THE CORNER CHARGE
ON A PLATONIC SOLID

Before putting the 2 + 1D topological order on the surface
of a 3D regular polyhedron (i.e., a Platonic solid), we start by
considering a flat 2d geometry, where

N = 2π

(n − 2)π/n
= 2n

n − 2
(B1)

n-gons join at a vertex to form a flat 2d system, since every
interior angle of the n-gon is θn = (n−2)π

n . The n = N = 4 case
is illustrated in Fig. 3. We use the vector �φ ≡ (φ1, . . . , φNK )T

to label the gapless chiral bosons on the edge of the Abelian
topological order. By labeling the chiral bosons { �φ j,L/R|1 �
j � N} and on the pair of edge in each n-gon, the following
gapping term describe the gapped bulk of the flat 2d system:

H0
gap = −

∑
{ei}

N∑
j=1

Uei cos
[
eT

i K (φ j+1,R − φ j,L )
]
, (B2)

where we have chosen the vectors {(ei )I = δi,I |1 � i � NK}
to be a complete basis of the NK -dimensional integer lattice.
Physically, it pins the chiral bosons to the following minimum
of energy:

〈φ j+1,R〉 = 〈φ j,L〉 (B3)

on each edge, so that all anyons (represented by vertex op-
erator V̂�l ∼ e i lI φI (x,t ) in terms of chiral bosons on the edge)
can freely tunnel through the edge from one n-gon to an-
other. Note that under the N-fold rotational symmetry CN

around the vertex where N n-gons join, the edge chiral bosons
transform as

CNφ j,L/RC−1
N = φ j+1,L/R − (n − 2)π

n
K−1s (B4)

due to (25). As a result, with the gapping Hamiltonian (B2),
the bosons are pinned to the following CN -symmetric mini-
mum:

〈φ j+1,L/R〉 = 〈φ j,L/R〉 + (n − 2)π

n
K−1s. (B5)

Meanwhile, the integral of the local charge density (20) across
the corner of each n-gon leads to the total charge localized at
the vertex:

Q =
N∑

j=1

tT

2π
〈φ j,R − φ j,L〉

≡
N∑

j=1

tT

2π
〈φ j+1,R − φ j,L〉 = 0 mod 1, (B6)

consistent with a smooth bulk in a flat 2d system.
Now we are ready to discuss the case of a Platonic solid,

where m (instead of N as discussed previously) n-gons join
at each corner to form a corner. The n = 4, m = 3 case is
again illustrated in Fig. 3. The first m − 1 terms of the gapping
Hamiltonian (B2) remain the same, while an extra term sews
the two edges described by φm,L and φ1,R. Note that in the
previous case of a flat 2d system, we have

〈φ1,R〉 = 〈φN,L〉 = 〈φm,L〉 + (N − m)
(n − 2)π

n
(B7)

due to the rotational symmetry CN around the vertex (i.e., the
corner here). To properly sew the edge states without breaking
the rotational symmetry, the new gapping term for each corner
of a Platonic solid is

Hgap = −
∑
{ei}

Uei

{
m−1∑
j=1

cos
[
eT

i K (φ j+1,R − φ j,L )
]

+ cos

[
eT

i K

(
φ1,R − φm,L − (N − m)

(n − 2)π

n

)]}
.

(B8)

As a result, the corner charge of a 2d Abelian topological order
on a Platonic solid is given by

Qn,m =
m∑

j=1

tT

2π
〈φ j,R − φ j,L〉

≡
m∑

j=1

tT

2π
〈φ j+1,R − φ j+1,L〉

= (N − m)(n − 2)

2n
tT K−1s mod 1

= 2(m + n) − mn

2n
tT K−1s mod 1, (B9)

where we have used relation (B1).
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