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Accurate Kohn-Sham auxiliary system from the ground-state density of solids
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The Kohn-Sham (KS) system is an auxiliary system whose effective potential is unknown in most cases. It is
in principle determined by the ground-state density and it has been found numerically for some low-dimensional
systems by inverting the KS equations starting from a given accurate density. For solids, only approximate
results are available. In this work, we determine accurate exchange-correlation (xc) potentials for Si and NaCl
using the ground-state densities obtained from auxiliary field quantum Monte Carlo calculations. We show that
these xc potentials can be rationalized as an ensemble of a few local functions of the density, whose form depends
on the specific environment and can be well characterized by the gradient of the density and the local kinetic
energy density. The KS band structure can be obtained with high accuracy. The true KS band gap turns out to
be larger than the prediction of the local density approximation, but significantly smaller than the measurable
photoemission gap, which confirms previous estimates. Finally, our findings show that the conjecture that very
different xc potentials can lead to very similar densities and other KS observables is true also in solids, which
questions the meaning of details of the potentials and, at the same time, confirms the stability of the KS system.

DOI: 10.1103/PhysRevB.107.195123

I. INTRODUCTION

Density functional theory [1,2] (DFT) is undoubtedly one
of the biggest success stories of condensed matter theory,
since it has made realistic electronic structure calculations
possible for a huge range of materials and since it has led
to numerous insights [3,4]. Two main problems had to be
overcome in order to make DFT applicable in practice: first,
it was necessary to find reliable approximations for the to-
tal energy as functional of the ground-state density; second,
an efficient way to determine the ground-state density itself
was needed. The solution to both problems relies on the ap-
proach of Kohn and Sham [2], where the interacting system is
mapped onto an auxiliary system of noninteracting electrons
with an effective Kohn-Sham (KS) potential that is designed
to yield the ground-state density. The exchange-correlation
(xc) contribution to this potential, vxc(r), and to the xc energy
density per particle, εxc(r), is unknown in most systems. The
initial breakthrough came with the local density approxima-
tion [2] (LDA). This approximation takes the energy density,
and hence vxc(r), locally from the homogeneous electron gas
(HEG), where it was calculated using quantum Monte Carlo
[5] (QMC). However, to find approximations that are system-
atically better than the LDA has turned out to be exceedingly
difficult [6,7]. Today, in spite of the developments of suc-
cessful gradient corrections and sophisticated approximations
tailored by exact constraints [8–11], one may say that there
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is still no generally established multipurpose approximation
beyond the LDA. One of the difficulties is that it is not easy
to benchmark vxc. First, the Kohn-Sham potential is not an
observable by itself, which means there are no experimental
data with which to compare. Second, since vxc is the po-
tential of an auxiliary system, besides the density, any other
observables calculated in the KS system can in principle be
arbitrarily far from measured values. The prototype example
for this dilemma is the KS eigenvalue band gap [12–14]. For
example, in the LDA, this KS gap is in general much smaller
than the fundamental electron addition-removal gap that can
be extracted from direct and inverse photoemission [15,16]. It
would, however, be too simple to just blame the LDA. While
the exact direct gap of the auxiliary KS system equals the
optical excitation gap in the limit of a single electron, this
is only approximately true in real molecules or materials.
Moreover, the fundamental gap is in general larger than the
optical gap. The exact fundamental gap could in principle be
determined as a difference of total energies with varying par-
ticle number. The exact KS eigenvalue gap should be smaller
than the exact fundamental gap by a constant called derivative
discontinuity. Therefore, there is no reason for the eigenvalue
gap of the auxiliary KS system to equal the photoemission
gap of the true material [2,17]. However, the difference, i.e.,
the derivative discontinuity, is in general unknown. Indeed,
the respective errors of the approximate functionals and of
the KS system itself have been a matter of debate for many
years. Results derived from many-body perturbation theory to
first order in the screened Coulomb interaction [18–26] gave
evidence that the error in simple semiconductors is mainly
due to the auxiliary nature of the KS system, i.e., due to the
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missing derivative discontinuity [12–14], rather than due to
the LDA for vxc. However, these are merely estimates based
on perturbation theory and the numerically exact KS potential
and KS band gap of solids remain to date unknown.

More information is available in low-dimensional, often
finite, systems, where ways have been proposed to invert the
KS equations and find the KS potential starting from a given
density [27–30]. This density could be determined by ana-
lytical or numerical methods. This has given precious insight
about the potential and observables in the KS system [31–46].
For example, in the helium atom the exact highest occupied
molecular orbital (HOMO) lies about 25 eV below the vacuum
level and an additional electron is unbound. The exact KS
eigenvalue gap, instead, turns out to be only 20.3 eV, since
KS binds the lowest unoccupied molecular orbital (LUMO)
[36,47,48]. On top of this underestimate, the LDA reduces
the HOMO-LUMO gap further, yielding 15.85 eV. The in-
version of the KS system is not an easy task, though, and in
particular a finite basis set may lead to drastically modified
results [49–53]. Moreover, small changes in the density can
yield large differences in the potential [54,55]. Altogether, a
reliable inversion of the KS equations remains a difficult task
even for finite systems and, while various methods have been
proposed to overcome the problems, research in this direction
is still ongoing [54–65].

In realistic three-dimensional periodic systems, the density
of beryllium obtained from x-ray diffraction experiments has
been used to determine an auxiliary noninteracting system
[66]. However, to the best of our knowledge, no results for vxc

obtained directly from a numerically exact density are avail-
able. This has several reasons, including the fact that data for
numerically exact densities of solids were not available in the
literature and that the inversion in extended three-dimensional
systems may bear new technical difficulties. Therefore, to
date a series of important fundamental questions remain to
be answered, in particular, as follows: How can we adapt an
inversion approach designed for finite systems to the case of
solids and which kind of precision can be obtained in solids?
How different is the resulting vxc from standard approxima-
tions for solids, such as the LDA or Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation [9] (GGA)? What
about observables in this numerically exact KS system and,
in particular, the band gap? How much does vxc depend on
details of the density? And if it depends significantly, do
the resulting changes have an impact on other KS observ-
ables? Starting from nearly numerical exact densities [67] for
the simple semiconductor bulk silicon and insulating sodium
chloride obtained by the auxiliary field (AF) QMC method
[68,69] in Ref. [70], in the present work we answer these
longstanding questions.

II. HOW TO INVERT THE KS PROBLEM
IN INFINITE SYSTEMS

The probably simplest algorithm to obtain the KS potential
from a given density nref has been proposed for finite systems
by van Leeuwen and Baerends [27]. In its original form it
was derived by solving the KS equations for the KS potential
vKS. The result was then translated into an iteration procedure
which relates a potential vi+1 at step i + 1 to the potential vi at

step i by the ratio of the target density nref and the density ni at
step i. As pointed out in [30], the best use of this ratio depends
on the sign of the potential that is updated: for example, v may
be either the usually negative total vKS or its rather positive
interaction part vH + vxc, with vH being the hartree potential.
In the present work we use

vi+1
xc (r) = nref (r) + a

ñi(r) + a
vi

xc(r), (1)

where a is a parameter that avoids instabilities in regions of
very low density as suggested in [27] and the mixing ñi =
αni−1 + (1 − α)ni, with 0 < α < 1, is introduced to smooth
the convergence. This density ñi is also used to update the
hartree potential at each iteration. Equation (1) is clearly a
good strategy if vxc is negative, and if the density at a point
r is determined only by the KS potential at that same point.
Suppose that at a given iteration ñi(r) is larger than nref (r).
The algorithm then decreases the absolute value of vxc(r). If
the exchange-correlation potential is negative, this step makes
the potential more shallow and less density will be attracted to
the point r in the next iteration, which pushes the solution in
the good direction. Of course, it is not true that n(r) depends
only on the KS potential in the same point r and it has to be
seen to what extent the relation is nearsighted enough to make
the algorithm work in a solid.

The negative sign of the potential that is updated in (1)
is crucial for the algorithm to work, because a positive sign
would drive the result in the wrong direction. However, con-
trary to the HEG, a real system can also exhibit regions of
positive vxc. Moreover, while in a low-dimensional system one
can impose that the potential tends to zero at large distances,
in a three-dimensional solid the zero of the potential is not
defined. One cannot even use the ionization potential theorem,
which would force the eigenvalue of the highest occupied state
to be minus the ionization energy, since this theorem does
not hold in extended systems [71]. The arbitrary energy scale
represents both an advantage and a drawback. On the upside,
it allows us to introduce a rigid negative shift such that the
potential remains negative throughout the iteration. This shift
is arbitrary within reasonable limits: if it is too small, positive
regions may appear and become an obstacle for convergence.
If it is too large, the algorithm becomes unstable, as the shift
is multiplied at every step by the density ratio. Reasonable
values lie within the maximum amplitude of the potential. On
the downside, iteration of (1) yields vxc only up to a constant.
This is not due to our introduction of a shift, but to the fact that
the density does not contain information about the absolute
value of the potential [1]. Therefore, this limitation cannot
be avoided. The resulting potential can, however, be used to
calculate a well defined density and KS observables such as
the KS band structure (besides the meaningless constant shift).

We have tested the algorithm using known functionals.
As documented in Appendix B, the inversion works straight-
forwardly for the LDA, but two further aspects have to be
verified. On one side, the true functional, unlike the LDA, is
nonlocal, which might influence the behavior of the algorithm.
This is sorted out in Appendix C. Second, the QMC data
contains statistical noise; this aspect is deepened in Ap-
pendix D. Finally, Appendix E shows that the inversion
starting from the QMC density behaves as expected. It also
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demonstrates that the final results do not depend on the start-
ing point of the iterative procedure, including starting points
as far from the final result as, e.g., 0.1 × vLDA

xc . For the results
shown in the following, we use as a starting point 0.3 × vLDA

xc
with a rigid downwards shift of 0.2 hartree for silicon and 0.4
hartree for NaCl. In the following, we report results in atomic
units for both densities (expressed in bohr−3) and xc potentials
(in hartree).

III. RESULTS

A. Kohn-Sham potential of silicon and sodium chloride

We have applied the algorithm to obtain the exchange-
correlation potential from the charge density obtained by
AFQMC calculations. For silicon, we have used the results
of Ref. [70]. For NaCl, we have applied additional sym-
metry operations to the density from the same Ref. [70].
Ideally, from the inversion procedure for iteration i → ∞
one should find nQMC,i(r) → nQMC(r). However, since the
QMC data contains statistical noise, the inversion has a more
limited precision than in the case of, e.g., clean LDA data
(see Appendix D). The mean absolute value of the percentage
error (MeAPE) of the density of silicon nQMC,i at iteration
i compared to nQMC, 100 × meanr|1 − nQMC,i(r)/nQMC(r)|,
does not fall below 0.02%, while the maximum (over the unit
cell) of the absolute value of the percentage error (MaAPE) of
the density, 100 × maxr|1 − nQMC,i(r)/nQMC(r)|, decreases
to 0.38% at i = 20 iterations. This is in any case sufficient
to make significant distinctions between different densities
and potentials. The upper panel of Fig. 1 shows the local
percentage difference (LPD) of the iterative density with re-
spect to the QMC density after 20 iterations (blue line), 100 ×
[nQMC,20(r)/nQMC(r) − 1], along a path through the unit cell
(the same as in Ref. [70]; see the inset to the second panel
of Fig. 1). The result stays well within the stochastic error
bar of the QMC calculation (gray area). For comparison, we
also show the LPD of the LDA and PBE densities (dot-dashed
orange and dashed green lines, respectively), with respect to
the QMC. As also shown in Ref. [70], differences between
LDA, PBE, and the QMC densities are largest on the atoms
and also in other regions of low density [72] (see the magenta
line in the second panel of Fig. 1), but they are still significant
in regions of higher density, along the (110) direction, where
LDA and PBE are very similar, but differ from the QMC
result. Most importantly, the differences between different
densities are much larger than the error due to the inversion
of the QMC density: while the MeAPE at i = 20 is 0.04%,
the mean absolute relative difference between the LDA and
QMC densities is 1.93% and it is 1.07% between the PBE and
QMC densities.

The xc potentials are compared in the third panel of Fig. 1.
For this comparison, the potentials are aligned at their aver-
age value. Our numerically determined and supposedly most
accurate KS xc potential, obtained from the QMC density,
is similar to the local and semilocal approximations. This
result is stable: the QMC result obtained at i = 10, where the
MaAPE and MeAPE on the density are 0.90% and 0.09%,
respectively, is almost indistinguishable from the one at
i = 20. The differences between QMC on one side and LDA

FIG. 1. Density and xc potential of bulk silicon along the same
path across the unit cell as in Ref. [70]. The positions of atoms are
indicated by dotted vertical lines. The iterative inversion follows
Equation (1) with the QMC density nQMC of silicon as reference
density. The potential vQMC,20

xc is obtained after i = 20 iterations.
The density nQMC,20 is calculated using vQMC,20

xc in the KS equation.
The MaAPE at i = 20 compared to nQMC is 0.38% and the MeAPE is
0.04%. Top panel: LPD of nQMC,20 (blue), self-consistent LDA nLDA

(orange), and PBE nPBE (green) densities with respect to nQMC. The
gray area is the stochastic error bar of the QMC density. Second
panel: the QMC density nQMC (magenta line). The inset shows the
chosen path across the crystal from Ref. [70]. Third panel: vQMC,20

xc

(blue), vLDA
xc (orange), vPBE

xc (green), and vQMC,10
xc (red). Note that the

two QMC potentials (blue and red lines) are almost indistinguish-
able. The average potentials are aligned. Bottom panel: LPD of xc
potentials with respect to vQMC,20

xc for LDA (orange), PBE (green),
and QMC at i = 10 (red).

and PBE on the other side can be appreciated in the bottom
panel, which shows the LPD of LDA and PBE with respect
to the QMC xc potential obtained at i = 20. These differences
are similar for LDA and PBE along most of the path. The
MeAPE with respect to the QMC result for potentials is 3.90%
for the LDA and 3.88% for the PBE: of similar order as,
though larger than, the MeAPE of the densities. Instead, the
LPD of the QMC potential at i = 10 with respect to the po-
tential obtained at i = 20 can hardly be seen. We have hence
reached sufficient precision on the density, which lies within
the QMC error bar, and the xc potential, which shows some
differences with respect to common functionals. The effect
of iterating further using the noisy QMC data is discussed in
Appendix D and E.

Results for sodium chloride show similar trends, with even
better convergence properties of the potential due to the fact
that our QMC density for NaCl is less noisy than the one
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FIG. 2. Density and xc potential of NaCl along the same path
across the unit cell as in Ref. [70]. The positions of atoms are
indicated by dotted vertical lines. The iterative inversion follows
Equation (1) with the QMC density nQMC of NaCl as reference
density. The result of the QMC inversion is shown at i = 200. The
MaAPE on the density at i = 200 compared to nQMC is 0.29% and the
MeAPE is 0.03%. Top panel: LPD of nQMC,200 (blue), self-consistent
LDA nLDA (orange), and PBE nPBE (green) densities with respect to
nQMC. The gray area in the top panel indicates the stochastic error
bar of the QMC density. Second panel: the QMC density nQMC (thin
magenta line). The inset shows the chosen path across the crystal
from Ref. [70]. Third panel: vQMC,200

xc (blue), vLDA
xc (orange), and vPBE

xc

(green). The averages of the potentials are aligned. Bottom panel:
LPD of xc potentials with respect to vQMC,200

xc for LDA (orange) and
PBE (green).

of silicon in the important regions of high density (see also
Appendix D). For the density, we obtain a MeAPE of 0.03%
and a MaAPE of 0.29% at i = 200. Here, analogous to Fig. 1
for silicon, in Fig. 2 we show the LPD of the density and of the
xc potential along a path (see the inset to the second panel).
The QMC-derived xc potential differs from the LDA and PBE
especially on the sodium atoms, where the density shows rapid
changes. At first sight, however, and as in the case of silicon,
it is difficult to rationalize the differences between the three
potentials. While it is exciting to see the numerically exact xc
potential for real semiconductors and insulators, it is useful
to switch to a representation that highlights the essence of the
difference in order to gain more insight.

FIG. 3. LPD of self-consistent LDA nLDA (orange), PBE nPBE

(green), and TBmBJ (light blue) densities with respect to nQMC. The
gray area is the stochastic error bar of the QMC density. (Top panel)
Silicon. (Bottom panel) NaCl.

B. Nonlocal dependence of the KS exchange-correlation
functional on the density

In order to appreciate the nonlocality of the QMC derived
potential, we will again compare it to known functionals. It
is interesting to add the Tran-Blaha modified Becke-Johnson
potential [73] to the more common functionals LDA and PBE,
since this functional is designed with a different purpose,
namely, to yield an eigenvalue gap closer to the measurable
fundamental gap than the exact KS potential. This requires a
compromise concerning the resulting density. The deviation of
the latter from the QMC one is shown in the top and bottom
panels of Fig. 3 and for silicon and NaCl, respectively. The
density errors have opposite sign with respect to those of the
LDA throughout, and they are of similar order of magnitude
in silicon and about 4–5 times larger in NaCl. This raises
the question of how the potential and KS observables will
compare.

In the LDA, vxc(r) is a monotonic function of n(r). The
exact KS potential is a functional of the density everywhere,
which means that it can take different values in different points
r where the density, instead, is the same. This expresses the
fact that vxc(r) depends not just on the local density, but also
on the environment. In order to highlight how the true vxc

differs from a function of the local density, we create a map of
vxc(r) with respect to n(r): for each point r in real space, we
add a point [vxc(r) ↔ n(r)] to Figs. 4 and 5 for silicon and
NaCl, respectively. In the case of the LDA, this plot shows
the universal function vxc(n), the same for silicon and NaCl,
which is identical to the function in the HEG. Beyond the
LDA, different environments may change this function, such
that it is different for different materials. Moreover, in one and
the same material the presence of different environments may
lead to the presence of more than one function and, finally, if
the result is very sensitive to details, one might find it difficult
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FIG. 4. Map of the xc potential of silicon with respect to the local density at all points in the unit cell. Color codes reflect the modulus of
the local gradient of the density (left column) or the local kinetic energy density (right column). Upper figures are for PBE, middle figures for
QMC, and bottom figures for TBmBJ. The LDA is shown in green.

to detect anything like a limited number of functions. All these
effects are possible signatures of the nonlocal dependence of
vxc(r) on the density and being able to discern them, and to
characterize different environments, may give precious input
for further modeling of vxc.

The maps in Figs. 4 and 5 contain the results of LDA,
PBE, TBmBJ, and QMC. The universal LDA result is given
for reference in all panels of Figs. 4 and 5. LDA, PBE, and
TBmBJ potentials are directly obtained from the KS calcula-
tion; only the QMC result stems from the inversion. In silicon,

the PBE result (upper panels of Fig. 4) is dominated by a
simple monotonic function, but it is slightly steeper than the
LDA function. Moreover, the result appears to be a little more
scattered. Finally, a new branch appears at low densities. For
more insight, the colors reflect, respectively, the modulus of
the local gradient of the density (left panels) and the KS
kinetic energy density defined as τ (r) = 1

2

∑occ
i |∇φi(r)|2,

where φi are KS orbitals (right panels). The TBmBJ potential
in the bottom panels is similar to the PBE, with an extra
upwards branch at low densities, with some blurring at higher
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FIG. 5. Same as Fig. 4, for NaCl. Note the much larger range for n(r) here. Upper panels are for PBE, middle panels for QMC, and bottom
panels for TBmBJ. The LDA is shown in green. The inset in the middle right panel shows the QMC density along a part of the path across the
unit cell. Note that a data point in the main graph (marked by 1) falls into the inset area.

densities and with a tendency to be lower than the LDA result
at high density. The latter two features appear to be much
stronger than in the PBE.

The QMC xc potential in the middle panels is also blurred.
However, this cannot be interpreted as a reliable feature of the
true KS potential, since the QMC data is noisy, which may
also cause blurring, as we have demonstrated in Appendix D.
The overall shape and branches of the QMC xc potential,
instead, are significant. Similarly to the PBE and TBmBJ, one

can identify a dominant curve and, with respect to the LDA,
two main changes are seen: the curve is steeper than that of the
LDA and at low densities an additional branch appears. The
change in slope of the main branch with respect to the LDA
goes in the same direction as in the PBE and TBmBJ results
and it is more pronounced than in the case of PBE, similarly
to TBmBJ. Also the branching happens in a similar region as
in the case of PBE and TBmBJ. However, the branch departs
in the opposite direction.
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In all cases, the extra branch is characterized by a very
different gradient and kinetic energy density with respect to
the main branch at the same local density. Indeed, the region
in space where the potential lies on the extra branch is close
to the center of the atoms, where the density varies rapidly.
It should therefore be noted that it will be particularly sen-
sitive to details of the pseudopotential. This, together with
the fact that the inversion error on the density is largest on
the atoms (see Fig. 11 in the Appendixes), which then also
influences the large density gradients in the vicinity, suggests
that the different directions of the branches observed here
would deserve more studies including many more QMC data
sets using different pseudopotentials and including different
materials, which is beyond the scope of the present work. The
changed slope of the main branch, instead, happens over the
complete range of densities and should be a feature of silicon
independent of the pseudopotential and other ingredients of
the calculation.

The modifications of the different branches with respect to
the LDA vLDA

xc may be translated in different ways, for ex-
ample, ve

xc(r) = F e(n(r))vLDA
xc (n(r)), with a correction factor

F e that depends on the local density and on an environment
e, which must be characterized. Another possibility would
be ve

xc(r) = vLDA
xc [F e(n(r)) × n(r)]. The GGAs, for example,

are an attempt to characterize the environment by the lo-
cal gradient of the density (see, e.g., Ref. [74]). Our results
motivate further search for improved approximations of the
true functional that can be expressed as functions of a lim-
ited number of parameters, such as the local density and its
gradients.

Consistently with the fact that the QMC density for NaCl
is less noisy than in the case of silicon, the map for NaCl in
Fig. 5 (middle panels) shows less scattering. As for silicon, we
find a main branch that corresponds to a modified LDA. More-
over, there is an additional branch at low densities and another
branch at high density, both characterized by differences in the
gradient or kinetic energy density. The analogous secondary
branches for PBE (see upper panels) are less pronounced,
whereas these features are much stronger in TBmBJ. The inset
in the middle right panel also shows the QMC density along
part of the path. Numbers indicate to which locations selected
data points correspond. For example, data point 1 on the addi-
tional high-energy branch corresponds to the potential on the
sodium atom, with an environment where the density is very
quickly varying, which explains why the LDA completely
fails. Data point 2, instead, corresponds to a place with similar
density but located in a more gentle environment, although the
gradient of the density is significant. As expected, in this point
we are on the main branch, which is, however, modified with
respect to the LDA.

Similarly, points 3 and 4 on the chlorine atom explain
the extra branch at lower density. These results show that
the potential-density relation presented as maps such as the
one in Figs. 4 and 5 may give further insight about the
most efficient way to introduce correction factors and about
the most important features distinguishing different environ-
ments, which could eventually be combined with machine
learning approaches [75].

C. Kohn-Sham approximation to the band gap

It is most interesting to look at KS observables other
than the density, in particular, KS eigenvalues: even though,
as discussed above, these do not by themselves have direct
physical meaning in an exact sense, they can still be seen
as an approximation to the physical quantities [76,77] and
they are frequently used as starting points for calculations in a
more appropriate framework, such as many-body perturbation
theory [78]. In particular, the study of the KS band gap is inter-
esting by itself, since it is a matter of a longstanding debate. In
the absence of knowledge of the exact Kohn-Sham potential, it
was not possible to distinguish between the discrepancies due
to approximations of the functional and those due to the differ-
ence between the (even exact) Kohn-Sham system itself and
the real material. Precious hints were already given by work
on model systems; for example, Knorr and Godby [34,35]
determined the xc potential by inversion from the density of
a finite one-dimensional model semiconducting wire that was
then extrapolated to infinite length. Most of the band gap error
was shown to be due to the fact that the exact KS eigen-
value gap differs from the fundamental electron addition and
removal gap and not due to approximations. Indeed, the KS
eigenvalue gap calculated at fixed particle number disregards
the derivative discontinuity of the exact xc potential upon
change of particle number [12–14]. Since the numerically
exact density and/or xc potential could be obtained only for
very few, low-dimensional, systems, several studies used the
link between the xc potential and the self-energy given by the
Sham-Schlüter equation [13] in order to extract vxc from the
self-energy. These include work on a two-plane wave model
[13,79], the surface barrier for semi-infinite jellium [80], finite
systems [21,81–83], and the study of several real semiconduc-
tors and insulators [18,20–26]. These studies confirmed that
the error inherent in using Kohn-Sham eigenvalues instead
of true electron addition and removal energies is significant.
However, the approaches used to determine the potential in-
volved themselves approximations whose quantitative impact
on the findings are not known: first, the Sham-Schlüter equa-
tion was linearized in all studies; second, the self-energy itself
was approximated in many-body perturbation theory, mostly
on the GW [84] level. With the present work, we finally do
have an almost numerically exact Kohn-Sham potential at
hand for real materials and we can therefore draw definite
conclusions concerning the band structure, and in particular
the band gap, of standard semiconductors and insulators.

With the fact in mind that errors of the potential can be
much larger than errors of the density, the quality of the gap
resulting from inversion has to be checked separately. To this
end, we show in Fig. 6 the direct KS band gap of silicon (upper
panel) and sodium chloride (lower panel) at � as a function of
the number of iterations at which the KS potential and cor-
responding density were calculated. For all functionals, also
when noise is included (see Appendix D), the result converges
very rapidly and remains stable, within 1 meV, over a wide
range of iterations even after the potential has developed huge
spikes (in the case of noisy density for silicon, see Fig. 11 in
Appendix D). This means that the results for the band gaps are
reliable with high precision.
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FIG. 6. Convergence with the number of iterations of the direct
band gap at � obtained from the inversion, for silicon (upper panel)
and NaCl (lower panel). Shown are the results of LDA (orange),
noisy LDA (purple), PBE (green), TBmBJ (light blue), and QMC
(blue). The horizontal continuous lines are the reference results,
which are obtained directly from the KS calculation except for the
noisy LDA where the reference is the result at i0 = 24 for Si and at
i0 = 200 for NaCl and, for QMC, where the reference is the result at
i0 = 20 for Si and at i0 = 200 for NaCl. The clean and noisy LDA
results are almost entirely overlapping and converge to the reference
result of clean LDA, 2.55 eV for Si and 4.59 eV for NaCl. The QMC
result converges to 2.72 eV for Si and 5.25 eV for NaCl.

Results for the converged band gaps of silicon and NaCl
are shown in Table I. For silicon, our numerically exact
minimum indirect KS band gap is 0.69 eV, which is about
40% larger than the KS gap of 0.49 eV calculated in LDA
and significantly smaller than the experimental gap [85] of
1.17 eV. The PBE gap of 0.66 eV is close to the QMC-derived
value. The direct band gap opening of QMC with respect
to LDA is analogously 0.17 eV at � and 0.12 eV at X .
TBmBJ yields a direct gap of 3.09 eV, close to experiment.
In NaCl, the situation is similar, with the QMC-derived gap

TABLE I. KS minimum band gaps and direct band gaps at �

(eV) in comparison with experimental photoemission gaps from
Refs. [85,86,88].

Si NaCl

Indirect Direct at � Direct at �

QMC derived 0.69 2.72 5.25
PBE 0.66 2.60 5.08
LDA 0.49 2.55 4.59
TBmBJ 1.19 3.09 8.93
Exp. 1.17 [85] 3.05 [88] 8.5 [86]

3.40 [85]

about 14% larger than the LDA one and only 3% larger than
the PBE gap. The 5.25 eV QMC-derived KS gap is again
much smaller than the 8.5 eV experimental gap [86], while
TBmBJ is again close to experiment, with a direct gap of
8.93 eV. The QMC bandwidths do not change in a noteworthy
way with respect to LDA (or PBE): in silicon the QMC va-
lence bandwidth is reduced by 0.1 eV compared to LDA (and
0.05 eV compared to PBE), while in NaCl the QMC band-
width is 0.15 eV smaller than LDA and 0.04 eV larger than
PBE [87].

Our QMC derived KS gaps confirm the conclusion of
Refs. [18,20] and thus definitely highlight the fact that the true
multiplicative KS potential does not yield a “good” eigenvalue
band gap in solids. Overall, the band gap is an excellent
illustration for the fact that the exact Kohn-Sham system is
an auxiliary system designed to yield the density in principle
exactly, but for other observables it can only give an approxi-
mation. At the same time, the TBmBJ results illustrate that by
enhancing the deviations of the true potential from the LDA
one can design a multiplicative potential which overcorrects
the LDA errors on the density and on the KS eigenvalue gap,
bringing the latter close to the experimental fundamental gap.
This may yield a compromise between the accuracy of the
density and the search for a simple estimate of the fundamen-
tal gap.

There is another interesting aspect to this study of the band
gap: while in certain cases (in particular, the noisy LDA) the
potential can develop huge spikes during the iterations, the
gap, similarly to the density, remains close to the reference
value. This means that very different xc potentials can yield
not only very similar densities, but also very similar KS ob-
servables more in general. Figure 6 also shows that the gaps
corresponding to clean and noisy LDA densities are almost in-
distinguishable, i.e., the noise does not affect KS observables.
The band gap results confirm the statement, mostly based on
findings from low-dimensional systems, that examining the
xc potential alone is not sufficiently meaningful [89–91]. Our
study also suggests that an effort is needed to distinguish in
the KS potential crucial features, which must be contained
in good functionals, from others that may be quantitatively
strong in the potential, but insignificant for their effects.

IV. CONCLUSION

In conclusion, we have shown that a simple algorithm
allows one to obtain the Kohn-Sham xc potential for periodic
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semiconductors and insulators, given their ground-state den-
sity. The precision that can be obtained is limited by the
quality of the input data. Here, we use densities taken from
AFQMC calculations and the limiting factor is the stochastic
noise. Nevertheless, meaningful results are obtained, with an
error bar smaller than the difference between the resulting
potentials and their LDA PBE or TBmBJ counterparts, which
allows us to safely draw conclusions. In particular, for the
materials studied here, namely bulk silicon and NaCl, the xc
potential functional of the density everywhere can be repre-
sented in terms of two or three functions of the local density,
each of which is determined by a specific environment. These
environments appear to be characterized by the local gradient
of the density or, even more clearly, by the local kinetic
energy density. The function that represents most of the data
points is close to the LDA, but with slight material-dependent
deviations. PBE also predicts deviations and the existence of
the additional functions, although it does not always describe
them well. On the other hand, our results clearly illustrate that
very different potentials may lead to very similar densities
and, more generally, to very similar KS observables. In par-
ticular, the KS band gap converges rapidly with the number
of iterations of the inversion process, while the xc potential
still undergoes violent modifications. More work is needed to
discern important features of the xc potential from those that
do not influence KS observables; sum rules and other exact
constraints may be helpful for this [8–11]. Our results for the
KS band gap confirm previous conjectures based on model
systems and/or many-body perturbation theory, which predict
that the exact KS band gap is closer to the LDA one than to
the measurable electron addition and removal gap; in other
words, that the derivative discontinuity of the true xc potential
is sizable. Still, the LDA error is non-negligible, whereas PBE
predicts the exact KS gap with an error of less than 5% for
the materials studied here. Our work highlights directions for
the improvement of density functionals, stressing the need for,
and usefulness of, QMC calculations of the density in many
more materials.
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APPENDIX A: COMPUTATIONAL DETAILS

We have adopted the same computational parameters
(lattice constants, cutoff energies, and k-point grids) and pseu-
dopotentials as in Ref. [70]. Following Ref. [70], all the
LDA, PBE, TBmBJ, and QMC results have been obtained
with the same optimized norm-conserving LDA pseudopo-
tentials [92]. We have employed the ABINIT code [93] and
verified that it gives the same numerical results as the
QUANTUM ESPRESSO code [94] used in Ref. [70] for LDA
and PBE. For the calculations with the TBmBJ functional,
composed of a modified version of the Becke-Johnson ex-
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FIG. 7. Errors of the iteration procedure as a function of the
number of iterations i in silicon. Top panel: MaAPE of the density
for the inverted LDA (orange), inverted noisy LDA (purple), and
QMC (blue) xc potentials. Each inverted density is compared to its
corresponding reference result. In the inset: MeAPE of the density
for the inverted LDA, noisy LDA, and QMC xc potentials. Bottom
panel: MaAPE of the xc potential for the inverted LDA (orange) and
inverted noisy LDA (purple). In these cases the error is defined with
respect to vxc of KS LDA, since the xc potential that yields the noisy
density is unknown. In the inset: MeAPE of the xc potential for the
inverted LDA and inverted noisy LDA potentials.

change potential [95] and a LDA correlation part, we have
used the ABINIT implementation [96] with the LIBXC library
[97]. The KS inversion algorithm has been implemented
in our own KS code, which is interfaced with the ABINIT

code.

APPENDIX B: ACCURACY OF THE ALGORITHM:
INVERTING THE LDA

To illustrate the reliability of the inversion algorithm, it
is instructive to examine a case where the density-potential
relation is well known; as a start, we choose the LDA [98].
This means that, in Eq. (1), nref = nLDA is the density obtained
in a standard LDA Kohn-Sham self-consistent calculation
with exchange-correlation potential vLDA

xc at convergence. Ide-
ally, from the iteration procedure for i → ∞ we should find
vLDA,i

xc → vLDA
xc and nLDA,i → nLDA. Figures 7 and 8 show

results for silicon.
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FIG. 8. Upper panel: the LPD of the density: in orange, LPD of
nLDA,500 with respect to nLDA (where the MaAPE is 6.55 × 10−4%);
in green LPD of the self-consistent PBE and in blue QMC densities
with respect to nLDA. Middle panel: self-consistent LDA density nLDA

(thin magenta line). Lower panel: LPD of vLDA,500
xc (orange) and self-

consistent PBE potential vPBE
xc (green) with respect to vLDA

xc .

In Fig. 7 (upper panel) the maximum (over the unit cell)
of the absolute value of the percentage error (MaAPE) of the
density nLDA,i compared to the LDA one, 100 × maxr|1 −
nLDA,i(r)/nLDA(r)|, is shown as a function of the iteration
number i. It decreases smoothly and very fast. The same is
true for the mean absolute (over the unit cell) percentage error
(MeAPE), given in the inset.

In Fig. 8 snapshots for the errors on density and vxc are pre-
sented. The upper panel gives 100 × [nLDA,i(r)/nLDA(r) − 1],
which is the local percentage difference (LPD) along a path
through the unit cell (the same as in Ref. [70]) of the density
at i = 500 iterations (orange dashed line) with respect to the
LDA one. In the scale of the figure, it is close to zero ev-
erywhere: it is largest, with a maximum of 6.55 × 10−4%, in
places of low LDA density, shown by the thin magenta line
in the middle panel. Note that the density is close to zero on
the silicon atoms. The LPD of the potential is shown in the
bottom panel of Fig. 8. Because of the arbitrary shift, only a
comparison of the variations of the potential is pertinent. In-
deed, during the iterations the average potential continuously
moves upwards. The figure has been obtained by realigning
at the end of the iterations the average potentials. This re-
quires a final downwards shift of the iterative potential of

0.06 hartree. Again, the maximum error is found in places
of lower density. The only significant error is found in the
point exactly on the silicon atoms, where the density is almost
vanishing. As we will also see below for other functionals, the
result in this specific point cannot be considered to be reliable.
Also for other regions, however, it is true that the LPD is
significantly larger for the potential than for the density. This
can also be appreciated in Fig. 7 (bottom panel), where the
open circles in the main panel give the MaAPE and MeAPE
on the xc potential as a function of iterations. In order to
illustrate that the remaining errors are small enough to make
discussions meaningful, the errors in Fig. 8 are compared
to the difference between two different functionals obtained
directly from the KS calculation, here, between LDA and
PBE (see green lines). The top panel contains the LPD of
the PBE density with respect to the LDA self-consistent one,
100 × [nPBE(r)/nLDA(r) − 1]. This difference can be seen
very clearly, since it is more than 104 times larger than the
inversion error. The LPD of the PBE with respect to the LDA
xc potential, 100 × [vPBE

xc (r)/vLDA
xc (r) − 1], can be found in

the bottom panel. Differences can be seen throughout the path,
although regions of lower density show larger differences.
These differences are, though slightly larger, of the same order
as the differences in the density. Except for the immediate
vicinity of the atoms, they are much larger than the error of
the inversion, like in the case of the density. This demonstrates
that the inversion yields meaningful results, with an error bar
that is much smaller than the differences of interest, except for
a few points of very small density.

APPENDIX C: INVERSION OF NONLOCAL
FUNCTIONALS

The true xc functional is expected to be nonlocal and test-
ing the LDA alone is therefore not sufficient. For a conclusive
test, we should invert functionals with a similar degree of
nonlocality as the QMC results. Figures 4 and 5 show that the
deviation from a local potential-density relation of the QMC-
derived potential is larger than for the PBE and smaller than
for the TBmBJ functional. This means that PBE and TBmBJ
cover the range of nonlocality of the true KS potential. We
have therefore also performed the inversion tests with these
two functionals, with the results given in Figs. 9 and 10.

As one can see, except for the points of lowest density the
agreement between the reference result and the result of the
inversion is again very good and definitely accurate enough to
distinguish the main features of the potentials. We conclude
that nonlocality in the range of that of the true KS potential
does not hamper the use of our inversion algorithm.

APPENDIX D: INVERSION STARTING
FROM NOISY DENSITIES

To conclude on the reliability of the results, we also have
to take into account the fact that the QMC results have sta-
tistical errors. In order to elucidate the influence of the QMC
stochastic noise on the results, we have taken the LDA density
n(r) of silicon and added pointwise Gaussian noise, which is
obtained from a normal distribution with mean zero and stan-
dard deviation given by the characteristic AFQMC statistical
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FIG. 9. Map of the xc potential of silicon with respect to the
local density at all points in the unit cell. The results of the KS cycle
(circles) are compared to the result of inversion (triangles) for PBE
(green) and TBmBJ (light blue).

error bar scaled by n(r). To appreciate what this means, the
yellow curve in the upper panel of Fig. 11 gives the relative
difference of the noisy LDA density with respect to the clean
one. Both panels show results for the inversion starting from
this new reference density. The evolution of the error of the
inversion of the noisy LDA data is displayed in Fig. 7 (up-
per panel, purple curve). It behaves similarly to the QMC
inversion error: the MaAPE decreases rapidly and reaches
a minimum, from whereon a slight increase followed by a
decrease is noted. The MeAPE, instead, reaches a plateau.
The inversion error on the density is given by the purple
curve in the upper panel of Fig. 11, representing the LPD
100 × [nLDA+noise,39(r)/nLDA+noise(r) − 1] at 39 iterations. It
is of similar magnitude as the noise itself, as in the QMC
case. Iterating further to i = 150 (red), only a slight smoothing

FIG. 10. Map of the xc potential of NaCl with respect to the local
density at all points in the unit cell. The results of the KS cycle
(circles) are compared to the result of inversion (triangles) for PBE
(green) and TBmBJ (light blue).

FIG. 11. Relation between noise and errors of the iterative proce-
dures that use nQMC or nLDA+noise as reference densities. Top panel: in
yellow, LPD of the LDA density from the KS calculation decorated
with a pointwise Gaussian noise nLDA+noise with respect to the clean
LDA density nLDA. The noise lies within the stochastic error bar of
the QMC calculation (gray area). In purple, LPD of nLDA+noise,39 at
the iteration i = 39, where the MaAPE on the density with respect
to nLDA+noise has its first minimum. Here, the MaAPE is 0.56% and
the MeAPE is 0.15%. In red, LPD of nLDA+noise,150 at the iteration
i = 150, where the MaAPE is 0.54%. In blue, LPD of nQMC,500 at
the iteration i = 500, where the MaAPE is 0.21% and the MeAPE is
0.02%, with respect to nQMC. Bottom panel: the LDA vLDA

xc potential
(orange) is compared to the xc potentials obtained by inversion of
the QMC density vQMC,500

xc (blue), and by inversion of the noisy LDA
density vLDA+noise,24

xc (brown dashed line), vLDA+noise,39
xc (purple), and

vLDA+noise,150
xc (red) at i = 150.

of the error on the density is observed. The bottom panel of
Fig. 11 shows xc potentials: the red curve is the xc potential
resulting from inversion of the noisy LDA data at i = 150. It
has spikes that are of the same order as those of vQMC,500

xc (blue
curve) and that are in percentage orders of magnitude larger
than the noise of the density, again as in the case of vQMC,500

xc .
With such an error bar, one would not be able to distinguish
the LDA and QMC potentials. By way of contrast, the xc
potential resulting from the noisy LDA data but at only i = 39
iterations, where the MaAPE on the density has its minimum,
shows only very small spikes (purple curve). The result is
stable in the range of iterations preceding that minimum: the
bottom panel also shows the result for i = 24 (brown dashed
curve), with a virtually indistinguishable potential. Moreover,
this potential is close to the clean LDA potential, given by
the orange curve. In this range of iterations, we can consider
the resulting potential to be reliable. The spikes that develop
by iterating further, instead, may suffer from the fact that the
noisy density and the KS LDA Hamiltonian are not com-
pletely consistent, which means that a higher precision cannot
be reached.

The observations concerning the behavior of the noisy
LDA are strictly analogous to our QMC-based results, as
we will also discuss in the next section. This gives strong
evidence for the fact that the inversion problem of the QMC
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FIG. 12. Map of the xc potential versus the local density in
silicon. Main panel: results of the inversion of QMC for different
i. Each vxc is plotted against its own density. QMC inversion results
are shown at 10 (smooth potential) and 20 (minimum of MaAPE of
the density) iterations. For one density below 0.01, additional results
at i = 50 and i = 100 are given to illustrate the stability of the extra
branch. In the inset, KS LDA is compared to the inversion of noisy
LDA at 24 (smooth potential) and 39 (minimum of MaAPE of the
density) iterations.

data after a certain number of iterations is indeed due to the
stochastic noise of the QMC. Moreover, it suggests that a suf-
ficiently reliable xc potential is obtained by taking the result in
the range where a stable and relatively smooth potential is ob-
tained and before the MeAPE on the density stops to decrease.
In the present case, this confirms the choice i = 20, for which
the QMC xc potential is given in Fig. 1. In other words, this xc
potential is, to the best of our knowledge, today’s most precise
estimate for the true xc potential of bulk silicon.

Finally, Fig. 12 confirms that the noise is at least partially
responsible for the blurring of the QMC result observed in
the map [vxc(r) ↔ n(r)] in Fig. 4: inversion of the noisy
LDA data leads to a more scattered potential, as shown in
the inset of Fig. 12. The comparison of the result for i = 24
and i = 39 also shows that it remains essentially a scattered
version of the clean LDA result, with a blurring according to
the number of iterations, whereas no additional features are
caused by the noise. In the main panel, we compare different
iterations of the QMC result. Also in this case higher i leads
to stronger blurring, but the extra branch is confirmed to be
a stable feature. Note that the point at lowest density on the
extra branch undergoes large oscillations with the number
of iterations. All other points, instead, are well behaved, as
it is illustrated on the figure for the point of second-lowest
density.

For completeness, we investigate the issue of noise also
in NaCl. Details are displayed in Fig. 13. As one can see,
the QMC error bar is smaller in this case, especially in the
important region of high density. Therefore, although quali-
tatively the noise has similar effects as in the case of silicon,
quantitatively the effect on the results is negligible, as one can
see in the local potential-density relation displayed in Fig. 14.

FIG. 13. Analog of Fig. 11, but for NaCl. Here spikes in noisy
LDA and QMC are less developed than in the case of silicon. Note
that the QMC error bar is smaller than in the case of silicon, in
particular in regions of significant density.

APPENDIX E: MORE ABOUT THE INVERSION STARTING
FROM THE QMC DENSITY

Here, we will examine the consequences of noise on the
inversion of the QMC results of silicon, where the effect is
more pronounced than in NaCl.

FIG. 14. Map of the xc potential versus the local density in NaCl.
The result of the inversion of LDA with Gaussian noise for i = 200
is compared to the clean LDA xc potential resulting from the KS
calculation.
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FIG. 15. Exchange-correlation potentials obtained by inversion
of the QMC density of bulk silicon, at three different iteration
steps. All three potentials yield a very similar, accurate density. The
MeAPE of the density is 0.04% at i = 20, 0.02% at i = 500, and the
same value at i = 1000. For the MaAPE, we get 0.38% at i = 20,
0.21% at i = 500, and 0.18% at i = 1000.

The first interesting fact is that the error of the QMC
inversion behaves similarly to that of the noisy LDA. This
can be appreciated in Fig. 7 (upper panel), where the MaAPE
of the density as a function of the number of iterations i is
given by the blue curve. It shows an overall decrease, but
with a pronounced minimum at i = 20. At this point, it has
decreased to 0.38%. The minimum is followed by a modest
increase, after which the error decreases again monotonously.
Instead, as the inset in Fig. 7 shows, in correspondence to
the minimum the MeAPE reaches a plateau of about 0.02%
and a better precision cannot be reached. For this reason, the
inversion error remains larger than what we obtained in the
case of the inverted clean LDA, by about a factor 500 for the
MaAPE and 1000 for the MeAPE.

Of course, one could think to continue the iterations,
since Fig. 7 shows that the MaAPE could be decreased
further. However, the fact that a plateau is reached in the
MeAPE anticipates that one might encounter problems when
doing so. The blue curve in the upper panel of Fig. 11
shows the density from the QMC inversion at i = 500, where
the MaAPE has decreased from 0.38% to 0.21%. Indeed,
the error is now further away from the QMC error bar in
the most critical points along the path, with respect to the
i = 20 result shown in Fig. 8. Also the MeAPE has decreased
from 0.04% at i = 20 to 0.02% at i = 500. However, the xc
potential obtained from the QMC inversion, shown in the
bottom panel of Fig. 11 (blue curve), is no longer smooth.
It develops spikes that become even more pronounced when
one iterates further, while still decreasing the MaAPE on the
density, but with a quite constant MeAPE, which points to a
mere redistribution of errors (see Fig. 15 for illustration).

Visibly, the algorithm does not succeed in improving the
result any further and introduces unexpected features when
trying to do so. Difficulties with the inversion procedure have
also been reported for finite systems and they have been
attributed to the finite basis set which may introduce an incon-
sistency between density and external potential [49–53]. In the
present work, as we have verified, the results are sufficiently
well converged to exclude basis set problems. Instead, the
strict analogy to the behavior observed for the noisy LDA

0 100 200 300 400 500

iteration number

0

10

20

30

40

50

er
ro

r 
o
n
 d

en
si

ty
 (

%
)

maximum error

shift = 0.02 Ha

shift = 0.005 Ha

without shift

0 200 400
0

2

4

mean error

FIG. 16. Silicon: error of the inverted QMC density as a function
of the iteration number for three different choices of the shift of the
starting point. The starting point is 0.1vLDA

xc + shift.

is strong evidence for the fact that here the QMC stochastic
noise is the limiting factor. We stress again that noise leads
to blurring, not to the appearance of spurious features, and its
effect can therefore be detected and tested.

Finally, it is important to note that the results of the inver-
sion do not depend on the starting point. This is true both for
the shape and for the average value of the starting potential.
The latter is important for the convergence behavior: Fig. 16
shows that a value of the initial shift which guarantees that
the potential does not change sign improves the convergence
for silicon significantly. Figure 17 shows results obtained for
a starting point corresponding to different fractions of vLDA

xc :
the scatter plot of silicon shows stability both of the main and
of the extra branch, except for the point of very low density.

FIG. 17. Map of the xc potential of silicon with respect to the
local density for three different choices of the starting point. The
three xc potentials have the same MeAPE of 0.02%. This precision
is reached at i = 11, 20, or 38 when the starting point is a shifted
vLDA

xc , 0.3vLDA
xc , or 0.1vLDA

xc , respectively.
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