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Symmetry-adapted modeling for molecules and crystals
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We have developed a symmetry-adapted modeling procedure for molecules and crystals. By using the
completeness of multipoles to express spatial and time-reversal parity-specific anisotropic distributions, we can
generate systematically the complete symmetry-adapted multipole basis set to describe any of electronic degrees
of freedom in isolated cluster systems and periodic crystals. The symmetry-adapted modeling is then achieved
by expressing the Hamiltonian in terms of the linear combination of these bases belonging to the identity
irreducible representation, and the model parameters (linear coefficients) in the Hamiltonian can be determined
so as to reproduce the electronic structures given by the density-functional computation. We demonstrate our
method for the modeling of graphene and emphasize usefulness of the symmetry-adapted basis to analyze and
predict physical phenomena and spontaneous symmetry breaking in a phase transition. The present method is
complementary to de facto standard Wannier tight-binding modeling, and it provides us with a fundamental basis
to develop a symmetry-based analysis for materials science.
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I. INTRODUCTION

Diversity is one of the fascinating aspects of materials
science, and the diverse properties of materials are brought
about by mutual interplay among electronic degrees of free-
dom, such as charge, atomic orbital and spin, and underlying
molecular or crystal structure. Moreover, intriguing phenom-
ena emerge by phase transitions with spontaneous symmetry
breaking. In particular, order parameters of spin-orbital-lattice
composite objects bring about various off-diagonal responses
and generate nontrivial transport involving atomic internal
objects.

In order to analyze proper material properties and predict
bright new phenomena quantitatively, one needs microscopic
modeling of materials. For such a purpose, the density-
functional (DF) theory and related modelings have been
widely used [1–6]. Once a tractable model is obtained, one
uses it to discuss various response functions and to give a
starting point for taking account of many-body effects such
as electron correlations and electron-phonon interactions.

The Wannier-based tight-binding (Wannier TB) modeling
from DF theory is the de facto standard, and there are sev-
eral advantages, such as no need for electronic band fitting
to a certain model, capturing covalent-bond feature of wave
functions, and so on [7–9]. Nevertheless, there are several
drawbacks as follows: (1) the obtained Wannier TB model
does not satisfy the symmetry of a system rigorously due
to a disentangling procedure of bands within a given energy
window in addition to simple numerical errors; (2) as the
Wannier basis functions differ from atomic orbital ones in
general, representation matrices for physical quantities such
as the orbital angular-momentum operator become unclear
with respect to those bases; and (3) there are considerably
small long-range hopping matrices in the Wannier TB model;
however, it is quite cumbersome to neglect them without

losing the symmetry, which hampers us to compactify the
Wannier TB model.

In this paper, we propose a complementary modeling pro-
cedure to overcome the above drawbacks, which fully respects
the symmetry of a system, and atomic (internal) degrees of
freedom, in its construction process. According to Neumann’s
principle, any macroscopic responses are characterized by
point-group symmetry [10], and in the Landau theory of phase
transition, nontrivial irreducible representation determines the
fate of an emerging phase in which the order parameter is a
macroscopic quantum-mechanical average of a microscopic
degree of freedom [11]. Therefore, a seamless description
between macroscopic quantities and microscopic degrees of
freedom in accordance with symmetry is indispensable in a
promising modeling method.

Realistic materials are characterized by anisotropic distri-
butions in molecular or crystal structure in addition to spatial
and time-reversal parities compatible with their symmetry.
The symmetry-adapted multipoles in point group are suitable
candidates to describe such parity-specific anisotropic distri-
butions [12–14], as they have the completeness in angular
space [15]. By utilizing the completeness of the multipoles,
we construct the symmetry-adapted basis to describe any of
electronic degrees of freedom in isolated cluster systems (e.g.,
molecules and quantum dots) and periodic crystals. Since the
present multipole basis can treat the internal atomic degrees
of freedom and molecular or crystal structures separately, it
is able to bridge explicitly between macroscopic quantities
and microscopic degrees of freedom. Indeed, various phys-
ical quantities appearing in ordinary Hamiltonians can be
expressed by the multipole basis, whose examples are sum-
marized in Table I.

Then symmetry-adapted modeling is achieved by ex-
pressing the Hamiltonian in terms of the linear combina-
tion of these bases belonging to the identity irreducible
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TABLE I. Correspondence between physical quantities and
symmetry-adapted multipole basis (SAMB). The upper, middle, and
lower panels represent one-body, two-body, and hopping terms, re-
spectively. The site (bond) dependence in the upper (middle) panel is
expressed by the site cluster Q(s)

lm (bond cluster Q(b)
lm , T (b)

lm ) SAMBs.
DM int. is the Dzyaloshinsky-Moriya interaction. The repeated in-
dices are implicitly summed in the expression. The detailed meaning
of these symbols will be explained in the main sections.

Type Expression Correspondence

Electric potential φq q → Q(a)
0,0

Crystal field φlmQlm Qlm → Q(a)
lm

Zeeman term −hama ma → M(a)
1m

Spin-orbit int. ζ laσ a la, σ a → M(a)
1m

Density-density int. Vi jnin j nin j → Q(a)
0,0

Elastic energy εab
i j ua

i ub
j ua

i ub
j → Q(a)

0,0,Q
(a)
2m

Exchange int. Jab
i j Sa

i Sb
j Sa

i Sb
j → Q(a)

0,0,Q
(a)
2m

DM int. Dc
i jεabcSa

i Sb
j εabcSa

i Sb
j → G(a)

lm

Real hopping ti jc
†
i c j + H.c. c†

i c j + H.c. → Q(b)
lm

Imaginary hopping i ti jc
†
i c j + H.c. i c†

i c j + H.c. → T (b)
lm

representation. Once a symmetry-adapted model is con-
structed, one optimizes the model parameters (linear co-
efficients) to reproduce the electronic states given by DF
computation. The optimization can be carried out by using the
machine-learning technique with the deep neural network [16]
having extremely low dependencies of initial guess. There
have been several attempts to construct the TB Hamiltonian
[17,18] based on machine-learning technique [19,20]. The TB
models generated by Wang et al. [20] successfully reproduce
the DF band dispersions with high accuracy, where the sym-
metry of the system is not considered and each hopping is
regarded as a neuron in their neural network. On the other
hand, in our scheme each symmetry-adapted multipole basis
(SAMB) is a neuron in the neural network, and hence the
symmetry is always maintained during the optimization pro-
cess. We give the prime example of the basis construction and
optimization by using graphene, and other examples are given
in the Supplemental Material [21].

This paper is organized as follows: In Sec. II, we explain
the construction procedure for the complete SAMB set. We
first treat the case of isolated cluster systems by using an
example of a fictitious molecule in C3v point group, and then
the case of periodic crystals is discussed. After setting up
the general basis construction procedure, we give an appli-
cation of our method to graphene in Sec. III. We construct
the symmetry-adapted TB model for graphene up to sixth-
neighbor hoppings and optimize the model parameters to
reproduce DF energy dispersion. The final section summa-
rizes the paper.

II. SYMMETRY-ADAPTED MULTIPOLE BASIS

In order to perform symmetry-adapted modeling, we in-
troduce the complete orthonormal basis set that is classified
according to the point-group symmetry. Such a basis set is

FIG. 1. Separation of the symmetry operation, C3; (a) without
separation and (b) operations separately to atomic sites/bonds and
atomic degrees of freedom, e.g., spins.

called SAMB, in which any anisotropy is described by means
of multipolar anisotropy [22]. Let us first discuss the SAMB
in the case of isolated cluster systems such as molecules and
quantum dots in Sec. II A. Then the case of periodic crystals
is explained in Sec. II B. The conversions to full matrix form
and momentum-space representation for a specified system
are discussed in Sec. II C.

A. Isolated cluster systems

We begin with an isolated cluster system which consists of
several atoms having internal degrees of freedom, i.e., atomic
orbitals and spins, at each atomic site. Hereafter, we simply
call the atomic orbitals including spins as “atomic orbitals.”
In general, the symmetry operations of the system can be
applied separately to positions of atoms and atomic degrees
of freedom as shown in Fig. 1. Because of this separable
property, we can construct the SAMB separately for atomic
sites/bonds and atomic degrees of freedom as follows.

1. Site cluster and bond cluster

First, we explain the SAMB for atomic sites and bonds. Let
us choose a representative atomic site in the isolated cluster,
and its position is R1. Then, a set of sites (R′

1, R′
2, . . . , R′

Ng
) is

obtained by applying the symmetry operation Gg in the point
group as R′

g = GgR1 (g = 1, 2, . . . , Ng; G1 is assumed to be
the identity operation), where Ng is the number of symmetry
operations. Since some of the obtained sites are overlapped
unless the sites belong to the general point, the total number
of cluster sites Ns is less than Ng, and it is equivalent to
the number in the Wyckoff symbol. We call the set of sites
without duplication (R1, R2, . . . , RNs ) “site cluster,” and the
one-to-many correspondence is expressed by g(i) so as to sat-
isfy Ri = R′

g(i) (i = 1, 2, . . . , Ns). All the sites in the isolated
cluster system can be divided into a set of site clusters. For
example, the division of site clusters in C3v (31m) point group
with Ng = 6 and Ns = 3 is shown by different colored spheres
in Fig. 2.

Similarly, the bond cluster is obtained by applying the
symmetry operation to a representative bond, b1@c1, where
we have introduced the bond-vector b1 = Rhead − Rtail and
the bond center c1 = (Rhead + Rtail )/2. The obtained bonds
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FIG. 2. Example of site clusters (different colored spheres) and
bond clusters (different colored bonds) in the C3v (31m) point group
(vertical mirrors in xz and equivalent planes). The representative
site and bond are denoted by a yellow circle and red arrow, respec-
tively. The trigonal units are a1 = (1, 0, 0), a2 = (−1/2,

√
3/2, 0),

and a3 = (0, 0, 1).

(b′
1@c′

1, b′
2@c′

2, · · · , b′
Ng

@c′
Ng

) are duplicated in general with
the equivalent bond centers. Then the set of bonds without du-
plication (b1@c1, b2@c2, · · · , bNb@cNb) constitutes the “bond
cluster,” where Nb is the number of bonds in the bond cluster.
In contrast to the site cluster, some bonds may coincide with
other bond with reversed direction. In this case, we attach a
negative sign to the symmetry operation in the correspondence
g(i), i.e., the one-to-many correspondence is given by g(i)
with ci = c′

|g(i)| and bi = sgn[g(i)]b′
|g(i)|. All the bonds in the

isolated cluster system can be divided into a set of bond
clusters, as shown by different colored bonds in Fig. 2. The
one-to-many correspondences of the site/bond clusters for
the example of the fictitious molecule in Fig. 2 are shown in
Table II.

2. Symmetry-adapted multipole basis

Once the site and bond clusters are introduced, we are
ready to construct the SAMB for each cluster. Let us begin
with the SAMB for a site cluster, which enables us to express
any site-dependent quantity in a cluster. To this end, we intro-
duce the normalized spherical harmonics defined by

Olm(r) = rl

√
4π

2l + 1
Ylm(r̂), (1)

where r = |r|, r̂ = r/r, and the spherical harmonics, Ylm(r̂)
with the rank l (= 0, 1, 2, . . . ) and component m (= −l,−l +
1, . . . , l). Since the point group is a subgroup of the rota-
tion group supplemented by the inversion operation, we use
symmetry-adapted harmonics Olξ (r) (ξ = (�, n, γ )) instead

TABLE II. One-to-many correspondences in the site/bond clus-
ters for the example in Fig. 2, in which x = 1/6 and x′ = 2/3 are
used.

Site A Ri g(i) Site B Ri g(i)

A1 [−x,−x, 0] [1,6] B1 [−x′, 0, 0] [1,4]

A2 [x, 0, 0] [2,5] B2 [0, −x′, 0] [2,6]

A3 [0, x, 0] [3,4] B3 [x′, x′0] [3,5]

Bond A → A bi@ci g(i)

b1

[
1
3 , 1

6 , 0
]
@

[
0, − 1

12 , 0
]

[1,-5]

b2

[− 1
6 , 1

6 , 0
]
@

[
1

12 , 1
12 , 0

]
[2,-4]

b3

[
1
6 , 1

3 , 0
]
@

[− 1
12 , 0, 0

]
[-3,6]

Bond A → B bi@ci g(i)

b4

[− 1
2 , 1

6 , 0
]
@

[− 5
12 , − 1

12 , 0
]

[1]

b5

[− 1
6 , − 2

3 , 0
]
@

[
1

12 , − 1
3 , 0

]
[2]

b6

[
2
3 , 1

2 , 0
]
@

[
1
3 , 5

12 , 0
]

[3]

b7

[− 2
3 ,− 1

6 , 0
]
@

[− 1
3 , 1

12 , 0
]

[4]

b8

[
1
2 , 2

3 , 0
]
@

[
5

12 , 1
3 , 0

]
[5]

b9

[
1
6 , − 1

2 , 0
]
@

[− 1
12 , − 5

12 , 0
]

[6]

of Olm(r) by appropriate linear combination as

Olξ (r) =
∑

m

U (l )
m,ξ Olm(r), (2)

where U (l )
m,ξ is a matrix element of the unitary matrix for basis

transformation and � and γ represent the irreducible represen-
tation (irrep.) and its component, respectively. The label n is
the multiplicity to distinguish independent harmonics belong-
ing to the same irrep. It should be noted that the harmonics
in each irrep., especially for two- and three-dimensional ones,
must be defined so as to give equivalent representation matri-
ces for all symmetry operations. For example, the harmonics
up to rank 3 in the C3v (3m1) point group are given in Table III
(they are also used for D6h for later purposes). For point
groups with complex characters, i.e., Ea (x + iy like) and Eb

(x − iy like), we treat them together as E irrep. by hermiting
as [Ol,(Ea,n) + Ol,(Eb,n)]/

√
2 and [Ol,(Ea,n) − Ol,(Eb,n)]/

√
2i.

With this preliminary, the SAMB for a site cluster is ob-
tained by evaluating Olξ (r) at r = Ri in the site cluster, i.e.,
we obtain the Ns-dimensional vector basis as

Q(s)
lξ = (

q(lξ )
1 , q(lξ )

2 , . . . , q(lξ )
Ns

)
, q(lξ )

i = Olξ (Ri ), (3)

where the black-board font is used to represent the orthonor-
mal basis and “Q” denotes the electric multipole indicating
that it has an electric polar tensor property. The superscript
“(s)” indicates the SAMB for the site cluster. We construct
the SAMBs from the lowest rank as l = 0, 1, 2, . . . , until Ns-
independent bases are obtained. When the obtained SAMBs
are not orthonormalized, we use the Gram-Schmidt method to
orthonormalize them. The obtained SAMBs are equivalent to
the ordinary molecular orbitals consisting of spinless atomic s
orbitals at each site.
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TABLE III. Harmonics up to rank 3 in C3v (31m) point group.
The labels in the square bracket represent those for D6h point group.
The label g and u are exchanged in the irrep. of the axial vector in
D6h.

l � n γ Form Axial

0 A1 [A1g] – – 1

1 A1 [A2u] – – z Z

E [E1u] – u x −Y

v y X

2 A1 [A1g] – – 1
2 (3z2 − r2)

E [E1g] 1 [-] u
√

3xz

v
√

3yz

E [E2g] 2 [-] u
√

3
2 (x2 − y2)

v −√
3xy

3 A1 [A2u] 1 [-] – 1
2 z(5z2 − 3r2)

A1 [B2u] 2 [-] –
√

10
4 x(x2 − 3y2)

A2 [B1u] – –
√

10
4 y(3x2 − y2)

E [E1u] 1 [-] u
√

6
4 x(5z2 − r2)

v
√

6
4 y(5z2 − r2)

E [E2u] 2 [-] u
√

15
2 z(x2 − y2)

v −√
15xyz

3. Virtual cluster and mapping to original cluster

Similarly to the case of the site cluster, the SAMB may
be constructed for a bond cluster by evaluating Olξ (r) at the
bond center r = ci. However, there is a difficulty that Olξ (r)
sometimes gives useless results when a position of a bond
center becomes the origin. Moreover, in periodic crystals,
as discussed later, there is an ambiguity of the choice of
the origin in a cluster. There is an additional difficulty in
the nonsymmorphic space group, i.e., position vectors of the
symmetry-equivalent sites in a cluster have different distances
from the origin whatever we choose. These difficulties hamper
us to construct the SAMB based on the spherical harmonics.

To avoid these difficulties, we introduce the virtual cluster
in which the virtual sites (r1, r2, . . . , rNg; r1 can be arbitrarily
chosen) are given by the Ng (i.e., Ns = Ng) general points of
the relevant point group [23]. Then, we construct the SAMB
with respect to the sites in the virtual cluster (indicated by the
overline) as

Qlξ = (
v

(lξ )
1 , v

(lξ )
2 , . . . , v

(lξ )
Ng

)
, v(lξ )

g = Olξ (rg). (4)

Note that the SAMB in the virtual cluster can be prepared
in advance for 32 crystallographic point groups as they are
independent from an original cluster. For example, the or-
thonormalized SAMB in the virtual cluster of the C3v (3m1)
point group is summarized in Table IV, in which the sites { rg }
are generated by the representative point, r1 = (1,−1, 0).

Once we obtain a set of the SAMBs, {Qlξ }, the SAMB for
the original site cluster can be obtained by mapping the virtual

TABLE IV. Orthonormalized SAMB in the virtual cluster of C3v

(31m). The cluster sites in the trigonal unit are given by { rg } =
{(1,−1, 0), (1, 2, 0), (−2, −1, 0), (2, 1, 0),(−1,−2, 0),(−1, 1, 0)}.
The indices (l, �, n, γ ) correspond to those in Table III.

No. l � n γ Qlξ

1 0 A1 – – 1√
6
(1, 1, 1, 1, 1, 1)

2 1 E – u 1
2 (1, 0, −1, 1, 0, −1)

3 v 1
2
√

3
(−1, 2, −1, 1, −2, 1)

4 2 E 2 u 1
2
√

3
(1,−2, 1, 1, −2, 1)

5 v 1
2 (1, 0, −1, −1, 0, 1)

6 3 A2 – – 1√
6
(−1, −1, −1, 1, 1, 1)

cluster elements onto the original site cluster ones as

Q(s)
lξ = (

q(lξ )
1 , q(lξ )

2 , . . . , q(lξ )
Nc

)
, q(lξ )

i =
g(i)∑

g

v(lξ )
g , (5)

where the one-to-many correspondence (mapping) g(i) is de-
termined for the original site cluster.

Although the SAMB for an original bond cluster can be
obtained in a similar way, we need special care for the bond
direction. When we express a symmetric-bond dependence
such as a real hopping, e.g., (c†

i c j + c†
j ci ), we can omit the

directional property of bonds. In this case, we construct the
SAMB for a bond cluster in the same way as a site cluster as

Q(b)
lξ = (

c(lξ )
1 , c(lξ )

2 , · · · , c(lξ )
Nb

)
, c(lξ )

i =
g(i)∑

g

v(lξ )
g , (6)

where the mapping g(i) is determined for the original Nb bond
cluster, and the superscript “(b)” indicates the SAMB for the
bond cluster.

On the other hand, when we consider an antisymmetric
bond dependence such as an imaginary hopping, e.g., i(c†

i c j −
c†

j ci ), the directional property must be taken into account. In
this case, the SAMB for a bond cluster is given as

T (b)
lξ = i

(
b(lξ )

1 , b(lξ )
2 , · · · , b(lξ )

Nb

)
, b(lξ )

i =
g(i)∑

g

sgn[g]v(lξ )
|g| ,

(7)

in order to satisfy the antisymmetric property of the bonds.
Here we have attached the phase factor i for later convenience.
The real Q(b)

lξ and imaginary T (b)
lξ SAMBs are always orthogo-

nal to each other. “T” denotes the magnetic-toroidal multipole,
indicating that it has a magnetic polar tensor property. The
SAMB for the site/bond clusters in the case of the example
shown in Fig. 2 is summarized in Table V.

As explained the above, we can construct a set of the
SAMBs for the original site and bond clusters in terms of the
polar tensors, Q(b)

lξ and T (b)
lξ . When the obtained SAMBs are

not orthonormalized, we again use the Gram-Schmidt method.
The symbol Ylξ is used to refer to Q(s)

lξ , Q(b)
lξ , or T (b)

lξ in the
site/bond clusters, and we call them “cluster SAMB.”
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TABLE V. Orthonormalized SAMB for the example site/bond clusters shown in Fig. 2. The Q-type SAMB for A → B bond cluster is
the same as that for the virtual cluster in Table IV, while T -type is given by that multiplied by the phase factor i. The indices (l, �, n, γ )
correspond to those in Table III.

l � n γ Q(s)
lξ for A l � n γ Q(s)

lξ for B

0 A1 – – 1√
3
(1, 1, 1) 0 A1 – – 1√

3
(1, 1, 1)

2 E 2 u 1√
6
(1, −2, 1) 1 E – u 1√

6
(2, −1, −1)

v 1√
2
(1, 0, −1) v 1√

2
(0, 1, −1)

l � n γ Q(b)
lξ for A → A l � n γ T (b)

lξ for A → A

0 A1 – – 1√
3
(1, 1, 1) 3 A2 – – i√

3
(−1,−1, 1)

1 E – u 1√
6
(1, 1, −2) 1 E – u i√

2
(1,−1, 0)

v 1√
2
(−1, 1, 0) v i√

6
(1, 1, 2)

4. SAMB for atomic degrees of freedom

Next, we consider the SAMB for atomic degrees of free-
dom, which we call “atomic SAMB.” The complete set of
the atomic SAMB has already been discussed in the liter-
ature [15], and they can be expressed in terms of electric
(time-reversal even polar), magnetic (time-reversal odd axial),
electric-toroidal (time-reversal even axial), and magnetic-
toroidal (time-reversal odd polar) multipole bases, Q(a)

lm , M(a)
lm ,

G(a)
lm , and T (a)

lm in the rotation group. The superscript “(a)”
indicates the atomic SAMB. The symbol Xlm is used to refer
to all of the four-type atomic SAMBs.

The spinful atomic SAMB can be obtained by the direct
product of the spinless atomic SAMB X(orb)

lm and identity
and Pauli matrices σsn (σ00 = σ0, σ10 = σz, σ1±1 = ∓(σx ±
iσy)/

√
2) by using the addition rule of the angular momentum

as

Xlm(s, k) = is+k
∑

n

〈l + k, m − n; sn|lm〉X(orb)
l+k,m−nσsn, (8)

where 〈l1, m1; l2, m2|lm〉 is the Clebsch-Gordan (CG) coef-
ficient. See Ref. [15] for the expression of X(orb)

lm . Note that
Xlm(0, 0) = X(orb)

lm σ0.
In evaluating the matrix elements of Xlm, the orbital an-

gular momentum of the bra and ket states can be different.
For instance, when we consider an electron hopping from s
orbital in A site to px orbital in B site and vice versa, s-px off-
diagonal Hilbert space must be taken into account. It should
be emphasized that Xlm(s, k) must be treated independently
between different (e.g., 〈s|s〉, 〈p|p〉, and 〈s|p〉) Hilbert spaces,
even if all the indices (X, l, m, s, k) are the same.

The atomic SAMB for point group can be obtained by
means of the unitary matrix in Eq. (2) as

Xlξ,sk =
∑

m

U (l )
m,ξXlm(s, k). (9)

The formula to compute the matrix elements of Xlm(s, k) is
summarized in Ref. [15], and those of Xlξ,sk for point group
can be obtained by the appropriate unitary transformation,
U (l )

m,ξ as well. Then Xlξ,sk can be normalized straightforwardly.
The example of expressions of Xlξ = Xlξ,00 is given in
Table VI, where the spinless s orbital (p orbitals) are assumed
at A (B) sites.

5. Combined SAMB for atomic and site/bond cluster

In the previous subsections, we have constructed the com-
plete orthonormal SAMBs for the atomic degrees of freedom
Xlξ,sk and for the site/bond clusters, Ylξ . Here we construct
the SAMB by performing the irreducible decomposition of
the direct product of these two SAMBs.

To this end, we begin with the addition rule of the spherical
harmonic-like functions,

Zlm = (−i)l1+l2−l
∑
m1m2

〈l1m1, l2m2|lm〉Xl1m1Yl2m2 , (10)

where Xlm transforms like the spherical harmonics Ylm(r̂)
against a spatial rotation and satisfies X †

lm = (−1)mXl−m. Ylm

and Zlm have the same properties as Xlm. The phase factor has
been introduced to satisfy Z†

lm = Zl−m.
By considering consistency for the spatial and time-

reversal parities, they must coincide with each other in both
sides of Eq. (10). For the time-reversal parity, we introduce
the time-reversal parity as a function of multipole type as

t (Q) = t (G) = +1, t (T ) = t (M ) = −1, (11)

where +1 and −1 denote the time-reversal even and odd,
respectively. Then the time-reversal selection rule is given by
δ[t (X )t (Y ), t (Z )], where δ[a, b] is the Kronecker’s delta.

Similarly, we introduce the spatial parity function as

p(Q) = p(T ) = 0, p(G) = p(M ) = 1, (12)

where 0 and 1 denote polar and axial, respectively. Equa-
tion (10) has finite value only for |l1 − l2| � l � l1 + l2, and
when the difference between l1 + l2 and l is odd, the spatial
parity of Z becomes opposite to that of the product of X and
Y . Hence, the spatial parity selection rule reads

δ[(l1 + l2 − l + p(X ) + p(Y ) − p(Z )) mod 2, 0]. (13)

By these considerations, we obtain the extended addition
rule as

Ẑlm(s, k) =
∑
m1m2

Cl1m1,l2m2
lm (X,Y |Z )Xl1m1 (s, k) ⊗ Yl2m2 , (14)

with the “CG” coefficient,

Cl1m1,l2m2
lm (X,Y |Z )

= (−i)l1+l2−l〈l1m1, l2m2|lm〉�l1,l2
l (X,Y |Z ), (15)
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TABLE VI. Orthonormalized atomic SAMB. We consider the spinless s orbital in A sites, while (px, py; pz ) orbitals in B sites in the
example of Fig. 2. Note that px, py (pz) belong to E (A1) irrep. As only s = k = 0 (charge sector) SAMBs are active in the spinless Hilbert
space, we omit (s, k). In 〈s|s〉 Hilbert space, there is only Q0,A1 = (1). In 〈s|p〉 Hilbert space, T (a)

lξ is given by multiplying Q(a)
lξ by the phase

factor i. The indices (l, �, n, γ ) correspond to those in Table III.

l � n γ Q(a)
lξ for 〈p|p〉 l � n γ Q(a)

lξ for 〈p|p〉

0 A1 – – 1√
3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ 2 A1 – – 1√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

2 E 1 u 1√
2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ 2 E 2 u 1√

2

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠

v 1√
2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ v − 1√

2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠

l � n γ M(a)
lξ for 〈p|p〉 l � n γ Q(a)

lξ for 〈s|p〉

1 A2 – – 1√
2

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ 1 A1 – – (0 0 1)

1 E – u 1√
2

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ 1 E – u (1 0 0)

v 1√
2

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ v (0 1 0)

and

�
l1,l2
l (X,Y |Z ) = δ[t (X )t (Y ), t (Z )]δ[(l1 + l2 − l

+ p(X ) + p(Y ) − p(Z )) mod 2, 0]. (16)

Then, by the unitary transformation from the rotation group to
point group, we finally obtain the combined SAMB as

Ẑlξ,sk =
∑
ξ1ξ2

Cl1ξ1,l2ξ2
lξ (X,Y |Z )Xl1ξ1,sk ⊗ Yl2ξ2 , (17)

where

Cl1ξ1,l2ξ2
lξ (X,Y |Z ) =

∑
mm1m2

U (l1 )∗
m1,ξ1

U (l2 )∗
m2,ξ2

× Cl1m1,l2m2
lm (X,Y |Z )U (l )

m,ξ . (18)

If the obtained SAMBs are not orthonormalized, then the
Gram-Schmidt method is applied. Since Xl1ξ1,sk and Yl2ξ2

are already orthonormalized, this is done by performing the
Gram-Schmidt method only to the CG coefficients. The ex-
ample of the combined SAMB for the case of Fig. 2 with
the spinless s orbital (p orbitals) at A (B) sites is given in
Table VII.

B. Periodic crystals

In this subsection, we discuss the SAMB, Ẑlξ,sk , for pe-
riodic crystals. The procedure is almost the same as that for
isolated cluster systems described in the previous subsections.
Since the atomic SAMB Xlξ,sk is irrelevant either to isolated
cluster systems or periodic crystals, we only consider the
SAMB of the site/bond clusters, Ylξ .

In periodic crystals, the site/bond cluster is defined in a
similar manner as described in Sec. II A 1. Since there are
translation operations, sites R′

g and bond centers c′
g must be

shifted to the home unit cell in defining the site/bond cluster.
Then let us introduce the associated point group for space

group in question. The associated point group is given by
omitting the superscript of the space group in Schönflies
notation, e.g., C3v for C4

3v (#159, P31c), and its symmetry
operations are given by those of the relevant space group
without the (partial) translations. It should be noted that there
is a one-to-one correspondence between the symmetry oper-
ations of the space group and those of its associated point
group. Through this associated point group, we can determine
the one-to-many correspondence g(i) between the site/bond
cluster in the periodic crystals and virtual cluster by means
of the symmetry operations, g. Once we establish the one-
to-many correspondence, we can construct the SAMB of the
site/bond clusters Ylξ , and hence the combined SAMB Ẑlξ,sk ,
in the same manner for isolated cluster systems. It should be
emphasized that there is essentially no ambiguity about how to
choose site/bond clusters and their origin by this prescription.

C. Full matrix form

In the previous subsections, we have explained how to
construct the SAMB both for isolated cluster systems and
periodic crystals. In general, the shapes of the obtained atomic
SAMBs Xlξ,sk are different from each other depending on
the combination of the bra and ket states. Moreover, the di-
mensions of the SAMBs Ylξ are different among site/bond
clusters. To obtain the full matrix form with respect to the
total Hilbert space of the targeting system (see Fig. 3),
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TABLE VII. Combined orthonormalized SAMBs belonging to the identity A1 irrep. The abbreviation [X ⊗ Y ] = (Xu ⊗ Yu + Xv ⊗
Yv )/

√
2 is used for E irrep. As Q(a)

lξ,sk is spinless, s = 0 and k = 0 are omitted. The indices (l, �, n, γ ) correspond to those in Table III.

l � n γ Q̂lξ for A(s) l � n γ Q̂lξ for A(s) → A(s)

0 A1 – – Q(a)
0,A1

⊗ Q(s)
0,A1

0 A1 – – Q(a)
0,A1

⊗ Q(b)
0,A1

l � n γ Q̂lξ for B(p) l � n γ Q̂lξ for A(s) → B(p)

0 A1 – – Q(a)
0,A1

⊗ Q(s)
0,A1

0 A1 – –
[
Q(a)

1,E ⊗ Q(b)
1,E

]
1 A1 – –

[
Q(a)

2,E ,1 ⊗ Q(s)
1,E

]
1 A1 – – Q(a)

1,A1
⊗ Q(b)

0,A1

2 A1 – – Q(a)
2,A1

⊗ Q(s)
0,A1

3 A1 2 –
[
Q(a)

1,E ⊗ Q(b)
2,E ,2

]
3 A1 2 –

[
Q(a)

2,E ,2 ⊗ Q(s)
1,E

]

we carry out the rearrangement of the basis elements, and
Fourier transformation for periodic crystals, in the following
procedure.

1. Conversion to full matrix form

For the atomic orbitals, we consider the direct sum of the
Hilbert spaces of all the relevant atomic orbitals and assign
each Xlξ,sk for a given bra-ket states to an appropriate block
of the matrix. Similarly, we consider the Hilbert space of all
of the relevant sites in the targeting system and sum each
element [Ylξ ](i) to the appropriate matrix element in the case
of isolated cluster systems.

On the other hand, for periodic crystals, we must use
momentum-space representation. In order to transform the
SAMB to the momentum space, we perform Fourier trans-
formation for each bond in bond clusters. Namely, the ith
component of the SAMB is transformed as

[Ylξ ](i) → e−ik·bi [Ylξ ](i). (19)

Note that the complex conjugate of e−ik·bi [Ylξ ](i) is obtained
by reverting the bond direction bi → −bi, especially due to
the phase factor i in T (b)

lξ . The expression of the SAMB in site
clusters does not change in the momentum space.

By the above procedure, we obtain the full matrix form of
Ylξ or its momentum-space representation, which we denote
as Ylξ (k). Then, the SAMB Zlξ,sk in the full matrix form is

FIG. 3. (a) Full matrix form of SAMB Ẑlξ,sk , (b) atomic SAMB
Xl1ξ1,sk with respect to atomic orbitals in each site or bond, and
(c) cluster SAMB Yl2ξ2 for each site/bond clusters.

obtained by

Ẑlξ,sk =
∑
ξ1ξ2

Cl1ξ1,l2ξ2
lξ (X,Y |Z )Xl1ξ1,sk ⊗ Yl2ξ2 , (20)

or

Ẑlξ,sk (k) =
∑
ξ1ξ2

Cl1ξ1,l2ξ2
lξ (X,Y |Z )Xl1ξ1,sk ⊗ Yl2ξ2 (k). (21)

Here the binary operator, ⊗, simply means the direct product
of two Hermitian matrices, Xl1ξ1,sk and Yl2ξ2 .

2. Conversion to structure-factor form

The Hermitian full matrix form of Yl2ξ2 (k) can be further
decomposed into k-independent “uniform matrix” basis Ulξ

and “structure factor” Flξ (k) as follows. Let us first introduce
the momentum representation of Q(b)

lξ and T (b)
lξ as

Q(k)
lξ (k) ≡

√
2

∑
i

cos(k · bi )
[
Q(b)

lξ

]
(i),

T (k)
lξ (k) ≡ −

√
2i

∑
i

sin(k · bi )
[
T (b)

lξ

]
(i). (22)

Here Q(k)
lξ (k) and T (k)

lξ (k) are real functions and trans-
formed as Olξ (k) for the symmetry operations, and
the time-reversal operation is T [Q(k)

lξ (k)] = Q(k)
lξ (−k) and

T [T (k)
lξ (k)] = −T (k)

lξ (−k). We denote all of the symmetry-
adapted structure factor (“structure SAMB”) as Flξ (k) either
of Q(k)

lξ (k), T (k)
lξ (k) or unity. Then {Flξ (k) } constitutes the

orthonormalized complete set, i.e.,
1

N0

∑
k

F ∗
l1ξ1

(k)F ′
l2ξ2

(k) = δl1,l2δξ1,ξ2δF,F ′ , (23)

∑
Flξ

Flξ (k)F ∗
lξ (k′) = δk,k′ , (24)

where N0 is the number of k points, and the summation is
taken over the minimal periodic unit in which

1

N0

∑
k

cos(k · bi ) cos(k · b j ) = 1

2
δi j,

1

N0

∑
k

sin(k · bi ) sin(k · b j ) = 1

2
δi j,

1

N0

∑
k

cos(k · bi ) sin(k · b j ) = 0. (25)
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TABLE VIII. Notations used in this paper. SAMB and CG are the abbreviations of Symmetry-Adapted Multipole Basis and Clebsch-
Gordan, respectively.

Symbol Meaning

Q, G, M, T electric (E), electric-toroidal (ET), magnetic (M), and magnetic-toroidal (MT) multipoles

l , m rank (0, 1, 2, · · · ) and component (−l, −l + 1, · · · , l)

ξ = (�, n, γ ) irrep., multiplicity, and component in point group

s, k charge (s = 0, k = 0) sector or spin (s = 1, k = −1, 0, 1) sector for atomic SAMB

Olm(r) normalized spherical harmonics, r = (x, y, z)

Olξ (r) symmetry-adapted harmonics in point group

U (l )
m,ξ unitary matrix from (l, m) to (l, ξ ) basis

Qlξ SAMB for virtual cluster

Q(a)
lξ,sk,G

(a)
lξ,sk,M

(a)
lξ,sk,T

(a)
lξ,sk SAMB for atomic degrees of freedom

Q(s)
lξ SAMB for site cluster

Q(b)
lξ ,T (b)

lξ SAMB for bond cluster (symmetric part, antisymmetric part)

Q(u)
lξ ,T (u)

lξ uniform component of Q(b)
lξ (k),T (b)

lξ (k) having off-diagonal matrix elements only

Q(k)
lξ (k),T (k)

lξ (k) structure factor obtained from Q(b)
lξ ,T (b)

lξ

Q̂lξ,sk, Ĝlξ,sk, M̂lξ,sk, T̂lξ,sk combined SAMB (isolated cluster systems)

Q̂lξ,sk (k), Ĝlξ,sk (k), M̂lξ,sk (k), T̂lξ,sk (k) combined SAMB (periodic crystals)

Xlξ,sk SAMB for {Q(a)
lξ,sk,G

(a)
lξ,sk,M

(a)
lξ,sk,T

(a)
lξ,sk }

Ylξ SAMB for {Q(s)
lξ ,Q(b)

lξ ,T (b)
lξ }

Ẑlξ,sk combined SAMB for Xl1ξ1,sk and Yl2ξ2

Ulξ SAMB for {Q(s)
lξ ,Q(u)

lξ ,T (u)
lξ } (isolated cluster systems/periodic crystals)

Flξ (k) SAMB for {Q(k)
lξ (k),T (k)

lξ (k), 1 } (periodic crystals)

Cl1ξ1,l2ξ2
lξ (X,Y |Z ) CG coefficient from Xl1ξ1,sk and Yl2ξ2 to Zlξ,sk (isolated cluster systems/periodic crystals)

Cl1ξ1,l2ξ2,l3ξ3
lξ (X,U, F |Z ) CG coefficient from Xl1ξ1,sk , Ul2ξ2 , and Fl3ξ3 (k) to Zlξ,sk (k) (periodic crystals)

It should be noted that the periodicity of Flξ (k) differs from
the Brillouin zone of the system, unless the bond vectors are
identical to the lattice vector in the primitive unit cell.

By using Flξ (k), we can reexpress Ylξ (k) as

Ylξ (k) =
∑

l1ξ1l2ξ2

f l1ξ1,l2ξ2
lξ (U, F )Ul1ξ1 ⊗ Fl2ξ2 (k), (26)

where Ulξ = Q(s)
lξ for site clusters or the uniform component

Ylξ (k = 0) having only off-diagonal matrix elements for bond
clusters, with appropriate normalization. Here f l1ξ1,l2ξ2

lξ (U, F )
is the linear coefficient. Note that Ulξ = Ylξ for isolated clus-
ter systems.

By these prescriptions, we finally obtain the combined
SAMB in terms of the uniform and structure SAMBs as

Ẑlξ,sk (k) =
∑

ξ1,l3ξ3l4ξ4

Cl1ξ1,l3ξ3,l4ξ4
lξ (X,U, F |Z )

× Xl1ξ1,sk ⊗ Ul3ξ3 ⊗ Fl4ξ4 (k), (27)

where

Cl1ξ1,l3ξ3,l4ξ4
lξ (X,U, F |Z )

≡
∑
ξ2

Cl1ξ1,l2ξ2
lξ (X,Y |Z ) f l3ξ3,l4ξ4

l2ξ2
(U, F ). (28)

The notations and their meanings used in this paper are sum-
marized in Table VIII.

III. APPLICATION TO GRAPHENE

In this section, we demonstrate the symmetry-adapted TB
modeling for graphene based on our method. Then, using the
obtained TB model, we determine the model parameters by
optimizing them to reproduce the energy dispersion obtained
by the DF computation.

A. TB model based on SAMB

Graphene has a honeycomb structure in space group
P6/mmm (#191, D1

6h). The lattice constant is a = 2.435 Å,
the length of the vacuum layer along the c axis is set as
c = 4a, and the unit vectors are given by a1 = (1, 0, 0)a,
a2 = (−1/2,

√
3/2, 0)a, and a3 = (0, 0, 1)c. The symmetry

operations of D6h point group are given in Table IX.
There are two C atoms in the unit cell, and we consider the

spinless pz orbital at each C atom and up to sixth-neighbor
bonds. The site cluster C, the bond clusters B1, and B2 for
three nearest-neighbor and six second-neighbor bonds are
summarized in Table X and Fig. 4. In constructing the virtual
cluster sites in D6h, we have used the general point, r1 =
(
√

3 + 1,
√

3 − 1, 1) and its symmetry-operated points. By
the mapping procedure from the virtual cluster as explained
in Sec. II A 3, we obtain the SAMB for the site/bond clus-
ters in Table XI. The SAMBs for the clusters C and B1 are
schematically shown in Fig. 5.
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TABLE IX. Symmetry operations (SOs) in D6h.

No. SO No. SO No. SO No. SO

1 1 2 2001 3 2100 4 2010

5 2110 6 2120 7 2210 8 21−10

9 3+
001 10 3−

001 11 6+
001 12 6−

001

13 −1 14 m100 15 m010 16 m110

17 m001 18 m120 19 m210 20 m1−10

21 −3+
001 22 −3−

001 23 −6+
001 24 −6−

001

In this example, since there is only one atomic SAMB for
spinless pz bra-ket space,

Q(a)
0,A1g,(0,0) = (1), (29)

the combined SAMB is always equivalent to Ylξ (k), i.e.,
Ẑlξ (k) = Ylξ (k). Thus, we omit Q(a)

0,A1g,(0,0) hereafter. Convert-
ing Ylξ to the momentum-space representation in 2 × 2 full
matrix form (|pz@C1〉, |pz@C2〉), we obtain Ylξ (k) = Ẑlξ (k)
for the site cluster C and the nearest-neighbor bond cluster
B1 as

Q̂[C]
0,A1g

= 1√
2

(
1 0
0 1

)
, Q̂[C]

3,B1u
= 1√

2

(
1 0
0 −1

)
, (30)

Q̂[B1]
0,A1g

(k) = 1√
6

(
0 e−ik·b1 + e−ik·b2 + e−ik·b3

c.c. 0

)
,

Q̂[B1]
2,E2g,u

(k) = 1

2
√

3

(
0 2e−ik·b1 − e−ik·b2 − e−ik·b3

c.c. 0

)
,

Q̂[B1]
2,E2g,v

(k) = 1

2

(
0 −e−ik·b2 + e−ik·b3

c.c. 0

)
, (31)

TABLE X. C-site cluster (C) and the nearest-neighbor (B1) and
second-neighbor (B2) bond clusters in graphene and the one-to-many
correspondences g(i).

C Ri g(i)

C1

[
1
3 , 2

3 , 0
]

[1,6,7,8,9,10,14,15,16,17,23,24]

C2

[
2
3 , 1

3 , 0
]

[2,3,4,5,11,12,13,18,19,20,21,22]

B1 bi@ci g(i)

b1

[
1
3 , 2

3 , 0
]
@

[
1
2 , 0, 0

]
[1,−2, −3, 6, −13, 14, 17, −18]

b2

[
1
3 , − 1

3 , 0
]
@

[
1
2 , 1

2 , 0
]

[−4, 7, 10, −11, 15, −19, −22, 23]

b3

[− 2
3 , − 1

3 , 0
]
@

[
0, 1

2 , 0
]

[−5, 8, 9, −12, 16, −20, −21, 24]

B2 bi@ci g(i)

b4 [0, 1, 0]@
[

1
3 , 1

6 , 0
]

[1,−7, −15, 17]

b5 [0, 1, 0]@
[

2
3 , 5

6 , 0
]

[−2, 4, −13, 19]

b6 [1, 1, 0]@
[

1
6 , 5

6 , 0
]

[−3, 12, −18, 21]

b7 [1, 0, 0]@
[

1
6 , 1

3 , 0
]

[5,−11, 20, −22]

b8 [1, 1, 0]@
[

5
6 , 1

6 , 0
]

[6,−9, 14, −24]

b9 [1, 0, 0]@
[

5
6 , 2

3 , 0
]

[−8, 10, −16, 23]

FIG. 4. Site cluster and nearest-neighbor and second-neighbor
bond clusters in graphene. The representative site and bonds are
indicated by the yellow circle and red arrows, respectively.

T̂ [B1]
1,E1u,u

(k) = 1

2

(
0 ie−ik·b2 − ieik·b3

c.c. 0

)
,

T̂ [B1]
1,E1u,v

(k) = 1

2
√

3

(
0 2ie−ik·b1 − ie−ik·b2 − ie−ik·b3

c.c. 0

)
,

T̂ [B1]
3,B1u

(k) = 1√
6

(
0 ie−ik·b1 + ie−ik·b2 + ie−ik·b3

c.c. 0

)
, (32)

where “c.c.” denotes the complex conjugate of the correspond-
ing element in the upper-triangle of the matrix and square
brackets in the superscript indicate the relevant site/bond clus-
ters. We have omitted the superscripts, (s) and (b), as we have
attached the cluster indices. In the same procedure, the full
matrix forms in the momentum representation for more than
second-neighbor bond clusters, B2, B3, . . . , may be obtained.

By selecting the identity representation A1g, e.g., Q̂[C]
0,A1g

and Q̂[B1]
0,A1g

(k), we obtain the TB Hamiltonian in terms of the

FIG. 5. Site cluster and the nearest-neighbor bond cluster
SAMBs for graphene. The color and size (width) represent the
weight of the components in each SAMB.
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TABLE XI. SAMB in C site cluster and B1 and B2 bond clusters.

l � n γ Q(s)
lξ for C l � n γ Q(s)

lξ for C

0 A1g – – 1√
2
(1, 1) 3 B1u – – 1√

2
(1, −1)

l � n γ Q(b)
lξ for B1 l � n γ T (b)

lξ for B1

0 A1g – – 1√
3
(1, 1, 1) 1 E1u – u i√

2
(0, 1, −1)

2 E2g – u 1√
6
(2, −1, −1) – v i√

6
(2, −1, −1)

v 1√
2
(0, −1, 1) 3 B1u – – i√

3
(1, 1, 1)

l � n γ Q(b)
lξ for B2

0 A1g – – 1√
6
(1, 1, 1, 1, 1, 1)

1 E1u – u 1
2 (1,−1, 1, 0, −1, 0)

v 1
2
√

3
(1,−1, −1, 2, 1, −2)

2 E2g – u 1
2
√

3
(1, 1, 1, −2, 1, −2)

v 1
2 (−1,−1, 1, 0, 1, 0)

3 B1u – – 1√
6
(1, −1, −1, −1, 1, 1)

l � n γ T (b)
lξ for B2

1 E1u – u i
2
√

3
(1, 1, −1, −2, −1, −2)

v − i
2 (1, 1, 1, 0, 1, 0)

2 E2g – u i
2 (1,−1, −1, 0, 1, 0)

v i
2
√

6
(1,−1, 1, 2, −1, −2)

3 B2u – – i√
6
(1, 1, −1, 1, −1, 1)

6 A2g – – i√
6
(1, −1, 1, −1, −1, 1)

combined SAMBs as

H (k) =
∑

j

z jẐ j (k)

= z1Q̂
[C]
0 + z2Q̂

[B1]
0 (k) + z3Q̂

[B2]
0 (k) + · · · , (33)

where the irrep. A1g has been omitted. Here j = 1, 2, . . . ,
is the sequential number for the combined SAMBs, and the
coefficient z j is the weight of each SAMB. They will be
determined by comparing the energy dispersion obtained from
the TB model with that of the DF computation.

Ylξ (k) = Ẑlξ (k) can be further decomposed into the direct
product of Ulξ and Flξ (k). In addition to the diagonal Q(s)

lξ

from the site cluster C, the uniform matrices Q(u)
lξ and T (u)

lξ are

obtained by the off-diagonal Q(b)
lξ (k) and T (b)

lξ (k) with k = 0
and appropriate normalization as

Q[B1]
0,A1g

= 1√
2

(
0 1
1 0

)
, T [B1]

3,B1u
= 1√

2

(
0 i
−i 0

)
. (34)

Note that since Eqs. (30) and (34) form the complete set
for 2 × 2 space, the uniform matrices Q[B1]

lξ and T [B1]
lξ are

common for all bond clusters.
By Eq. (22), the structure SAMBs are given by

Q[B1](k)
0,A1g

(k) = 2√
6

(c1 + c2 + c3),

Q[B1](k)
2,E2g,u

(k) = 1√
3

(2c1 − c2 − c3),

Q[B1](k)
2,E2g,v

(k) = −c2 + c3,

T [B1](k)
1,E1u,u

(k) = s2 − s3,

T [B1](k)
1,E1u,v

(k) = 1√
3

(2s1 − s2 − s3),

T [B1](k)
3,B1u

(k) = 2√
6

(s1 + s2 + s3), (35)

where ci = cos(k · bi ) and si = sin(k · bi ) with the reduced
momentum k = 2π (k1, k2, k3). The expressions can be con-
verted in terms of the Cartesian coordinate kx and ky by
substituting k1 = kxa and k2 = (−kxa + √

3kya)/2. The k de-
pendence of Q[B1](k)

0,A1g
(k) and T [B1](k)

3,B1u
(k) are shown in Fig. 6.

FIG. 6. Symmetry-adapted structure factors for the nearest-
neighbor bonds in graphene. kx and ky are in unit of 2π/a.
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TABLE XII. Bond vectors for graphene up to sixth neighbors.

n bi Vector bi Vector bi Vector

1 b1

[
1
3 , 2

3 , 0
]

b2

[
1
3 , − 1

3 , 0
]

b3

[− 2
3 , − 1

3 , 0
]

2 b4 [0, 1, 0] b5 = b4 b6 [1, 1, 0]

b7 [1, 0, 0] b8 = b6 b9 = b7

3 b10

[
4
3 , 2

3 , 0
]

b11

[− 2
3 , 2

3 , 0
]

b12

[− 2
3 , − 4

3 , 0
]

4 b13

[
4
3 , 5

3 , 0
]

b14

[
1
3 , 5

3 , 0
]

b15

[
4
3 , − 1

3 , 0
]

b16

[− 5
3 , − 4

3 , 0
]

b17

[− 5
3 ,− 1

3 , 0
]

b18

[
1
3 , − 4

3 , 0
]

5 b19 [1, 2, 0] b20 = −b19 b21 [−1, 1, 0]

b22 [2, 1, 0] b23 = −b21 b24 = −b22

6 b25 [2, 2, 0] b26 = b25 b27 [0, 2, 0]

b28 [2, 0, 0] b29 = b27 b30 = b28

Using Ulξ and Flξ (k), Q̂[Bn]
0 (k) for n = 1, 3, 4 can be de-

composed as

Q̂[Bn]
0 (k) = 1√

2

[
Q[B1]

0,A1g
⊗ Q[Bn](k)

0,A1g
(k) − T [B1

3,B1u
⊗ T [Bn](k)

3,B1u
(k)

]
,

(36)

and for n = 2, 5, 6 as

Q̂[Bn]
0 (k) = Q[C]

0,A1g
⊗ Q[Bn](k)

0,A1g
(k). (37)

Here the structure factors for n = 3, 4 are given by

Q[B3](k)
0,A1g

(k) = 2√
6

(c10 + c11 + c12),

Q[B4](k)
0,A1g

(k) = 1√
3

(c13 + c14 + c15 + c16 + c17 + c18),

T [B3](k)
3,B1u

(k) = 2√
6

(s10 + s11 + s12),

T [B4](k)
3,B1u

(k) = 1√
3

(s13 + s14 + s15 + s16 + s17 + s18), (38)

and for n = 2, 5, 6,

Q[B2](k)
0,A1g

(k) = 2√
6

(c4 + c6 + c7),

Q[B5](k)
0,A1g

(k) = 2√
6

(c19 + c21 + c22),

Q[B6](k)
0,A1g

(k) = 2√
6

(c25 + c27 + c28), (39)

where the bond vectors up to sixth neighbors are shown in
Table XII.

By using the SAMB, the symmetry-breaking terms are
classified according to point-group symmetry, which is useful
to narrow down the possible order parameters in the phase
transition. For example, the mass term which lowers the sym-
metry from D6h to D3h is given by Q̂[C]

3,B1u
. In the ordered phase,

this term becomes the identity irrep.
Similarly, the Haldane’s magnetic flux due to kinetic

spin-orbit coupling is expressed as M̂[B2]
1,A2g

= Q[C]
3,B1u

⊗ T [B2](k)
3,B2u

where the structure factor is T [B2](k)
3,B2u

= 2√
6
(s5 − s6 + s7),

which corresponds to the vortexlike imaginary hopping in
second-neighbor A-A or B-B bonds (see Fig. 4) [24].

When the inversion symmetry is broken, e.g., by applying
an electric field perpendicular to the plane, the Rashba term
appears [25]. As the polar vector belongs to A2u irrep., we
look for the SAMB belonging to A2u. Although there is no
SAMB belonging to A2u in the spinless Hilbert space, it can
appear when taking into account the spin degree of freedom
(σx, σy, σz ). Considering the product decomposition, A2u =
A2g ⊗ A1u or A2u = E1g ⊗ E1u and the irrep. of the spins as
σz (A2g) and (−σy, σx ) (E1g), we obtain the Rashba term for
the nearest-neighbor bond cluster as

HRashba(k) = 1
2

[−σy ⊗ Q[B1]
0,A1g

⊗ T [B1](k)
1,E1u,u

(k)

+ σx ⊗ Q[B1]
0,A1g

⊗ T [B1](k)
1,E1u,v

(k)
]
. (40)

In this way, the symmetry-breaking terms are easily classified
in terms of the SAMB, and their k dependence is encoded in
the structure SAMB, Flξ (k).

For obtaining deeper insights into the physical responses
and the exploration of more efficient materials, it is highly de-
sirable to achieve a microscopic understanding of the relevant
mechanism and the essential parameters. In this sense, the
symmetry-adapted modeling as Eq. (33) is also useful to ana-
lyze various linear and nonlinear response functions, which
bridges the gap between the phenomenological approaches
and DF computations [14,26]. The systematic analysis
method for response functions proposed in Refs. [14,27] not
only enables one to predict the possible responses but also ex-
tract essential parameters in a systematic manner by analyzing
the indicators such as

�i j
μ;α = Tr[AμHiBαH j],

�
i jk
μ;α,β = Tr[AμHiBαH jBβHk], (41)

for linear and second-order nonlinear responses. The cor-
responding response becomes active when the indicator is
nonzero. Here A and B are the output and input operators
in the responses, respectively, and Hi is the ith power of
the Hamiltonian matrices. By using Eq. (33), the trace in the
indicator is regarded as selecting the identity irrep. in the irre-
ducible decomposition of the product of A, B, and Hi. Thus,
the combination of those operators giving the identity irrep.
is nothing but the essential parameters of the response. It can
provide us with guidelines for future material design, beyond
those obtained by the existing phenomenological approaches
and DF calculations.

B. Optimization of TB Model

We have constructed the TB model for graphene in
Eq. (33), and there are seven parameters z = (z1, z2, . . . , z7)
up to sixth-neighbor hoppings. In order to optimize the model
parameters z, we compute the energy dispersion by DF com-
putation.

For the DF computation, we have used the Quantum
ESPRESSO open-software package [28] with the Perdew-
Zunger correlation functional [29] and the ultrasoft pseudopo-
tential. We have used the k grid, (N1, N2, N3) = (12, 12, 1),
and the kinetic energy cutoff of the Kohn-Sham wave
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FIG. 7. The comparisons of the band dispersion between the DF Wannier and SAMB TB models. (a) The Brillouin zone and high-symmetry
points, (b) the comparison of energy dispersions between DF (gray solid lines) and Wanner TB model (red dashed lines), and [(c)–(h)] the
comparison of energy dispersion between the DF Wannier TB model (gray solid lines) and our SAMB TB model up to N (b)

max-neighbor bonds
(red dashed lines). The Fermi energy is set as the origin.

functions and convergence threshold are set as 30 Ry and
1 × 10−10 Ry, respectively.

The obtained electronic bands near the Fermi energy in the
high-symmetry lines �-K-M-� in Fig. 7(a) are entangled as
shown in Fig. 7(b) (gray solid lines). Thus, before optimizing
the model parameters, two relevant bands near the Fermi
energy must be disentangled. For this purpose, we have used
the Wannier90 open-source software package [7–9]: The pz

orbital is chosen for each C atom as the initial guess function,
and the outer and inner energy windows are set as [−30,
12] eV and [−3.0, 2.6] eV, respectively. Then, we obtain
the pz-like two Wannier orbitals and corresponding energy
dispersions are indicated by red dashed lines as shown in
Fig. 7(b).

In the optimization process, we introduce the loss function
as the dimensionless mean-squared error of the normalized
energy eigenvalues between the DF and our TB models [26],

L(z) = 1

NkNn

∑
n

∑
k

[
εnk(z) − εDF

nk

W

]2

, (42)

where Nk = 151, Nn = 2, and W = 21.40 (eV) are the num-
ber of k points to evaluate the loss function, the size of the
Hamiltonian, and band width, respectively.

In order to eliminate strong initial-guess dependence, we
use the hidden layers in the neural network. Namely, the
relation between the input DF energy bands εDF

nk and the re-
sultant energy bands of our TB model εnk(z) is regarded as
the nontrivial nonlinear system. Then, we insert the hidden
layers between the input and output energy bands to express
flexibly this nonlinear relation and apply the back-propagation
error algorithm to optimize the model parameters z and hyper
parameters in the hidden layers [16,30]. It turned out that
extremely low initial-guess dependence was achieved. We
have chosen 50 k points in each line in the high-symmetry
lines �-K-M-� and used Nh = 3 hidden layers. We have used

the PyTorch package [31] and the Adam optimizer [32] with
the learning rate α = 0.1. The fixed maximum number of
iterations Niter = 250 is sufficient to reach convergence. In the
case of graphene, the construction of the SAMB and the op-
timization of the model parameters take within a minute by a
standard laptop computer. For more complicated systems, the
computing cost increases mostly in the part of the construction
of the SAMB, but it takes within 10 minutes for SrVO3 and
MoS2 as shown in the Supplemental Material.

The results of the best optimization with N (b)
max-neighbor

bonds are shown in Figs. 7(c)–7(h), where the convergence
value of the loss function for Fig. 7(h) is about 9.4 × 10−6.
With increase of N (b)

max, the result gives better reproduction of
the DF energy dispersion. The optimization parameters for
N (b)

max = 6 are obtained as

z1 = −0.163, z2 = −7.274, z3 = 0.880, z4 = −0.693,

z5 = 0.0761, z6 = 0.202, z7 = −0.080 (eV). (43)

The band structure, density of states (DOS), isoenergy sur-
face, and bond-length dependence of the maximum strength
of hoppings are obtained using these optimized parameters as
shown in Fig. 8. The results of both models are in good agree-
ment. On the other hand, as shown in Fig. 8(c), the bond length
dependence of the maximum strength of hoppings differs sig-
nificantly for the two models. In our SAMB TB model, the
magnitude of the weight tends to decrease as the bond length
increases, while that of the DF Wannier TB model shows
long tail. The advantage of the SAMB TB is that the hopping
range can be freely chosen without losing the symmetry of the
system, and the systematic comparison with different hopping
range is possible as shown in Figs. 7(c)–7(h).

The similar analysis has been performed for a chiral non-
symmorphic system of Te [26], a typical orbitally degenerate
system of SrVO3, and the spin-orbital coupled metal of
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FIG. 8. (a) Comparison of the energy dispersion and DOS for
the optimized SAMB TB with N (b)

max = 6. (b) The isoenergy surface
at μ = −1.5 eV. (c) The bond length dependence of the maximum
strength of hoppings. The gray solid (red dashed) lines represent the
results of the DF Wannier (SAMB) TB model.

monolayer MoS2. We show the results for the latter two mate-
rials in Supplemental Material.

IV. SUMMARY

In this paper, we have developed a symmetry-adapted mod-
eling procedure for molecules and crystals. By constructing
the SAMB for atomic (Xlξ,sk) and molecular/crystal structural
(Ylξ ) parts separately in terms of point-group harmonics, we
express the final SAMBs denoted by Ẑlξ,sk or Ẑlξ,sk (k) as
the irreducible decomposition of these products. Since these
SAMBs constitute a complete orthonormal basis set, they
can describe any of electronic degrees of freedom in isolated
cluster systems and periodic crystals. Once we obtain the

complete set of SAMBs, a physical system can be expressed in
linear combination of these bases belonging to the identity ir-
reducible representation of the system. Moreover, the SAMBs
other than the identity irreducible representations are all the
candidates of possible order parameters, for which emergent
macroscopic physical properties are easily predicted as they
are already classified by the irreducible representation of the
point-group symmetry.

We have demonstrated our method to electronic modeling
of graphene as the simplest example, where the modeling pa-
rameters (linear coefficients of each SAMB) are optimized so
as to reproduce the electronic structures given by the density-
functional computation. As compared with de facto standard
method of Wannier tight-binding modeling, the model ob-
tained by our method satisfies rigorously the symmetry of the
system, in which we can freely choose a range of hoppings.
This aspect is a strong advantage to compactify the relevant
model to discuss various response functions and many-body
effects with low computational cost. Furthermore, meaning
of physical operators is apparent since we describe any of
atomic degrees of freedom in terms of atomic-orbital Hilbert
space.

Although we have demonstrated our method only to elec-
tronic tight-binding modeling, our modeling procedure can
also be utilized to decompose two-body multipolar interac-
tions, including the density-density one, magnetic exchange
couplings including Dzyaloshinskii-Moriya type [33–35], and
mechanical lattice model expressing the dynamical matrix of
phonon [36,37].

Since the present SAMBs all belong to the root spherical
harmonics in rotation group, various systems can be compared
quantitatively with each other via the weight of spherical
harmonics. It is a crucial property of representation required
for good descriptors in machine-learning-based materials de-
sign [38,39]. Therefore, the present method provides us with
fundamental basis to develop symmetry-based analysis for
materials science.
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