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A short-ranged, rotationally symmetric multi-Landau-level model Hamiltonian for strongly interacting elec-
trons in a magnetic field was proposed [A. Anand et al., Phys. Rev. Lett. 126, 136601 (2021)] with the key feature
that it allows exact many-body eigenfunctions on the disk not just for quasiholes but for all charged and neutral
excitations of the entire Jain sequence filling fractions. We extend this to geometries without full rotational
symmetry, namely, the torus and cylinder geometries, and present their spectra. Exact diagonalization of the
interaction on the torus produces the low-energy spectra at filling fraction ν = n/(2pn + 1) that is identical,
up to a topological (2pn + 1)-fold multiplicity, to that of the integer quantum Hall spectra at ν = n, for the
incompressible state as well as all excitations. While the ansatz eigenfunctions in the disk geometry cannot be
generalized to closed geometries such as torus or sphere, we show how to extend them to cylinder geometry.
Meanwhile, we show eigenfunctions for charged excitations at filling fractions between 1

3 and 2
5 can be written

on the torus and the spherical geometries.

DOI: 10.1103/PhysRevB.107.195126

I. INTRODUCTION

Fractional quantum Hall (FQH) systems exhibit a rich set
of strongly interacting electronic phases [1,2]. In spite of the
strongly interacting nature of the FQH Hamiltonian, much
progress has been made in understanding the phases due, in
part, to the success of variational wave-function approaches
that describe the incompressible FQH ground states and their
excitations [3–8]. The ground states of the physical Coulomb
interaction, which can be obtained through exact diagonal-
ization (ED) in small systems, contain complex electronic
correlations. However, the composite fermion (CF) variational
wave functions accurately capture these correlations and are
nearly identical to the Coulomb eigenfunctions [4]. The sim-
ple structure of the variational wave functions suggests the
possibility of them being the exact ground states of simple
Hamiltonians that may qualitatively resemble the physical
interaction. This indeed turns out to be true for a subset of
the variational states.

Haldane wrote a model short-range repulsive two-body
interaction which has the Laughlin state as its unique densest
zero-energy eigenfunction [9]. Similarly, a short-range three-
body repulsion produces the Moore-Read state as its ground
state [7]; the three-body interaction has been argued to be
generated by the perturbations induced by inter-Landau-level
scattering [10–15]. More general n-body interactions produce
the Read-Rezayi sequence of states as the ground states [8,16].

A natural question is whether such parent Hamiltonians
can be written for general composite fermion states. The CF
wave functions describe the fractional quantum Hall effects
(FQHE) at filling fractions ν = n/(2pn + 1) where n and p
are integers. The composite fermion wave functions for Ne

particles in flux Nφ have a general form PLLLJ 2p({zi})�({zi}),
where �({zi}) is a Slater determinant of Ne single-particle
Landau orbitals in flux N∗

φ = Nφ − 2p(Ne − 1) and J ({zi}) is

the Jastrow factor. Here, zi represents the coordinate of the ith
particle. PLLL projects the state into the lowest Landau level
(LLL). The CF wave functions map the problem of interacting
electrons in a magnetic field to that of more tractable noninter-
acting CFs in a reduced magnetic field. There has been recent
success in constructing local two-body parent Hamiltonians
for the entire set of unprojected CF states [17–21]. Construc-
tion of such Hamiltonians for the projected CF states remains
an open problem [22].

A strongly interacting model Hamiltonian can be con-
structed for states with a very similar structure, namely,
J 2p({Ẑi})�({zi}), where Ẑi is the guiding center coordinate
[23]. Although this does not solve the challenging problem
of finding an exact Hamiltonian for the projected CF wave
functions, the model has several appealing features. As the
electron density is changed, the same Hamiltonian produces
incompressible states at Jain filling fractions of the form
n/(2pn + 1) and allows exact eigenfunctions not just for the
incompressible ground states and quasihole states, but also the
quasiparticle and neutral excitations. The low-energy spec-
trum of the system at filling fraction n/(2pn + 1) has an exact
one-to-one correspondence with the IQH states at integer fill-
ing factor n, just like what is seen in the actual problem. Berry
phase and charge of localized excitations and entanglement
spectrum of the ground state also match the ones expected
from the standard CF theory for the Jain sequence fractions.
The model can be related to a multilayer system, with the dif-
ferent layers interpreted as different Landau levels of the same
particle. Particles in every layer interact with other layers and
within each layer without changing particle numbers in the
layers. While the eigenstates in Fock space will be the same
as that for a multilayer system, the real-space eigenfunctions
carry information of the distinct single-particle states in dif-
ferent layers/LLs. Closely related ideas have been considered
for Halperin wave functions [24,25]. The underlying ideas
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can be successfully generalized to the case of non-Abelian
Moore-Read states, where quasiholes, neutral excitations, and
quasiparticle states [26–28] become exactly solvable [29].

In this work we focus on the Abelian cases, and complete
the calculations in Ref. [23], which focused on the disk and
spherical geometries only, by studying the spectra and the
eigenfunctions of the Hamiltonian in torus and cylinder ge-
ometries. We motivate the structure of the Hamiltonian on
the torus using the analogy with the multilayer model. Direct
generalization of disk eigenfunction to the torus is not possible
as the function does not satisfy the necessary boundary con-
ditions. Nonetheless, an alternative ansatz can be written for
the torus and the sphere which describes the ground state and
charged excitations at Laughlin filling fraction 1/(2p + 1).
For the case of cylinder, an ansatz can be constructed by direct
generalization of the disk ansatz.

This paper is organized as follows. A brief overview of
the model interaction on the disk geometry is provided in
Sec. II. In Sec. III, we review the many-body symmetries
exclusive to the torus geometry. The model interaction for the
torus is given in Sec. IV. In Sec. V, we extend the known
disk eigenfunctions to the cylinder geometry. We show that,
although these eigenfunctions do not extend to the torus, al-
ternate ansatz eigenfunctions on the torus can be constructed
nevertheless for low-energy quasiparticle (QP) and some neu-
tral excitations of ν = 1

3 . Numerical results are presented in
Sec. VI where various features of low-energy spectra of the
model interaction for torus and cylinder are discussed. Finally,
we summarize our results in Sec. VII.

Notations. In the paper, unless we mention otherwise, we
use symmetric gauge A(r) = B

2 r × êz corresponding to a mag-
netic field B = −Bêz. The magnetic length is defined as � =√

h̄/eB and the magnetic flux is counted in the units of flux
quanta φ0 = hc/e. When positions are represented in com-
plex form, we use the convention z = x + ι̇y. For calculations
in the disk geometry, angular momentum k takes values in
0, 1, 2, . . . in all LLs. For given complex numbers z and τ ,
Jacobi theta function [30] is defined as

ϑ
[

a

b

]
(z|τ ) =

∞∑
n=−∞

eι̇π (n+a)2τ eι̇2π (n+a)(z+b), (1)

where a, b are rational numbers and n is an integer.

II. MODEL INTERACTION IN DISK GEOMETRY

In this section, we review the model interaction introduced
in Ref. [23] and its ansatz eigenfunctions for the Jain sequence
of filling fractions. We write the generic FQHE Hamiltonian
in the disk geometry as

H = HKE + V, (2)

where HKE represents the kinetic energy of the N electrons
with mass m and charge −e in a magnetic field, and is given
by

HKE =
N∑
i

1

2m
[pi + eA(ri )]

2, (3)

where pi is the canonical momentum of the ith electron
which sees a perpendicular magnetic field given by Bêz =
∇ × A(ri ).

The model interaction was motivated from the attempts at
solving the open problem of constructing parent Hamiltonian
for LLL projected CF wave functions. The CF wave function
for N electrons at filling ν = ν∗/(2pν∗ + 1) on disk is given
by


α

ν= ν∗
2pν∗+1

= PLLL

N∏
i< j

(zi − z j )
2p × �α

ν∗ , (4)

where p is a positive integer, PLLL is the LLL projector, and
zi is position of the ith particle. �α

ν∗ is the Slater determinant
state of single-particle KE eigenstates. The minimum relative
angular momentum m between a pair of CF in LL n and
n′ is given by δn,n′ . Multiplication with the Jastrow factor
J 2p({z}) = ∏

i< j (zi − z j )2p increases the relative angular mo-
mentum of each pair of particles by 2p. This suggests that, for
any pair of particles in LLs n, n′ in the Slater determinant �ν∗ ,
the relative angular momentum in the state 
ν is forbidden in
the range δn,n′ , δn,n′ + 1, . . . , δn,n′ + 2p. One could consider
a candidate exact Hamiltonian that imposes this constraint.
However, the J 2p({z}) obfuscates the LL information and this
approach fails.

However, we can consider the states of the following form:


α

ν= ν∗
2pν∗+1

=
N∏

i< j

(Ẑi − Ẑ j )
2p × �α

ν∗ , (5)

where the position coordinates in the Jastrow factor are
replaced with guiding-center coordinates Ẑi, which do not
contain the LL scattering part. The modified Jastrow factor
J 2p({Ẑ}) (1) does not scatter particle into different LLs and
(2) still increases the relative angular momentum of each pair
of particles by 2p.

For this ansatz, the analysis presented before is valid and
we can write a pseudopotential interaction V , given by

V =
∞∑

n�n′=0

δn,n′+2p−1∑
m=δn,n′

V n,n′
m |n, n′; m〉〈n, n′; m|, (6)

which penalizes only those relative angular momentum modes
m which are absent in the ansatz wave function. Here,
|n, n′; m〉 is a two-particle state with relative angular mo-
mentum m projected into Landau levels (LLs) n and n′. The
large positive numbers V n,n′

m represent energy penalties for
specific relative momentum channels of the particle pairs. By
construction, the ansatz wave functions defined in Eq. (5) are
zero-interaction-energy (ZIE) eigenfunctions of this model
interaction. Using extensive numerical tests, it was shown that
states in Eq. (5) form a linearly independent complete basis for
the ZIE eigenspace of the model interaction.

We work in a strong interaction limit which implies that all
states outside the ZIE space are projected out to high energies.
Since the kinetic energy HKE commutes with Ẑ , the total
energy [Eq. (2)] of the state is the same as the kinetic energy
of the Slater determinant �α

ν∗ . The ZIE degeneracy is lifted by
HKE and the low-energy spectrum of this interacting system at
filling fraction ν resembles the spectrum of the noninteracting
IQH system at integer filling factor ν∗.
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(a) (b)

(c) (d)

FIG. 1. Schematic representation of LL occupations of particles
in the Slater determinant state �α

ν∗ [see Eq. (5)]. Orange circles
represent Landau orbitals whose LL indices and angular momenta
are labeled by n and k, respectively. Occupied orbitals are colored
in blue. (a) Shows an incompressible state at integer filling factor
ν∗ = 2, where particles completely fill the lowest two CF Landau
levels. LL occupation in (b)–(d) are representative of one quasiparti-
cle, one quasihole, and one neutral excitation at ν∗ = 2, respectively.
These excitations are labeled by α in Eq. (5).

Incompressible states at filling fraction ν correspond to
the case where the Slater determinant �ν∗ has an integer
number ν∗ of LLs compactly occupied. For finite systems, it
was found that the ground state of the model and Coulomb
interaction may be adiabatically connected. Its excited states
(different excited states are labeled by α) are constructed
with the Slater determinants representing various excitations
(quasiparticle/quasihole/neutral excitations) of this IQH state
at ν∗. Adding a particle to the incompressible configuration
results in a quasiparticle excitation, whereas removing a parti-
cle from a fully filled LL generates a quasihole in the system.
Neutral excitation is created when a particle in the fully filled
LL jumps to a higher LL. A numerical study of adiabatic
continuity of neutral excitations of model interaction to that
of LLL projected Coulomb interaction is presented in Ap-
pendix F. Figure 1 shows representative LL occupations in the
Slater determinant corresponding to each type of excitation.

Although the states [Eq. (5)] have a structure similar to the
CF wave functions, they are qualitatively different. Unlike the
CF wave functions projected to the LLL, these wave functions
are distributed across LLs. The standard CF construction maps
a Slater determinant wave function at an effective magnetic
field B∗ to a state at magnetic field B through multiplication by
the Jastrow factor of particle coordinates. The Jastrow factor
is defined such that the area of the droplet remains the same.
Here, in Eq. (5), the particles in the Slater determinant state
�ν∗ and the full state 
 experience the same magnetic field
B, but the area of the droplet increases upon multiplication by
the Jastrow factor of guiding-center coordinates.

Nevertheless, a key feature of the CF theory, which relates
the spectrum of the interacting electrons to the spectrum of
noninteracting composite fermions, is retained by the model

interaction. This can also confirmed by exact diagonalization
of the Hamiltonian in the case of the disk geometry. Although
the ansatz eigenfunction is written only for the disk geometry,
the exact diagonalization in the spherical geometry also shows
the one-to-one correspondence with the IQH spectrum.

In this work, we attempt to generalize the model and the
exact eigenfunctions for disk geometry given in Eq. (5) to the
cylinder and torus geometries.

III. SYMMETRIES ON TORUS

In this section we review the aspects of the torus geom-
etry relevant to this work. A torus represents a system with
periodic-boundary conditions along lattice vectors L1 and
L2. The periodicity implies that physical observables on the
torus must remain invariant under translations of type Lmn =
mL1 + nL2, where m, n are integers. In this section, we in-
troduce the notations, and describe the conserved quantities
of the many-body states on the torus arising from the discrete
symmetries. For a more detailed discussion, see Refs. [31,32].

The Hamiltonian for Ne noninteracting electrons (with
charge −e) in a uniform magnetic field −Bêz is given by

HKE = 1

2me

Ne∑
i

�2
i , (7)

where the kinetic momentum for the ith particle is given by
�i = pi + eA(ri ) and p = −ι̇h̄∇ is the canonical momentum.
The electron mass is me and the gauge field A(r) satisfies
∇ × A(r) = −Bêz. In the presence of the magnetic field, usual
spatial translations T (a) = eι̇a·p/h̄ generated by canonical mo-
mentum do not commute with Hfree. A new operator K, which
commutes with HKE, is given by

K = � − h̄

�2
(êz × r). (8)

The usual translation operator T (a) is replaced by magnetic
translation operator (MTO), defined as t (a) = eι̇a·K/h̄ [33].
The lattice translation symmetries require that the state on the
torus should remain invariant (up to a phase) under transla-
tions by the lattice vectors ti(L1) and ti(L2) for all i. It can be
shown that this can happen only if the number of flux quanta
through the unit cell, given by Nφ = |L1 × L2|/2π�2, is an
integer.

All physical observables, including the many-body Hamil-
tonian H = HKE + ∑

i< j Vi j , will also be invariant under
translations of type t (Lmn) on torus. Their Hilbert space repre-
sentations are labeled by the eigenvalues eι̇θ1 and eι̇θ2 of ti(L1)
and ti(L2), respectively. θ1, θ2 are identical for all particles.

Single-particle eigenfunctions φn,k (z, z̄) of Hfree, for the
torus shown in Fig. 2, are given by

φn,k (z, z̄) = e− z2+|z|2
2�2

(a†
f )n

√
n!

{
ϑ

[
k

Nφ
+ θ2

2πNφ

θ1
2π

](
Nφz

L2

∣∣∣∣Nφτ

)}
, (9)

where 0 � k < Nφ is a y momentum and n = 0, 1, . . . is
the LL index. Here z is the complex modular parameter,
τ = −L1/L2 [where L1 = Lx + ιL� and L2 = ιLy] and a†

f =√
2�( z̄+z

2�2 − ∂z ) is the ladder operator for LL index such that
its action on the exponential prefactor is already taken into
account. These states are eigenfunctions of translations ti(L1)
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FIG. 2. A general torus generated by L1 and L2. The skewness
L� parametrizes the deviation from a rectangular torus.

and ti(L2), with eigenvalues eι̇θ1 and eι̇θ2 , respectively. Many-
body basis states can be written as |{ki}〉 ≡ |k1, k2, . . . , kNe〉
such that |k〉 ≡ φn,k (r); the LL indices n′s are suppressed for
brevity.

In Ref. [31], it was showed that, in addition to satisfying
the boundary conditions of torus, eigenfunctions ψ ({ri}) of a
many-body Hamiltonian H have additional conserved quanti-
ties which can be used to label their spectra. These operators
are given in the form of many-body translations, defined as

t̃i(a) = ti

(
(Ne − 1)a

Ne

)∏
j 	=i

t j

(
− a

Ne

)
,

tc.m.(a) =
∏

i

ti(a), (10)

where t̃i and tc.m. are named relative and center-of-mass trans-
lation operators respectively, schematically shown in Fig. 3.

In order to preserve the Hilbert space representation de-
fined by (θ1, θ2), these operators need to commute with
discrete lattice translations t j (L1) and t j (L2), for all i, j. Also,
if we want the eigenfunctions to be simultaneously labeled
with quantum numbers of t̃i(a) and tc.m.(a), these operators
are also required to commute with each other, and among
themselves for different translations. This can be achieved by
forming a maximally commuting subset of these operators by
restricting the translations. For a system of Ne = pN particles
in Nφ = qN flux quanta, where N = gcd(Ne, Nφ ), this maxi-
mally commuting subset is given by

⋃
m,n

{
t̃i(pLm,n), tc.m.

(
qLm,n + rL2

Nφ

) ∣∣∣∣ 0 � r < q

}
. (11)

Although this gives us infinite number of quantum numbers,
these quantum numbers are fully determined by the eigenval-
ues of t̃i(pL1), t̃i(pL2), and tc.m.(L2/Nφ ). We calculate these
eigenvalues below.

It is easy to check that many-body basis states |{ki}〉 are
already eigenfunctions of tc.m.(L2/Nφ ) with quantum number
K2 = ∑

i ki( mod Nφ ), such that

tc.m.(L2/Nφ )|{k j}, K2〉 = e2πι̇K2/Nφ |{k j}, K2〉. (12)

If we denote a basis state in a given K2 sector by |{ki}, K2〉, the
action of t̃i(pL1) is given by

t̃i(pL1)|{k j}, K2〉 = |{(k j + q) mod Nφ}, K2〉. (13)

FIG. 3. Schematic illustration for center-of-mass (left) and rela-
tive (right) many-body translations on torus, represented by tc.m.(a)
and t̃i(a), respectively. While tc.m.(a) translates all particles by same
vector a, relative translation t̃i(a) translates the ith particle by
(Ne − 1)a/Ne and the rest are translated by −a/Ne.

Although t̃i(pL1) increments ki for each particle by q, the
state remains in the same K2 sector. Eigenfunctions for t̃i(pL1)
are constructed by linearly combining states from a given K2

sector as

|K̃1, K2〉 =
N−1∑
j=0

eι̇2πK̃1 j/N |{(ki + jq) mod Nφ}, K2〉. (14)

Eigenvalues of t̃i(pL1) are e−ι̇2πK̃1/N where K̃1 can take values
from 0, 1, . . . , N − 1.

We first exactly diagonalize the Hamiltonian in a fixed K2

sector. In order to label the eigenfunctions with K̃1 quantum
numbers, we explicitly construct the t̃i(pL1) operator using
Eq. (13), and compute its expectation value for the eigenstates.
K̃1 and K2 can be used to label the eigenfunctions of Hamilto-
nians which are invariant under lattice translations.

IV. INTERACTION ON TORUS

The model interaction [Eq. (6)] described in Ref. [23]
was originally written in terms of pseudopotentials for rota-
tionally symmetric systems like a disk, which means that it
assigns energy to a pair of particles based on their relative
angular momentum given by m. The natural way to map the
interaction into the torus geometry is to first reconstruct the
real-space form V (|r|) of the interaction [or its Fourier trans-
form V (|q|)]. The interaction matrix elements on the torus can
be calculated from V (r). Unfortunately, the interaction shown
in Eq. (6) is unlikely to be diagonal in the real-space repre-
sentation. This is indicated by the fact that the projection of
the interaction into each LL has the same number of nonzero
psueodpotentials.

We can nevertheless define torus matrix elements [between
momentum states given in Eq. (9)] of an interaction that pro-
duces the same features in the following way. We construct a
different real-space form for different terms of the interaction
in Eq. (6). For instance, for 2p = 2, the interaction within
the nth LL imposes an energy cost for the state |n, n; m =
1〉 = (a†

1)n(a†
2)n(b†

1 − b†
2)|0, 0〉, which is a two-particle state

where both particles are in nth LL with relative momentum
m = 1, and ai and bi are ith-particle ladder operators for LL
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and angular momentum, respectively. We seek an interaction
whose Fourier transform V (|q|) satisfies∫

dqV (|q|)〈n, n; m|eι̇q·(r̂1−r̂2 )|n, n; m〉 = δm,1. (15)

The expectation value 〈n, n; m|eι̇q·(r̂1−r̂2 )|n, n; m〉 can be evalu-
ated to be 〈n|eA1 |n〉〈n|eA2 |n〉〈m|B|m〉 where r̂i are the position
operators, Ai = ι̇�√

2
(qa†

i + q̄ai ), B = e(q�)2/2eι̇q̄�b†
r eι̇q�br , and

br = (b1 − b2)/
√

2 is the ladder operator for relative angular
momentum. Here the reciprocal vector is written as a com-
plex number q = qx + ι̇qy (note that, this is unrelated from
parameter q for FQH system defined in the previous section).
A solution is found to be

V nn−nn
m=1 (q) = Lm=1(q2�2)

〈n|eA1 |n〉〈n|eA2 |n〉 , (16)

where Lm is the mth Laguerre polynomial. The two-particle
interaction matrix elements on the torus for this component
of the interaction can be calculated from the real-space form
V (r) = ∫

dqV (|q|) eι̇q·(r̂1−r̂2 ). We find that all LL-dependent
information vanishes when the matrix elements are computed,
so we get identical interaction matrix elements between mo-
mentum states of the torus in every LL.

The inter-LL interactions (again assuming 2p = 2)
associate an energy cost whenever particles in two
different LLs have a relative angular momentum
m = 0 or 1 in the disk, i.e., for states |n, n′, m = 1〉 =
[(a†

1)n(a†
2)n′ + (a†

1)n′
(a†

2)n](b†
1 − b†

2)|0, 0〉 and |n, n′, m =
0〉 = [(a†

1)n(a†
2)n′ − (a†

1)n′
(a†

2)n]|0, 0〉. Here the solutions for
V (q) can be taken to be

V n1n2−n3n4
m=1 (q) = Lm=1(q2�2)(δn1n3δn2n4 + δn1n4δn2n3 )

〈n1|eA|n3〉〈n2|eA|n4〉 ,

V n1n2−n3n4
m=0 (q) = Lm=0(q2�2)(δn1n3δn2n4 − δn1n4δn2n3 )

〈n1|eA|n3〉〈n2|eA|n4〉 .

Again this leads to an interaction where torus matrix ele-
ments in the momentum space are independent of the LLs.
The explicit forms of the final matrix elements are given in
Appendix B.

V. EXACT EIGENFUNCTIONS

As was argued in Sec II, exact eigenfunctions of the model
Hamiltonian can be constructed on the disk geometry. In this
section, we first show how to generalize these eigenfunctions
to the cylinder geometry. We then discuss the sphere and torus
geometries and show that similar generalization does not work
in these cases. Eigenfunctions can nevertheless be written for
low-energy QP-type excitations of FQH system at filling 1

3 for
both geometries.

A. Generalizing disk eigenfunctions to cylinder

The unprojected CF state on the cylinder is given by



ν= ν∗

2pν∗+1
=

∏
i< j

(
e

2πzi
L − e

2πz j
L

)2p
�ν∗ , (17)

where L is the length along the periodic direction of cylinder,
and �ν∗ is the Slater determinant state with Landau orbitals

in reduced flux N∗
φ . For the Landau gauge A = −xBêy, the

single-particle state φn,k (r) with momentum k in nth LL is
given by

φn,k (r) = N exp

(
ι̇2πk

L
y

)
exp

[
−1

2

(
x

�
− 2π�

L
k

)2
]

× Hn

(
2π�

L
k − x

�

)
, (18)

where N is normalization, Hn is the nth Hermite polynomial,
and k is the momentum quantum number which takes value in
0, 1, . . . , Nφ − 1.

In the spirit of the eigenfunction to our model Hamiltonian
in the disk geometry, we replace the coordinates in the Jastrow
factor with the guiding-center coordinates to get



ν= ν∗

2pν∗+1
=

∏
i< j

(
e

2π Ẑi
L − e

2π Ẑ j
L

)2p
�ν∗ . (19)

For the given gauge, the action of Ẑ on φn,k (z) is manifested
through

e
2π Ẑi

L φn,k (z) = e
2π2

L2 (2k+1)
φn,k+1(z). (20)

Although multiplication with Jastrow factor changes the mo-
mentum state of orbitals in �ν∗ , it does not change their LL
index. Thus, it is easy to see from Eq. (20) that, just like Slater
determinant �ν∗ , the ansatz 
ν is also an eigenfunction of the
kinetic energy. Kinetic energy of the state 
ν is identical to
that of �ν∗ , as in the case of disk geometry.

It is not straightforward to see that the ansatz defined in
Eq. (19) is a zero-energy eigenfunction of the model interac-
tion in the cylinder geometry. For a few QPs at filling ν = 1

3 ,
we numerically verified that the eigenfunctions in Eq. (19)
match exactly with the ED eigenfunctions of the model in-
teraction. Also, as will be shown in Sec. VI B, the counting of
low-energy states matches that the one QH spectrum, as one
would expect from the ansatz in Eq. (19).

B. Attempt to generalize disk eigenfunctions to torus

Motivated by the exact eigenfunctions in the disk and
cylinder geometry, we consider similar construction of the
ansatz on the torus by replacing the coordinates in the Jas-
trow factor of the unprojected CF states [34,35] with the
guiding-center coordinates. For the torus geometry, the result-
ing ansatz is given by



ν= ν∗

2pν∗+1
= [F1(Ẑc.m.)]

2pJ 2p({Ẑ}) e− ∑
i

z2
i +|zi |2

2�2 �ν∗ , (21)

where

J ({Ẑ}) =
∏
i< j

ϑ
[

1/2

1/2

]( Ẑi − Ẑ j

L2

∣∣∣∣τ
)

(22)

is the Jastrow factor of guiding-center coordinates. In this
section, we will write J 2p({Ẑ}) as Ĵ for brevity. Ẑc.m. =∑

i Ẑi is the center of mass of guiding centers and �ν∗ is
the Slater determinant of Landau orbitals defined in Eq. (9)
at flux N∗

φ instead of Nφ . For the torus in Fig. 2, we have
τ = −L1/L2. F1(Ẑ ) represents the center-of-mass-dependent
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part of the filled lowest Landau level [35], given by

F1(Ẑc.m.) = ϑ

[
θ2
2π

+ Ne−1
2

θ1
2π

+ Ne−1
2

](
Ẑc.m.

L2

∣∣∣∣τ
)

, (23)

where θ1 and θ2 determine the Hilbert space representations
of MTOs ti(L1) and ti(L2), respectively (see Sec. III). In what
follows, we show that the generalization shown in Eq. (21)
does not yield an eigenfunction of ti(L1) and is, therefore, not
a valid eigenfunction.

To verify the boundary conditions of the ansatz, we cal-
culate the action of the MTOs on each piece of the ansatz
one by one. A MTO, ti(a), can be written in terms of normal
translation operators Ti(a) in the symmetric gauge as

ti(a) = e− ι̇

2�2 êz ·(a×ri )Ti(a). (24)

The guiding-center coordinate Ẑi transforms under ti(a) like
normal position coordinates (z) transform under Ti(a). The
action of ti(L2) on various pieces of the ansatz is given as

ti(L2)F1(Ẑc.m.)t
†
i (L2) = eι̇θ2 F1(Ẑc.m.), (25)

ti(L2)Ĵ t†
i (L2) = Ĵ . (26)

The action of MTOs on functions of normal position coordi-
nates can be calculated using Eq. (24), which gives us

ti(L2)
[
e−

∑
i z2

i +|zi |2
2�2 �ν∗

] = eι̇θ2
[
e−

∑
i z2

i +|zi |2
2�2 �ν∗

]
(27)

(see Appendix E for details). By putting them together, we get

ti(L2)
 ν∗
2pν∗+1

= eiαθ2
 ν∗
2pν∗+1

, (28)

where α = (2p + 1). This implies that 
 is an eigenfunction
of ti(L2). Now we consider the action of ti(L1) on the ansatz

. It is easy to check that

ti(L1)F1(Ẑc.m.)t
†
i (L1) = eι̇θ1 e−ι̇πτ e

ι̇2π Ẑc.m.
L2 F1(Ẑc.m.), (29)

ti(L1)Ĵ t†
i (L1) = e−ι̇π (Ne−1)τ e− ι̇2π Ẑc.m.

L2 e
ι̇2πNeẐi

L2 Ĵ , (30)

and

ti(L1)
[
e−

∑
i z2

i +|zi |2
2�2 �ν∗

] = eι̇θ1 eι̇2π pNeτ e− ι̇4π pNeẐi
L2

[
e−

∑
i z2

i +|zi |2
2�2 �ν∗

]
.

(31)

By combining these results together, the action of ti(L1) on the
ansatz is found to be

ti(L1)
 ν∗
2pν∗+1

= eiαθ1 e
ι̇4π pNe

L2
(Ẑi−zi )
 ν∗

2pν∗+1
. (32)

Since the action of ti(L1) on ansatz results in a factor which
contains the guiding-center operator Ẑi, the ansatz is not an
eigenfunction of ti(L1) and hence not a valid state on torus.
Using Eqs. (29)–(31) it can be verified that a similar factor
will arise even if we use F1(Zc.m.) with normal center-of-mass
coordinate instead, in the ansatz. In summary, this implies
that the ansatz obtained by the straightforward generalization
[Eq. (21)] of Eq. (5) valid on disk and Eq. (19) valid on
cylinder, does not yield an eigenfunction on torus.

C. Exact eigenfunction for QPs of ν = 1
3

As shown in the previous section the disk ansatz (5) does
not generalize to the torus. It is also not possible to generalize
it to spherical geometry as the form of the guiding-center
coordinate is not known for the sphere. In this section, we
show that for a subset of states, namely, quasiparticles of the
1
3 state, the ansatz can be written in a simplified form, which
generalizes to sphere and torus geometries. For the disk and
the spherical geometries we could verify that the results from
the ED of the Hamiltonian (2) match with the form of the
eigenfunction presented here. Finally, we show that a similar
generalization leads to a valid state on torus, as it satisfies the
periodic boundary conditions.

1. A different point of view of disk eigenfunctions

The ansatz in Eq. (5) for N QPs of 1
3 can be written as



N QPs
1/3 = J 2({Ẑ}) × �

N QPs
1 , (33)

where J ({Ẑ}) = ∏
i< j (Ẑi − Ẑ j ) is the Jastrow factor of

guiding-center coordinates, and Slater determinant �
N QPs
1

contains N particles in LL1 with fully occupied LLL. The
Landau orbitals at angular momentum m in LLL and LL1 are
represented by F0,m and F1,m, respectively. Note that functions
F1,m, F0,m in the disk geometry are unrelated to the center of
mass part Eq. (23) of the torus wave function which is also
denoted by F but it has a single subscript 1. We show in
Appendix D that the wave function 


N QPs
1/3 can be rewritten as



N QPs
1/3 = �̂

N QPs
1 × J 2({z}). (34)

The operator �̂
N QPs
1 which acts on J 2({z}) can be constructed

by replacing any LL1 orbitals F1,m, inside �
N QPs
1 with

Ĝ1,m = F1,m − F̂1,m. The operator F̂1,m is defined such that,
for any momentum k

F̂1,mF0,k = PLLL[F1,mF0,k], (35)

where PLLL is the LLL projection operator. We get operator
F̂1,m by replacing all z̄ in F1,m(z, z̄) with 2�2∂z, after all the
z′s are moved to the left [36]. It should be noted that the
derivatives ∂ ′

zs do not act on the exponential factor. The
operator Ĝ1,m can be better understood as

Ĝ1,mF0,k = [F1,m − F̂1,m]F0,k

= F1,mF0,k − PLLL[F1,mF0,k] = PLL1[F1,mF0,k].
(36)

In summary, the operator �̂
N QPs
1 in the last expression of

Eq. (34) is given by

�̂
N QPs
1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F0,0(z1) F0,0(z2) . . . F0,0(zNe )
F0,1(z1) F0,1(z2) . . . F0,1(zNe )

...
...

...
...

F0,N∗
φ −1(z1) F0,N∗

φ −1(z2) . . . F0,N∗
φ −1(zNe )

Ĝ1,m1 (z1, ∂z1 ) Ĝ1,m1 (z2, ∂z1 ) . . . Ĝ1,m1 (zNe, ∂zNe
)

...
...

. . .
...

Ĝ1,mN (z1, ∂z1 ) Ĝ1,mN (z2, ∂z1 ) . . . Ĝ1,mN (zNe, ∂zNe
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(37)
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Although, it is not as easy to see that the alternate forms
of 
α defined in Eq. (34) are zero-energy eigenfunctions of
the model interaction, these can be numerically evaluated for
small systems. Upon comparison with exact diagonalization
spectrum of the model Hamiltonian given in Eq. (2) on the
disk, we could explicitly verify that these are the right eigen-
functions.

More importantly, the expression in Eq. (34) can be written
for sphere as well:



NQPs
1/3 = �̂

NQPs
1/3

(
YQ∗1m → YQ∗1m − Ŷ q

Q∗1m

)
J 2, (38)

where monopole harmonics YQnm represent single-particle
Landau orbitals with angular momentum m in nth LL, in flux
given by 2Q. For any LLL state Yq0k , the operator Ŷ q

Q∗1m is
defined using

Ŷ q
Q1mYq0k = PLLL[YQ1mYq0k]. (39)

Again, we could explicitly compare this with ED eigenfunc-
tions for small systems and verify that the ansatz in Eq. (38)
gives correct eigenfunctions. In summary, Eqs. (34) and (38)
describe QPs of the 1

3 state on disk and sphere geometries.

2. Ansatz for torus geometry

Motivated by the applicability of the ansatz in Eq. (33)
to the spherical geometry, in this section we ask whether it
also gives a valid state on torus. For N QPs on ν = 1

3 with
Ne particles in Nφ flux quanta, the analog of Eq. (33) in torus
geometry is



N QPs
1/3 = e−

∑Ne
i z2

i +|zi |2
2�2 [F1(Zc.m.)]

2D̂N QPs
1

({
f k
i , ĝq

j

})
J 2({z}),

(40)

where Zc.m. = ∑
i zi and J ({z}) is the Jastrow factor, given by

J ({z}) =
Ne∏

i< j

ϑ
[

1/2

1/2

]( zi − z j

L2
|τ

)
. (41)

All states inside the determinant D̂({ f k
i , ĝq

j}) see reduced flux
N∗

φ = Nφ − 2Ne and the corresponding magnetic length is
given by �∗, defined as (�∗)2 = �2Nφ/N∗

φ . For N QPs in 2LL,

the operator D̂N QPs
1 ({ f k

i , ĝq
j}) is defined as

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f 0
0 (z1) f 0

0 (z2) . . . f 0
0 (zNe )

f 1
0 (z1) f 1

0 (z2) . . . f 1
0 (zNe )

...
...

...
...

f
N∗

φ −1
0 (z1) f

N∗
φ −1

0 (z2) . . . f
N∗

φ −1
0 (zNe )

ĝq1
1 (z1, z̄1) ĝq1

1 (z2, z̄2) . . . ĝq1
1 (zNe, z̄Ne )

...
...

. . .
...

ĝqN
1 (z1, z̄1) ĝqN

1 (z2, z̄2) . . . ĝqN
1 (zNe, z̄Ne )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (42)

where f k
0 (z) and f k

1 (z, z̄) represent the single-particle wave
functions in LLL and LL1, respectively, and are defined as
[34]

f k
0 (z) = ϑ

[
k

N∗
φ

+ θ2
2πN∗

φ

θ1
2π

](
N∗

φ z

L2
|N∗

φ τ

)
,

f k
1 (z, z̄) =

√
2�∗

[
z̄ + z

2(�∗)2
− ∂z

]
f k
0 (z). (43)

The operator ĝq
1(z, z̄) = f q

1 (z, z̄) − f̂ q
1 (z, z̄) is analogous to the

Ĝ operator defined in Eq. (36). The operator f̂ q
1 (z, z̄) is defined

as

f̂ q
1 (z, z̄) =

√
2�∗[−2ν∂z f q

0 (z) + (1 − 2ν) f q
0 (z)∂z

]
(44)

which implies that ĝq
1(z, z̄) is given by

ĝq
1(z, z̄) =

√
2N∗

φ�∗

Nφ

[
z̄ + z

2�2
f q
0 (z) − ∂z f q

0 (z) − f q
0 (z)∂z

]

such that ĝq
1 f k

0 = PLL1[ f q
1 f k

0 ].
Now we show that the state defined in Eq. (40) satisfies

the periodic boundary conditions. We calculate the action of
MTOs ti(L1) and ti(L2) on different parts of the ansatz (see
Appendix E for details). First, the action on the exponential
factor is given by

ti(L2)e−
∑

i z2
i +|zi |2
2�2 = e−

∑
i z2

i +|zi |2
2�2 , (45)

ti(L1)e−
∑

i z2
i +|zi |2
2�2 = eι̇πNφ (τ− 2zi

L2
)e−

∑
i z2

i +|zi |2
2�2 . (46)

Their action on F1(Zc.m.) is given by

ti(L2)F1(Zc.m.)t
†
i (L2) = eι̇θ2 F1(Zc.m.), (47)

ti(L1)F1(Zc.m.)t
†
i (L1) = eι̇θ1 e−ι̇πτ e

ι̇2πZcm
L2 F1(Zc.m.). (48)

Since the Slater determinant D̂N QPs
1 ({ f k

i , ĝq
j}) contains opera-

tors, the action of MTOs is rather calculated on the combined
piece, i.e. , D̂N QPs

1 ({ f k
i , ĝq

j})J 2.
In the expansion of the Slater determinant, the ith particle

can either be in LLL, in which case it will be represented by
some state f

k j

0 (zi ), or it can be in second LL, where it will be
an operator ĝ

q j

1 (zi). The operators ĝ
q j

1 (zi)′s commute with each
other for different particles. Since the single-particle MTO,
ti(a), only affects the ith particle, we only need to check the
action on f

k j

0 (zi)J 2 and ĝ
q j

1 (zi )J 2, which are given by

ti(L2) f
k j

0 (zi )J 2 = eι̇θ2 f
k j

0 (zi)J 2, (49)

ti(L2)ĝq j

1 (zi)J 2 = eι̇θ2 ĝ
q j

1 (zi )J 2. (50)

Using Eqs. (45), (47), (49), and (50), we get

ti(L2)
 ν∗
2pν∗+1

= ei3θ2
 ν∗
2pν∗+1

. (51)

Similarly, the action of ti(L1) is given by

ti(L1) f
k j

0 (zi)J 2 = eι̇θ1 eι̇π (2−Nφ )τ e
ι̇2π
L2

(Nφzi−2Zc.m. ) f
k j

0 (zi)J 2,

(52)

ti(L1)ĝq j

1 (zi)J 2 = eι̇θ1 eι̇π (2−Nφ )τ e
ι̇2π
L2

(Nφzi−2Zc.m. )

×
[

ĝ
q j

1 (zi) − ι̇4πA(Ne − 1)

L2
f

q j

0 (zi )

]
J 2,

(53)

where A = √
2N∗

φ�∗/Nφ . There are two terms which could
cause the boundary conditions to not be satisfied: First, in
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Eq. (53), we get an addition term −ι̇4πA(Ne − 1) f q
0 (zi)/L2

along with ĝq
1(zi ) inside the square brackets. Second, if there

are more than one QPs in the system, ĝq
1(z j )′s for other QPs

will act on the factor e− ι̇4πZc.m.
L2 and produce further terms.

These are equivalent to replacing ĝ
q j

1 (zi ) for the ith particle
with ĝ

q j

1 (zi ) + a f
qj

0 (zi ) and ĝ
q j

1 (zk )′s for k 	= i with ĝ
q j

1 (zk ) +
b f

qj

0 (zk ) in the Slater determinant D̂({ f k
i , ĝq

j}), where a and
b are constants for a given problem. Since all the LLL states
f

q j

0
′s are filled, the terms of kind a f

qj

0 (zi ) and b f
qj

0 (zk ) can
be removed without affecting the determinant D̂N QPs

1 . Putting
everything together from Eqs. (46), (48), (52), and (53), we
get

ti(L1)
 ν∗
2pν∗+1

= ei3θ1
 ν∗
2pν∗+1

(54)

which means that it satisfies the torus boundary conditions.
Note that we have shown that the wave function in Eq. (40)
is a valid torus state. The state is an eigenfunction of kinetic
energy HKE, however, we have not been able to check that the
state is a zero-energy eigenfunction of the model interaction
on torus. Hence, this is a conjecture supported by the validity
of ansatz expression in the disk and more importantly in the
spherical geometry.

VI. NUMERICAL RESULTS

In Ref. [23], we explored the spectra of the model Hamilto-
nian in the spherical geometry and explicitly demonstrated the
correspondence between spectrum of the model Hamiltonian
and the IQH spectrum. In this work, we compute the same in
torus and cylinder geometries.

First, we present and discuss the features of low-energy
spectra for the model interaction on the torus geometry. In
the results shown below, we consider different Hall liquids
are labeled by (Nφ, Ne) configurations. The eigenfunctions
are labeled using K2 and K̃1 which are quantum numbers
associated to MTOs tc.m.(L2/Nφ ) and t̃i(pL1) (Sec. III). The
following results are for a square torus where |L1| = |L2| and
L� = 0, which implies τ = ι̇.

A. Spectra on the torus geometry

The CF wave functions [4] describe FQHE systems at Jain
sequence filling fraction ν = n/(2pn + 1) by mapping the
interacting system of Ne electrons, in flux Nφ (in the units of
flux quanta φ0 = 2π h̄/e), to a noninteracting system of CFs in
a reduced flux given by N∗

φ = Nφ − 2pNe. While in Ref. [23]
we showed that in spherical geometry there is a one-to-one
correspondence between IQH and model Hamiltonian spectra,
in this section we will show that a similar map exists for
torus geometry as well, but instead there is a one-to-(2pn + 1)
mapping present in the IQH and FQH spectra for the torus
geometry.

From the spectra shown presented in the subsequent sec-
tion, we infer the following key results. For a system with
Ne = pN particles in Nφ = qN flux quanta, where N =
gcd(Nφ, Ne), the low-energy spectra of the model Hamil-
tonian, in a given (K̃1, K2) sector, is identical to the
(K̃1, KI

2 )-sector spectra of a noninteracting system in a

reduced flux N∗
φ , where K2 and KI

2 are related by

K2 = KI
2 + rN, r = 0, 1, . . . , q − 1 (55)

and K2 ∈ [0, Nφ ); KI
2 ∈ [0, N∗

φ ) is the quantum number corre-
sponding to tc.m.(L2/N∗

φ ) for the IQHE system. We show this
equivalence between spectra in several cases below.

a. Incompressible state at ν = 2
5 . In Figs. 4(a) and 4(b),

we show the spectra of noninteracting systems at ν∗ = 2 and
low-energy spectra of model interaction at ν = 2

5 , respec-
tively. FQH and IQH systems have Ne = 6 particles in flux
Nφ = 15 and N∗

φ = 3, respectively. Each marker represents
an eigenfunction (or eigenfunctions, when degenerate) with
its energy shown along the y axis. The sectors which this
eigenfunction (or eigenfunctions) belong to are represented
by a unique combination of quantum numbers (K̃1, KI

2 ) and
(K̃1, K2), along the x axis, for IQH and FQH system, respec-
tively. For visible distinction, states in (K̃1, KI

2 ) sectors are
color coded according to their degeneracy pattern along the
energy axis.

For instance, the spectra for sector (K̃1, KI
2 ) = (0, 0) of

IQH have a degeneracy pattern of (1,1,2,4,2,1,1) at energies
E/h̄ωB = (3, 4, 5, 6, 7, 8, 9). We have shown all sectors with
this pattern in red color. The same degeneracy pattern is seen
in the model Hamiltonian spectrum, in (K̃1 = 0, K2) sectors
where the K2 values are given by 0,3,6,9,12, as expected
from Eq. (55). There can be more than one (K̃1, KI

2 ) sector
with the same degeneracy pattern. Equation (55) suggests that
FQH states in each (K̃1, K2) sector can be uniquely labeled
by (K̃1, KI

2 , r). All FQH states labeled with the same (K̃1, KI
2 )

have the same spectrum and r takes values in 0, 1, . . . , q − 1.
In Fig. 4(c), the choice of x axis ensures that sectors with the
same K̃1 and KI

2 appear together, allowing us to clearly see the
1-to-5 correspondence.

Figures 4(c) and 4(d) show the map between KI
2 and q =

5 corresponding K2 sectors for two different representative
cases. Spectra for IQH states in a given (K̃1, KI

2 ) sector are
shown in black whereas spectra of FQH in different (K̃1, K2)
sectors are shown in blue. The KI

2 quantum number for IQH
states and q = 5 different K2 quantum numbers for FQH
states, satisfying Eq. (55), are labeled along the x axis.

Figures 4(c) and 4(d) show the spectra at one (K̃1, KI
2 ) sec-

tor of IQH together with the spectrum at sector (K̃1, KI
2 + rN )

for r = 0, 1, . . . , q − 1. We note that these sectors have iden-
tical spectrum validating the relation in Eq. (55).

b. Incompressible state at ν = 1
3 . Full spectrum for 1

3
state for system with Ne = 6 and Nφ = 18 is given in the
Appendix A (Fig. 7). Figure 5 shows the mapping between
(K̃1, KI

2 ) sectors in IQH spectra and q = 3 different (K̃1, K2)
sectors in the FQH for 1

3 state. There are four panels, one
for each (K̃1, KI

2 ) sector of IQH spectra representing a unique
degeneracy-pattern present in the full IQH spectra (Fig. 7 in
Appendix A). All of these map to q = 3 different K2 sectors
in FQH, which follow Eq. (55). Similar results for the incom-
pressible state at ν = 3

7 and QP/QH excitations of ν = 1
3 , 2

5
are given in Fig. 8 and Fig. 9 of Appendix A, respectively.

c. For charged excitations of ν = 1
3 , 2

5 . The 1-to-q mapping
between corresponding sectors in the IQH and FQH spectra
also holds for quasiparticles (QPs) and quasiholes (QHs) of
filling fractions ν = 1

3 and 2
5 . Details of the systems and their

spectra are given in Appendix A.
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(d) (e)

(a)

(b)

(c)

FIG. 4. (a) Shows the spectrum for a noninteracting system
(IQH) at integer filling factor ν∗ = 2, with Ne = 6 particles in flux
N∗

φ = 3. Pair of quantum numbers (K̃1, KI
2 ) label each state along

the x axis. Spectrum in each (K̃1, KI
2 ) sector is represented by a

different marker. In addition, different colors are assigned for unique
degeneracy patterns along the y axis. Spectra with red and blue
markers have degeneracy pattern of (1,1,2,4,2,1,1) and (1,2,3,2,1),
respectively. The state with energy E/h̄ωB = 3 represents the incom-
pressible ground state at integer filling factor ν∗ = 2 whereas states
with E/h̄ωB = 4 contain a single neutral excitation. (b) Shows the
spectra for ZIE eigenspace of the model interaction (FQH) for system
with Ne = 6 particles in flux Nφ = 15 at ν = p/q = 2

5 . The states
are labeled with quantum numbers (K̃1, K2) along the x axis and are
represented by the same markers used for the (K̃1, KI

2 ) sector of IQH
spectrum if K2 and KI

2 satisfy Eq. (55). We see that, apart from the
fivefold topological degeneracy, the spectra are identical to the IQH
spectra. (c) Shows the same spectra using a different arrangement
of (K̃1, K2) along the x axis where the 1-to-5 correspondence with
IQH spectra in (a) are more evident. Here definitions of r, q are
same as in Eq. (55). (d), (e) Show maps of IQH spectra (black) in
two different (K̃1, KI

2 ) sectors, representing two unique degeneracy
patterns present in the full spectra. This is juxtaposed with the spec-
trum of the FQH system at corresponding (K̃1, K2) sectors satisfying
Eq. (55).

(a) (b)

(d)(c)

FIG. 5. Plot showing the IQH-to-FQH mapping in low-energy
spectra for IQH system (black) with (N∗

φ , Ne) = (6, 6), at integer
filling factor ν∗ = 1, to the corresponding FQH spectra (orange) with
(Nφ, Ne) = (18, 6) at ν = 1

3 . The full IQH spectra consist of four
different degeneracy patterns, and each panel shows their mapping to
the corresponding K2 sectors for FQH system: (a) in K̃1 = 0 sector,
IQH spectra for KI

2 = 0 sector maps to those with K2 = 0, 6, 12
sectors in FQH system. (b), (c) Show similar maps for other unique
spectra in given sectors. (d) Shows map of spectra which contains
zero-energy state corresponding to the incompressible ground state
of ν = 1

3 . Full spectrum is shown in Fig. 7 of the Appendix A.

B. Spectra on cylinder geometry

In cylinder geometry, the single-particle state is labeled
by linear momentum k due to translation invariance along
circumference of size L. Unlike the torus, the cylinder does
not have any nontrivial many-body translation symmetries,
hence, the spectra of model interaction are only indexed by
Ktotal = ∑

i ki where ki ∈ [0, Nφ ) and Nφ is the maximum
number of orbitals in each LL. The minimum and maximum
values of ki are kmin = 0 and kmax = Nφ − 1.

In the top panel of Fig. 6, we show the spectrum for system
with Ne = 5 in flux Nφ = 15, at filling fraction ν = 1

3 . The
eigenfunction with zero energy at Ktotal = 30 corresponds to
the incompressible ground state of 1

3 . At the same energy,
the eigenfunctions at higher Ktotal are the quasihole and edge
excitations as well as center-of-mass excitations where the
numbers represent the degeneracy at a given Ktotal value. The
counting at small momenta match that of the edge excitation
of ν = 1

3 . At large momenta the counting deviates due to
finite-system size. The states in the higher-energy bands are
the neutral excitations of ν = 1

3 . Similarly, the lower panel
shows the spectra of state at ν = 2

5 filling, with Ne = 6 at flux
Nφ = 15. Here the incompressible ground state with energy
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(a)

(b)

FIG. 6. Spectra for the model Hamiltonian in cylinder geometry,
for FQH systems at filling ν = 1

3 (a) and 2
5 (b). The x axis labels

the Ktotal quantum number, and energy E/h̄ωB is along the y axis.
Lowest 3 LLs are used in these calculations. (a) Shows the spectrum
for system with Nφ = 15 and Ne = 5. The numbers above states
with E/h̄ωB = 0 represent their degeneracy. The state at Ktotal = 30
corresponds to the incompressible ground state at filling ν = 1

3 and
other states are its QH/edge and center-of-mass excitations. States
at higher energy correspond to neutral excitations of 1

3 . Similarly,
(b) shows the spectrum for system with Nφ = 15 and Ne = 6. Here
the state at Ktotal = 36 with E/h̄ωB = 3 is the ground state for ν = 2

5 .

E/h̄ωB = 3 is at Ktotal = 36. Again, the same energy band
shows QH and edge and center-of mass excitations at larger
Ktotal values, and the higher-energy band hosts neutral excita-
tions of the 2

5 FQH state.

VII. CONCLUSION

In this work, we extend the ideas presented in Ref. [23]
to torus and cylinder geometries. The model Hamiltonian
(6) introduced there was written in the disk geometry and
studied in the disk and spherical geometries. The Hamiltonian
has some appealing features: a single Hamiltonian produces
incompressible states at all Jain filling fractions of the form
n/(2pn + 1) and allows exact eigenfunctions for the incom-
pressible states, quasihole states, quasiparticle, and neutral
excitations. The spectrum of the system at filling fraction
n/(2pn + 1) has a one-to-one correspondence with the IQH
states at integer filling factor n. Only the low relative an-
gular momentum sectors appeared in the Hamiltonian, so
we expected that the interaction must be short ranged and
that the qualitative results obtained in the disk and spherical
geometries should extend to other geometries as well. The
interaction presented is not diagonal in position representation
and therefore usual approaches to mapping the Hamiltonian
from disk geometry to torus or cylinder geometry do not

(a)

(b)

(c)

FIG. 7. In (a), we show the spectrum of model interaction for
system on the torus with the configuration (Nφ, Ne) = (18, 6) corre-
sponding to filling fraction ν = 1

3 , where the states are labeled by
a pair of quantum numbers (K̃1, K2) along the x axis and the y axis
represents their energy which is rescaled such that h̄ωB → 1. In this
panel, we see that the spectrum of the interacting system (FQH) has
a clear gap, which separates the spectrum of the ZIE eigenspace of
the interaction from the finite interaction energy states. The states
with finite interaction energy are higher in the spectra, and only a
few of them are visible in the given energy range. These states do
not map to the spectra of noninteracting (IQH) system and hence are
not of our interest. In (b), we show the spectrum of IQH system at
integer filling factor ν∗ = 1 for configuration (N∗

φ , Ne) = (6, 6). The
states in a given (K̃1, KI

2 ) sector of the IQH spectra are color coded
for each unique degeneracy pattern. For instance, the eigenfunctions
in red have a degeneracy of (1,6,12,6,1) from low- to high-energy
bands. For system with Ne/Nφ = p/q where p, q are coprime, each
(K̃1, KI

2 ) sector of IQH system is mapped to q different sectors of
FQH, such that (K̃1, K2) = [K̃1, KI

2 + r × gcd(Ne, Nφ )] where r =
0, 1, . . . , q − 1. This threefold multiplicity in FQH spectrum relative
to the IQH spectra is demonstrated in (c).

work. Nevertheless, we could construct a Hamiltonian that is
motivated by the disk Hamiltonian and has qualitatively the
same structure.

The Hamiltonian can be interpreted as that of a multi-
layer model where different layers have different chemical
potentials but each layer is treated as a different LL of same
particles. The eigenfunctions of the Hamiltonian when written
in the momentum Fock space are then similar to those of a
multilayer model. The real-space wave functions for multi-
Landau-level eigenfunctions can be written in a compact form
on the disk geometry.

We showed that the structure of this wave function gen-
eralizes in a natural way to the cylinder geometry but not
to the torus or spherical geometry. On the torus geometry,
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FIG. 8. Map for low-energy spectra of noninteracting system
(black) for (N∗

φ , Ne) = (2, 6), at ν∗ = 3 to the corresponding spectra
of interacting (blue) system for (Nφ, Ne) = (14, 6) at ν = 3

7 . The
map clearly shows a sevenfold degeneracy. Since our calculations
are restricted to lowest 3 LLs, only 3

7 ground states are present in the
spectra.

we showed that the generalization fails to preserve the right
boundary condition. However we could construct the low-
energy QP excitations of the Laughlin 1/(2p + 1) state in the
spherical geometry [Eq. (38)], by generalizing a simplified
form [Eq. (34)] of the general eigenfunction on the disk.
On the disk, cylinder, and spherical geometries we could
verify the eigenfunction by comparing with the numerical
(ED) results. This wave function when generalized to the
torus geometry produces a wave function [Eq. (40)] with the
correct boundary conditions and expected total kinetic energy.
We conjecture that this is also an eigenfunction of the full
interacting Hamiltonian. Explicit verification of the result is
challenging due to difficulty in explicit evaluation of the wave
function.

The model interaction captures some key features of the
FQH phases and excitations at the Jain sequence filling frac-
tions and produces exact eigenfunctions with wave functions
closely similar in structure to the CF excitations. We could
ask if a similar model interaction can be written which de-
scribes more complex FQH liquids. Interestingly the ideas
can be generalized, as shown in Ref. [29], to the case
of the Moore-Read states and allows construction of exact
low-energy eigenfunctions analogous to the structure of the
bipartite composite fermion excitations [26–28]. Degeneracy
on the torus geometry of the Moore-Read states have a non-
Abelian component in addition to what is expected from the
q-fold degeneracy due to the center-of-mass translations. It is
interesting ask how this degeneracy will be manifested in a
torus geometry generalization of the results in Ref. [29].
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APPENDIX A: SPECTRA ON TORUS GEOMETRY
FOR OTHER FQH STATES

Figure 7 presents the spectrum of model interaction on
torus at filling fraction ν = 1

3 . In Fig. 8, we show the IQH-
FQH mapping for the incompressible ground state of model
interaction at ν = 3/7 which shows the sevenfold multiplic-
ity. Figures 9(a) and 9(b), show the IQH-FQH map for the
spectra of a single QP and QH at FQH filling ν = 1

3 , re-
spectively. Similarly, Figs. 9(c) and 9(d) give the maps for a
single QP and QH at FQH filling ν = 2

5 , respectively. Since

(a) (b)

(c) (d)

FIG. 9. Plot shows the maps between IQH specta and FQH spec-
tra for single charged excitations (QP/QH) at fillings ν = 1

3 and
2
5 . Since gcd(Nφ, Ne) = 1 for all these cases, FQH spectra show
(q = Nφ)-fold degeneracy. (a) Spectrum for a system hosting a single
QP of IQH at ν∗ = 1 for Ne = 7 and flux N∗

φ = 6 maps to the
corresponding FQH spectra at ν = 1

3 with flux Nφ = 20. The ellipsis
(. . . ) along the x axis indicates that the FQH system has identical
spectra for all intermediate K2 values. (b) Shows the similar map
in system hosting a single QH instead of a QP where IQH spectra
for Ne = 6 and flux N∗

φ = 7, at ν∗ = 1, maps to the corresponding
FQH spectra at ν = 1

3 with Nφ = 19. (c), (d) Show similar mapping
for a single QP and QH between FQH at ν = 2

5 with configurations
(Nφ = 17, Ne = 7) and (Nφ = 13, Ne = 5) to the corresponding IQH
spectra for configurations (N∗

φ = 3, Ne = 7) and (N∗
φ = 3, Ne = 5),

respectively.
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gcd(Nφ, Ne) = 1 in all of these cases, there is only one de-
generacy pattern in the IQH spectra, hence, only one map
for any representative (K̃1, KI

2 ) sector of the IQH spectra is
sufficient. As the panel shows, in all four cases, each IQH KI

2
sector maps to Nφ K2 sectors of FQH. Since gcd(N∗

φ , Ne) = 1
in all of these cases, all (K̃1, KI

2 ) sectors in IQH spectra have
identical degeneracy pattern [31].

APPENDIX B: CALCULATION OF MATRIX ELEMENTS
ON TORUS GEOMETRY

In this Appendix, we show the calculation of matrix ele-
ments of the model interaction on the torus. We will restrict
to a rectangular torus with L1/L2 = ι̇Lx/Ly and L� = 0. The
matrix elements of an interaction V (|r|) on the torus can be
written using its Fourier transform V (|q|) as

V n1n2−n3n4
j1 j2− j3 j4

= 1

LxLy

∑
q

V (q)
∫∫

dr1dr2[φ∗
n1, j1 (r1)φ∗

n2, j2 (r2)

− φ∗
n1, j1 (r2)φ∗

n2, j2 (r1)][φn3, j3 (r1)φn4, j4 (r2)

− φn3, j3 (r2)φn4, j4 (r1)]eι̇q·(r1−r2 ), (B1)

where the form of single-particle orbitals on torus φn, j is given
in Eq. (9) and the summation is over reciprocal vectors q of
torus lattice vectors, given by q = 2π [ s

Lx
, t

Ly
], such that s, t ∈

Z. We define

〈n1, j1; n2, j2|eι̇q·(r1−r2 )|n3, j3; n4, j4〉

=
∫∫

dr1φ
∗
n1, j1 (r1)φ

∗
n2, j2 (r2)e

ι̇q·(r1−r2 )dr2φ
∗
n3, j3 (r1)φ∗

n4, j4 (r2),

(B2)

where |n1, j1; n2, j2〉 is a two-particle state for particles in LL
n1 and n2 with momentum j1 and j2, respectively. Note that
this two-particle state does not represent an antisymmetrized
state.

In Sec. II, we provide the details for construction of the
model interaction for the torus. The model interaction on the
torus is written such that calculation of intra-LL and inter-LL
matrix elements uses different forms of V (|q|). For nth LL,
the intra-LL matrix element is given by

V nn−nn
j1 j2− j3 j4

= 1

LxLy

∑
s,t∈Z

V (q)

[
Ln

(
q2�2

2

)]2

e− (q�)2

2
[
e

ι̇2πs
Nφ

( j1− j4 ) − e
ι̇2πs
Nφ

( j2− j4 ) − e
ι̇2πs
Nφ

( j1− j3 ) + e
ι̇2πs
Nφ

( j2− j3 )]
, (B3)

where Ln is the nth Laguerre polynomial and the form of V (q) = V nn−nn
1 (q) for intra-LL matrix elements is given in Eq. (16).

Using the notation defined in Eq. (B2), inter-LL matrix element for LLs n and n′ can be written as

V nn′−nn′
j1 j2− j3 j4

= 1

LxLy

∑
s,t∈Z

V (q){〈n, j1; n′, j2|eι̇q·(r1−r2 )|n, j3; n′, j4〉 + 〈n′, j2; n, j1|eι̇q·(r1−r2 )|n′, j4; n, j3〉

− 〈n′, j2; n, j1|eι̇q·(r1−r2 )|n, j3; n′, j4〉 − 〈n, j1; n′, j2|eι̇q·(r1−r2 )|n′, j4; n, j3〉}, (B4)

where the explicit form of terms inside the parentheses is following:

〈n, j1; n′, j2|eι̇q·(r1−r2 )|n, j3; n′, j4〉 = Ln1

(
q2�2

2

)
Ln2

(
q2�2

2

)
e

ι̇2πs
Nφ

( j1− j4 )
,

〈n′, j2; n, j1|eι̇q·(r1−r2 )|n′, j4; n, j3〉 = Ln1

(
q2�2

2

)
Ln2

(
q2�2

2

)
e

ι̇2πs
Nφ

( j2− j3 )
,

〈n′, j2; n, j1|eι̇q·(r1−r2 )|n, j3; n′, j4〉 = (q�)2

2
e

ι̇2πs
Nφ

( j1− j3 )
,

〈n, j1; n′, j2|eι̇q·(r1−r2 )|n′, j4; n, j3〉 = (q�)2

2
e

ι̇2πs
Nφ

( j2− j4 )
. (B5)

For the case of inter-LL term, we use V (q) = V n1n2−n3n4
0 (q) + V n1n2−n3n4

1 (q).
Putting the corresponding form of V (q) given in Sec. II, intra-LL and inter-LL matrix elements are given by

V nn−nn
j1 j2− j3 j4

= 1

LxLy

∑
s,t∈Z

e− q2

2 L1(q2�2)
(
e

ι̇2πs
Nφ

( j1− j4 ) + e
ι̇2πs
Nφ

( j2− j3 ) − e
ι̇2πs
Nφ

( j1− j3 ) − e
ι̇2πs
Nφ

( j2− j4 ))
(B6)

and

V nn′−nn′
j1 j2− j3 j4

= 1

LxLy

∑
s,t∈Z

e− q2

2
[
[L1(q2�2) + L0(q2�2)]

(
e

ι̇2πs
Nφ

( j1− j4 ) + e
ι̇2πs
Nφ

( j2− j3 ))

− [L1(q2�2) − L0(q2�2)]
(
e

ι̇2πs
Nφ

( j1− j3 ) + e
ι̇2πs
Nφ

( j2− j4 ))]
. (B7)

Both intra-LL and inter-LL matrix elements are independent of LL indices.
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FIG. 10. Cylinder geometry.

APPENDIX C: CALCULATION OF MATRIX ELEMENTS
ON CYLINDER GEOMETRY

For a cylinder given in Fig. 10, single-particle states are
given by

φn,k (r) = 1√
2nn!

√
πL

exp

[
−ι̇

2πk

L
y

]

× exp

[
−1

2

(
x

�
− 2π�

L
k

)2
]

Hn

[
2π�

L
k − x

�

]
,

(C1)

where L is the length of circumference. Length of the cylinder
fixed by putting a cutoff on k values such that it can only take
Nφ consecutive values in each LL with kmin = 0 and kmin =
Nφ − 1. The matrix elements for the cylinder are calculated
using

V = 1

(2πL)

∑
m

∫
dq V (q)eι̇q(x̂1−x̂2 )eι̇ 2πm

L (ŷ1−ŷ2 ). (C2)

For calculation of cylinder matrix elements, we use the same
form of V (q) which was used in the case of torus geometry.

APPENDIX D: ANSATZ FOR QUASIPARTICLES
OF ν = 1

3 ON DISK

Even though the exact eigenfunctions for the model inter-
action on the disk geometry can be written in a compact form,
given in Eq. (5), these do not immediately generalize to the
case of the spherical or torus geometry. In this Appendix we
describe a form of the ansatz that is equivalent to Eq. (5) for
the special case of quasiparticles of 1

3 . The form presented
here has the advantage of generalizing to other geometries. In
this Appendix, we restrict to the case where all particles are
in the lowest two LLs, i.e. , n = 0, 1 as is appropriate when
considering quasiparticles of 1

3 .
The state with angular momentum m in nth LL has the form

ηn,m(z, z̄) = Fn,m(z, z̄) e−|z|2/4�2
, (D1)

where Fn,m(z, z̄) is a polynomial of z and z̄. Highest power
of z̄ in Fn,m(z, z̄) is equal to the LL index n. The action of
the guiding-center coordinate Ẑ = z/2 − 2�2∂z̄ on the single-
particle states ηn,m

′s can be reduced to the action of an
operator on Fn,m:

Ẑηn,m(z, z̄) = (z/2 − 2�2∂z̄ )Fn,m(z, z̄) e−|z|2/4�2

= e−|z|2/4�2
(z − 2�2∂z̄ )Fn,m(z, z̄). (D2)

In the remaining calculations we will omit the exponential
factor from the expressions.

We will now consider the state describing N QPs of 1
3 given

by, 

N QPs
ν=1/3 = J 2({Ẑi}) �

N QPs
1 , where the �

N QPs
1 contains N

particles in LL1. Any ansatz state is called a proper state when
for each occupied Landau orbital in the Slater determinant
�ν∗ , with LL index n and momentum state k, kth momentum
Landau orbitals in all lower LLs are also filled [34]. Hence,
quasiparticle states are proper states. In a determinant �

N QPs
1

corresponding to a proper state, the orbitals in the second
Landau can be written as F1,m(zi, z̄i ) = zm

i z̄i for all i, without
affecting the Slater determinant �

N QPs
1 . Hereafter, we will use

this as the definition of F1,m(zi, z̄i ). The remaining terms in
F1,m do not contribute to the determinant.

Since all particles in � are in the lowest two LLs �
N QPs
1

will at most be linear in z̄i
′s, for each i. This implies that we

only need to expand the Jastrow factor J 2({Ẑ}) up to linear
terms in ∂z̄

′s:

J 2({Ẑ})�N QPs
1 =

∏
i< j

(Ẑi − Ẑ j )
2�

N QPs
1

=
∏

i

[J 2({z}) − ∂ziJ 2({z}) (2�2∂z̄is)]�N QPs
1

=
∏

i

[
1 − ∂zi

(
2�2∂z̄i

)]
�

N QPs
1 J 2({z}).

(D3)

Here J ({z}) = ∏
i< j (zi − z j ) is the Jastrow factor of nor-

mal position coordinates. Note that in the last expression the
derivatives ∂zi act only on the Jastrow factor J 2({z}) and ∂z̄i

acts only on the Slater determinant �
N QPs
1 .

The above expression acts trivially on lowest Landau level
states of the Slater determinant:[

1 − 2�2∂zi ∂z̄i

]
zmi

i J 2({z}) = zmi
i J 2({z}). (D4)

When there are states from the second LL in the Slater deter-
minant it acts as[

1 − 2�2∂zi ∂z̄
]
z̄iz

mi
i J 2({z}) = [

z̄i − 2�2∂zi

]
zmi

i J 2({z})

= PLL1zm
i z̄iJ 2({z}), (D5)

where PLL1 = I − PLLL is the projection to the second LL.
Combining these results, the ansatz simplifies to the fol-

lowing expression for the case of N quasiparticles of 1
3 :

J 2({Ẑi}) �
N QPs
1 = �̂

N QPs
1 J 2({zi}), (D6)

where the Slater determinant �̂
N QPs
1 is constructed by

replacing all LL1 Landau orbitals F1,m(z, z̄), inside �
N QPs
1

by F1,m(z, z̄) − F̂1,m(z, z̄ → 2�2∂z ). Here the operator
F̂1,m(z, z̄ → 2�2∂z ) represents LLL projection of the LL1
Landau orbital F1,m(z, z̄) constructed by replacing z̄ → 2�2∂z.
A normal ordering is required such that all z̄ are moved to
the left before making the replacement z̄ → 2�2∂z where it is
understood that the derivatives do not act on the exponentials
[36]. The exact eigenfunction given in Eq. (5) can be rewritten
in this way for neutral excitations of 1

3 as well, as long as the
Slater determinant state �α

1 is a proper state.

APPENDIX E: DETAILS OF PERIODICITY CHECKS
FOR TORUS ANSATZ

In this Appendix, we discuss the details of periodic bound-
ary condition checks of both torus ansatz, given in Secs. V B
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and V C. We will use following properties of Jacobi theta
functions, given by

ϑ
[

a

b

]
(z ± 1|τ ) = e±ι̇2πaϑ

[
a

b

]
(z|τ ),

(E1)

ϑ
[

a

b

]
(z ± τ |τ ) = e−ι̇π[τ±2(z+b)]ϑ

[
a

b

]
(z|τ ),

where for the torus given torus in Fig. 2, τ = −L1/L2.
First, we will discuss periodicity checks for the ansatz

given in Sec. V B. The action of magnetic translation opera-

tors (MTOs) ti(L1) and ti(L2) the exponential factor e−
∑

i z2
i +|zi |2
2�2

is given by

ti(L2)e−
∑

i z2
i +|zi |2
2�2 = e−

∑
i z2

i +|zi |2
2�2 , (E2)

ti(L1)e−
∑

i z2
i +|zi |2
2�2 = eι̇πNφ (τ− 2zi

L2
)e−

∑
i z2

i +|zi |2
2�2 , (E3)

where we use Eq. (24) to write the MTOs as a phase times cor-
responding normal translation operators. Now that the phase
term is taken into account, we only need to calculate the action
of normal translation operators Ti(L1) and Ti(L2), on the re-
maining parts of the ansatz. Action of these on single-particle
wave functions [Eq. (43)] on the torus is given by

Ti(L2) f k
0 (zi ) = ϑ

[
k

N∗
φ

+ θ2
2πN∗

φ

θ1
2π

](
N∗

φ zi

L2
+ N∗

φ

∣∣∣∣N∗
φ τ

)
= eι̇θ2 f k

0 (zi),

(E4)

Ti(L1) f k
0 (zi ) = ϑ

[
k

N∗
φ

+ θ2
2πN∗

φ

θ1
2π

](
N∗

φ zi

L2
− N∗

φ τ

∣∣∣∣N∗
φ τ

)

= eι̇θ1 e−ι̇πN∗
φ (τ− 2zi

L2
) f k

0 (zi ), (E5)

and, similarly, we have

Ti(L2) f k
1 (zi, z̄i ) =

√
2�∗

[
z̄i + zi

2(�∗)2
− ∂zi

]
eι̇θ2 f k

0 (zi )

= eι̇θ2 f k
1 (zi, z̄i ), (E6)

Ti(L1) f k
1 (zi, z̄i ) =

√
2�∗

[
z̄i + zi

2(�∗)2
+ Lx

(�∗)2
− ∂zi

]
eι̇θ1

× e−ι̇πN∗
φ (τ− 2zi

L2 ) f k
0 (zi )

= eι̇θ1 e−ι̇πN∗
φ (τ− 2zi

L2
) f k

1 (zi, z̄i ). (E7)

Since the Slater determinat �ν∗ consists of LLL states f k
0 (z)

and LL1 f k
1 (z, z̄) only, the action of Ti(L1) and Ti(L2) on

�ν∗ is identical. Putting together Eqs. (E4) and (E7) gives up
Eqs. (27) and Eqs. (E5) and (E6) combine to give Eq. (31).

For the ansatz given in Sec. V C, the action of translation
Ti(L2) is trivial. The action of Ti(L1) on the Jastrow factor is
given by

Ti(L1)J 2 = e−2ι̇π (Ne−1)τ e−4ι̇π (Zcm−Nezi )/L2J 2. (E8)

When put together with Eq. (E5), it gives Eq. (52). Similarly,
the action of Ti(L1) on ĝ

q j

1 (zi )J 2 is given by

Ti(L1)ĝq
1(zi )J 2 =

√
2N∗

φ�∗

Nφ

[
z̄i + zi

2�2
f q
0 (zi + L1) + Lx

�2
f q
0 (zi)

− ∂zi f q
0 (zi + L1) − f q

0 (zi + L1)∂zi

]

× e−2ι̇π (Ne−1)τ e−4ι̇π (Zcm−Nezi )/L2J 2. (E9)
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FIG. 11. Demonstration of adiabatic continuity between the
ground state and the low-energy neutral excitations of the model
Hamiltonian and the lowest Landau level Coulomb Hamiltonian for
N = 6 particles at ν = 2
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FIG. 12. Demonstration of adiabatic connectivity of low-energy
eigenstates of our model Hamiltonian and the those of the LLL
Coulomb Hamiltonian for a six-particle system at ν = 1
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By putting the value of Eq. (E5) in place of f q
0 (zi + L1), we

get the result in Eq. (53).

APPENDIX F: ADIABATIC CONTINUITY BETWEEN THE
NEUTRAL EXCITATIONS OF MODEL INTERACTION

AND LLL COULOMB INTERACTION

Figure 11 shows the study of adiabatic continuity between
model and LLL projected Coulomb interaction at filling frac-
tion ν = 2

5 , where the Hamiltonian is defined as

Ĥ = β

N∑
j=1

(
π̂2

j /2mb
)
/(h̄ωc) + (1 − λ)V̂ + λV̂Coulomb, (F1)

where V̂ is the model interaction of Eq. (6) for sphere, with
all its pseudopotentials set to unity, V̂Coulomb is the Coulomb
interaction, and all energies are quoted in the units of e2/ε�.
At each λ and β, the spectrum has been vertically shifted to set
the L = 0 ground state to 0. The left panels show the evolution
of the low-lying eigenstates as λ is varied from 0 to 1 with β =
0.05. The right panels show the evolution as β is changed from
0.05 to 2.0 with λ = 1.0. Lowest three LLs are included in

this calculation. Different rows indicate the spectra in different
angular momentum (L) sectors. Spectra at the leftmost part
corresponds to the model interaction, whereas the rightmost
spectra are for Coulomb interaction with large cyclotron gap
in LLs. The solid blue dashes at the rightmost end show the
Coulomb energies in the LLL (i.e. , for λ = 1 and β = ∞).
Adiabatic continuity for the low-energy states is seen in all
cases; the qualitatively different behavior for L = 1 (note the
different energy scale for this row), for which the states are
pushed to very high energies, captures the absence of a low-
energy neutral mode in the LLL Coulomb spectrum.

Figure 12 shows the results of a similar study for filling
fraction ν = 1

3 . The left panel shows the change in the spectra
as λ changes from 0 to 1 keeping β = 0.05 and the right
panels show the variation as β goes from 0.05 to 2. Different
rows show the spectra in different L sectors. All energies are
relative to the ground state of L = 0 sector. Here as well,
in the L = 1 sector, one of the three states from the left-
hand side is projected out to high energy as the cyclotron
gap β is increased. The ground state of the model Hamilto-
nian adiabatically connects to ground state for LLL Coulomb
Hamiltonian. The same is true from neutral excitations, with
the exception of level crossing at L = 2.
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