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The superconducting phase of topological semimetals has become a promising route for the implementation
of topological superconductivity and non-Abelian Majorana fermions. Here, we investigate quantum transport
in the junctions composed of a nodal-line superconductor, i.e., a topological nodal-line semimetal with super-
conducting pairing. It is shown that two topologically nontrivial regions exist in the surface Brillouin zone
of the nodal-line superconductor labeled by the transverse momentum. Specifically, topological regions with
topological invariants N = 1 and N = 2 host a single and a pair of Majorana zero modes at the surface,
respectively. We show that the single Majorana zero mode in the N = 1 region can induce resonant equal-spin
Andreev reflection, while the Majorana pair in the N = 2 region can lead to resonant spin-flipped normal
reflection. Both reflection processes can give rise to spin currents but with different polarization directions,
whose proportions can be adjusted by a Zeeman field. We also study the transport properties of the device with
a sandwich structure and predict that strong crossed Andreev reflection can be implemented with a finite bias.
Detection schemes for all these novel transport properties, which can be revealed by spin-resolved transport
signatures, are proposed. Our work paves the way for the implementation and detection of Majorana fermions in
nodal-line superconductors.
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I. INTRODUCTION

A Majorana fermion (MF) is a fermion that is its
own antiparticle. In condensed matter physics, the MF has
been predicted to exist in topological superconductors as a
quasiparticle excitation [1,2], which has attracted extensive re-
search interest in the past decade for its non-Abelian braiding
statistics and potential applications in fault-tolerant quantum
computations [1–8]. The pursuit of MFs has ranged from
intrinsic topological superconductors to hybridized systems
[9,10], from one-dimensional (1D) to three-dimensional (3D)
systems [11,12]. Recently, topological semimetals in the su-
perconducting phase have become an important route for the
implementation of MFs. For example, a Weyl-type topological
superconductor can host a large number of Majorana zero
modes on the surface, which are known as Majorana arcs
connecting the nodal points in the surface Brillouin zone
[13–15]. Another candidate is the nodal-line superconductor
(NLSC), in which the drumheadlike Majorana zero modes
emerge inside the projection of the nodal loops in the surface
Brillouin zone [16–23].

The self-Hermiticity of MFs can give rise to a number
of interesting physical phenomena, such as the fractional
Josephson effect [24,25], resonant Andreev reflection (AR)
[26,27], and half-integer conductance plateau [28,29]. For
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a single MF with a specific spin polarization, the so-called
selective equal-spin AR can be induced [30–40]. In such a
process, an electron with a proper spin direction denoted by
n is resonantly reflected into a hole with the same spin. By
contrast, electrons with the opposite spin polarization, −n,
are completely decoupled from the MF and cannot participate
in the AR process. As such, a spin current can be generated
by the equal-spin AR. It becomes particularly interesting if
a huge number of Majorana zero modes exist, which can
considerably enhance the relevant effect.

In this work, we investigate the transport properties of
heterojunctions (in the z direction) composed of a NLSC,
including both the normal metal (NM)-NLSC junction and
the NM-NLSC-NM junction. At the interface of the junctions,
Majorana zero modes with a very high degree of degeneracy
emerge due to the band topology of the NLSC. By viewing the
transverse momenta kx,y as parameters, the 3D NLSC can be
understood as a bundle of 1D superconductors belonging to
the BDI class [41,42]. In the (kx, ky) space or the surface Bril-
louin zone, three topologically distinct regions exist, with the
invariants being N = 0, 1, and 2, with N also being the num-
ber of MFs on the surface. We show that both the nontrivial
phases with N = 1 and 2 can lead to interesting spin-resolved
transport phenomena in the NM-NLSC junction. Specifically,
for the N = 1 phase, all the MFs couple to the electrons
in the NM with their spin pointing in the −y direction and
induce the equal-spin AR [30], which thus generates a giant
spin current. For the N = 2 phase, the two MFs suppress the
AR process due to destructive interference. Instead, electron
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FIG. 1. (a) Sketch of the band structure of a NLSC for kz = 0.
The conduction and valance bands cross at the two red circles. (b) En-
ergy spectrum of a 1D NLSC as a function of kx at ky = 0. The lattice
model is constructed by the substitution kz → a−1 sin kza, k2

0,x,z =
2a−2(1 − cos k0,x,ya), with a being the lattice constant. (c) Phase
diagram determined by the topological invariant N in the surface
Brillouin zone. The phase boundaries are a projection of the nodal
loops onto the surface Brillouin zone. The effect of (d) the z direction
and (e) x direction Zeeman fields on the phase diagram.

transport is dominated by the resonant spin-flipped normal
reflection [43], in which an incident electron with its spin
direction perpendicular to the y axis is reflected with spin
reversal. Both topologically nontrivial regions can generate
spin currents, but their spin polarizations are different. It is
shown that a Zeeman field can effectively tune the areas of
the topological regions in the surface Brillouin zone and thus
the proportion of the two competitive scattering processes.
For the NM-NLSC-NM junction, we find that strong crossed
AR can be implemented with finite bias. We also show that
the aforementioned unique effects can be detected by spin-
resolved transport schemes with the proposed devices.

II. MODEL

In the Nambu basis (ck↑, ck↓, c†
−k↑, c†

−k↓), the Hamiltonian
of a NLSC can be written as [19]

H = B
(
k2

0 − |k|2)σzτz + λkzσxτ0 + �σyτy, (1)

where ck↑ (ck↓) denotes a spin-up (-down) electron with
momentum k, |k|2 = k2

x + k2
y + k2

z is the total momentum
squared, and σi and τi are the Pauli matrices acting on
the spin and particle-hole space. The energy spectra are

Es,± = s
√

[B(k2
0 − |k|2) ± �]2 + λ2k2

z , with s = ±1 standing
for conduction and valence bands. The four bands cross
at two nodal rings l± with radii k± =

√
k2

0 ± �/B in the
kz = 0 plane [see Fig. 1(a)]. Considering the transverse
momentum k‖ = (kx, ky) as a parameter, the Hamiltonian
(1) can map to a 1D Hamiltonian in the z direction.
For a fixed k‖, the 1D Hamiltonian H (kz ) belongs to a

BDI class topological superconductor [41,42], which satis-
fies the time-reversal-like symmetry T H (kz )T −1 = H (−kz )
and particle-hole symmetry PH (kz )P−1 = −H (−kz ), so the
chiral symmetry CH (kz )C−1 = −H (kz ), where T = iσyτyK,
P = σ0τxK, and C = T P , with K being the complex con-
jugate operator. A BDI class topological superconductor is
classified by an integer topological invariant N [41,42], which
denotes the number of topological protected MFs at each end
of the 1D superconducting wire.

One can obtain the phase diagram on the surface Brillouin
zone by calculating the topological invariant N [44,45]. As
expected, the two nodal loops l± are the phase boundaries
that divides the kx-ky plane into three topological phases [see
Fig. 1(c)]. Inside the small loop l−, the topological invariant
N = 2, indicating that there are two MFs at the end of the
system. When k‖ increases, one of the two MFs in N = 2
is annihilated, and a new N = 1 phase with a single MF
emerges. When k‖ > k+, the phase N = 0 is trivial with no
MF.

In Fig. 1(b), we plot the energy spectrum of the 1D
NLSC at an open boundary. For N = 2 (1), the red (cyan)
lines are fourfold (doubly) degenerate, denoting two (a sin-
gle) zero modes at each end. Moreover, one can confirm
that these zero modes are MFs by analytically solving
H (−i∂z )�SC(z) = 0. We consider the system to occupy
the half-space z � 0. Using the trial function �SC(z) =
|φ〉eξz, the secular equation gives eight roots ±ξ1,2,3,4, with

ξ1,2,3,4 = | λ±
√

λ2+4B[−B(k2
0−k2

‖ )±�]

2B |. Because the wave func-
tion is finite, ξ can take only the four negative values.
Consequently, the general solution is given by �SC(z) =∑4

i=1 si|φi〉e−ξiz. In the N = 2 phase where B(k2
0 − k2

‖ ) > �,
one can obtain |φ1〉 = |φ2〉 = (ie−i π

4 ,−e−i π
4 ,−iei π

4 ,−ei π
4 )T

and |φ3〉 = |φ4〉 = (iei π
4 ,−ei π

4 ,−ie−i π
4 ,−e−i π

4 )T , with ξ1,2 =
λ±

√
λ2+4B[−B(k2

0−k2
‖ )−�]

2B and ξ3,4 = λ±
√

λ2+4B[−B(k2
0−k2

‖ )+�]

2B . Im-
posing the open boundary condition �SC(0) = 0, we
have s1 = −s2 and s3 = −s4; then the wave function is
�N=2 = γ1 + γ2, with γ1 = |φ1〉e−ξ1z − |φ2〉e−ξ2z and γ2 =
|φ3〉e−ξ3z − |φ4〉e−ξ4z. It is clear that they describe two MFs
since γ1,2 = γ

†
1,2. When N = 1, |B(k2

0 − k2
‖ )| < �, |φ3,4〉 =

(ie∓i π
4 ,±e∓i π

4 ,−ie±i π
4 ,−e±i π

4 )T . Because |φ3〉 	= |φ4〉, the
boundary condition can be satisfied only for coefficients s3 =
s4 = 0, so the wave function is �SC(0) = γ1, indicating only
one MF end state. Last, for the N = 0 phase, |φ1,2〉 change
to |φ1,2〉 = (ie∓i π

4 ,∓e∓i π
4 ,−ie±i π

4 ,∓e±i π
4 )T . Now the four

spinors |φ1,2,3,4〉 are not equal; �SC(0) = 0 requires all the
coefficients si = 0, so no bound state exists.

A MF will induce equal-spin AR; specifically, for the
N = 1 phase here, each MF couples to the electron with spin
pointing in the −y direction [19,31], so the N = 1 phase
induces a spin-polarized current. For the N = 2 phase, the AR
is completely suppressed because of the destructive interfer-
ence between the local AR amplitudes caused by the two MFs
[19,31]. However, if we examine the spin transport as shown
below, we can find that the two MFs will induce resonant
spin-flipped reflection; for example, a spin-up electron will
be reflected as a spin-down electron. Thus, a spin current will
also be induced because the incident and reflected electrons
have opposite spin polarizations. We can see that both phases
induce spin currents, but the spin polarizations are different.
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In order to tune the spin currents, we apply a Zeeman field
described by

HZ = Vxσxτz + Vzσzτz. (2)

The energy spectra in the presence of the Zeeman field are

Es = s
√

�2
xz + �2 + λ2k2

z ± 2
√

�2
xz�

2 + V 2
x λ2k2

z , with �2
xz =

V 2
x + [Vz + B(k2

0 − |k|2)]2. We can see that when Vx < �, the
nodal loops are modified to l ′

± in the kz = 0 plane with radii

k′
± =

√
k2

0 + (Vz ± √
�2 − V 2

x )/B. Now the nodal loops l ′
±

serve as the new critical lines dividing different topological
phases. Therefore, we can achieve a topological transition
by applying Zeeman fields along the x and z directions.
Specifically, Vz causes the inner and outer circles to change
synchronously, keeping the squared difference of their radii
constant [see Fig. 1(d)], while Vx makes the two circles
move closer to each other [see Fig. 1(e)]. Particularly, when
Vx � �, the difference between the radii of the two circles
is zero, so the topological phase N = 1 disappears; then
only the nontrivial resonant spin-flipped reflection exists. It
is noted that although, in the (kx, ky) space, the energy gap
is always open when Vx > �, the topological transition can
happen without the energy gap closing [46,47]. Calculating
the topological invariant, we find that when

√
V 2

x − �2 <

λ

√
Vz+B(k2

0−k2
‖ )

B , N = 2; otherwise, N = 0. When Vx < � and

Vz < −Bk2
0 + √

�2 − V 2
x , the radius of the inner circle is less

than zero, so the N = 2 phase disappears, and only the −y
direction spin-polarized current will appear.

III. SPIN-DEPENDENT TRANSPORT
IN A NM-NLSC JUNCTION

In order to investigate the spin-dependent transport in a
NM-NLSC junction, we employ the Bogoliubov–de Gennes
(BdG) equation [48]. A semi-infinite NM lead is attached to
the left end of the NLSC. Here, the incident energy is set to
E = 0. The solution of the BdG equation in the NLSC is

�SC(z) =
4∑

i=1

si|φi〉eikziz, (3)

with |φi〉 = [1, bi, ci, di]T , bi = 2λkzi (�z−Bk2
zi )

(�z−Bk2
zi )

2−λ2k2
zi−�2+V 2

x
, ci =

−λkzi−Vx+(�z−Bk2
zi )bi

�
, di = (�z−Bk2

zi )+(λkzi+Vx )bi

�
, and �z = Vz +

B(k2
0 − k2

‖ ), with kzi being the roots of the eigenequation
|H | = 0 with positive imaginary parts which make the wave
functions decay into the NLSC.

Assuming that the lead is described by the Hamiltonian
HL = (C|k|2 − μ)σ0τz, the wave function in the lead at
the Fermi energy can be written as �L(z) = eikFz|e1〉 +
re↑

e↑e−ikFz|e1〉 + re↓
e↑e−ikFz|e2〉 + rh↑

e↑ eikFz|h1〉 + rh↓
e↑ eikFz|h2〉,

where kF is the Fermi wave vector and |e1〉 = (1, 0, 0, 0)T ,
|e2〉 = (0, 1, 0, 0)T , |h1〉 = (0, 0, 1, 0)T , and |h2〉 =
(0, 0, 0, 1)T . Here, rασ ′

eσ denotes the amplitude for an incoming
electron with spin σ to be reflected as an α particle with spin
σ ′, where α denotes an electron or hole. All the scattering

FIG. 2. (a) When the transverse momentum lies inside the cyan
region where N = 1, incident electrons with spin antiparallel to the
y axis will undergo equal-spin AR in which an electron is reflected
as a hole with the same spin. When the transverse momentum lies
inside the red region where N = 2, incident electrons with spin
perpendicular to the y axis will undergo spin-flipped normal reflec-
tion. (b) The reflection probabilities as a function of incident energy.
The solid lines are the AR probabilities; the red, blue, and green
lines correspond to the phases N = 2, 1, and 0, respectively. The
dashed line is the spin-flipped reflection probability in the N = 2
phase. The dotted lines are the AR probabilities at the nodal lines.
The parameters are B = C = 1, Vx = Vz = 0, � = 1, λ = 0.2, and
kF = 5k0 = 20.

coefficients can be solved by boundary conditions:

�L(0) = �SC(0) = �(0),

Cτz�
′
L(0) + Bσzτz�

′
SC(0) = i

2
λσx�(0). (4)

It is noted that the wave function (3) can be simplified
for a fixed topological phase. We first consider the case
of N = 1, in which a MF is localized at the boundary for
a given k‖ and the equal-spin AR can be induced. In this
phase, we have |�z| <

√
�2 − V 2

x , and the wave functions are
simplified as |φ1〉 = |φ2〉 = (ie−iϕ,−e−iϕ,−ieiϕ,−eiϕ )T ,
|φ3〉 = (ie−iϕ, e−iϕ,−ieiϕ,−eiϕ )T , and |φ4〉 =
(ieiϕ,−eiϕ,−ie−iϕ,−e−iϕ )T , with 2ϕ = arccos(Vx/�),
and the corresponding wave vectors are kz1,2 =
i
λ±

√
λ2+4B(−�z−

√
�2−V 2

x )

2B and kz3,4 = i
∓λ+

√
λ2+4B(−�z+

√
�2−V 2

x )

2B .
The normal reflection and AR matrices, which relate the
incoming electron (ck↑, ck↓) to the outgoing electrons
(ck↑, ck↓) and holes (c†

−k↑, c†
−k↓), are

ree = 1

2

(
1 −i
i 1

)
, rhe = 1

2

(−i 1
1 i

)
. (5)

Denoting |−〉 = 1√
2
(1,−i)T , we have rhe|−〉 =

[1∗, (−i)∗]T = |+〉 and ree|−〉 = 0. The reflected hole with
spinor [1∗, (−i)∗]T is created due to missing electrons with
spinor (1,−i)T below the Fermi energy. Consequently, a pair
of electrons with spin parallel to n = 〈−|σ|−〉 = (0,−1, 0)
is injected into the NLSC in each tunneling event, resulting in
equal-spin AR [see Fig. 2(a)]. On the contrary, the electrons
with spinor |+〉, whose spins are antiparallel to n, are totally
reflected as electrons with unchanged spin since ree|+〉 = |+〉.

It is worth noting that the scattering matrices (5) are con-
stant matrices, independent of the material parameters and
wave vectors, indicating that each MF couples electrons of
the same spin. This is an important property of NLSCs. In
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general, the spins of MFs’ coupled electrons are different,
depending on the material properties [30,33]. For example, in
Ref. [33], the spins of MFs on the Majorana flat band coupled
electrons are not exactly the same, depending on the wave
vectors, which greatly reduce the spin current. In contrast,
for the present case, the polarizations of the spin currents
generated by all the MFs in the phase N = 1 are the same,
along the −y direction, and are insensitive to material details.
This is beneficial for generating giant spin current and makes
the NLSC a candidate for spintronic applications.

In the regime with N = 2, where �z >
√

�2 − V 2
x ,

the wave functions are simplified as |φ1〉 = |φ2〉 =
(ie−iϕ,−e−iϕ,−ieiϕ,−eiϕ )T and |φ3〉 = |φ4〉 =
(ieiϕ,−eiϕ,−ie−iϕ,−e−iϕ )T , and the corresponding

wave vectors are kz1,2 = i
λ±

√
λ2+4B(−�z−

√
�2−V 2

x )

2B and

kz3,4 = i
λ±

√
λ2+4B(−�z+

√
�2−V 2

x )

2B . We obtain the scattering
matrices

ree =
(

0 −i
i 0

)
, rhe = 0. (6)

We can see that for the phase N = 2, although there are
two MF end states, the AR is completely suppressed [19,31].
However, the normal reflection matrix ree indicates that the
two MFs induce nontrivial spin transport. Considering an
electron |n⊥〉 = (cos θ

2 , sin θ
2 )T with spin pointing in the di-

rection n⊥ = (sin θ, 0, cos θ ) incident from the NM, we see
that it will be totally reflected as an electron ree|n⊥〉 =
(i sin θ,−i cos θ )T whose spin is antiparallel to n⊥ [see
Fig. 2(a)]. Therefore, the two MFs induce a resonant spin-
flipped reflection for electrons with spin perpendicular to the y
direction. The resonant spin-flipped reflection has been stud-
ied in nodal-line semimetals [43], in which the topological
nontrivial phase is equivalent to the N = 2 phase here.

Finally, let us look at the case of N = 0, for
which �z < −√

�2 − V 2
x and the wave functions are

simplified as |φ1〉 = (ie−iϕ,−e−iϕ,−ieiϕ,−eiϕ )T , |φ2〉 =
(ieiϕ, eiϕ,−ie−iϕ, e−iϕ )T , |φ3〉 = (ie−iϕ, e−iϕ,−ieiϕ,−eiϕ )T ,
and |φ4〉 = (ieiϕ,−eiϕ,−ie−iϕ,−e−iϕ )T . It is easy to obtain
the normal reflection re↑

e↑ = re↓
e↓ = 1, while other reflection

amplitudes are zero. The transport is trivial.
In Fig. 2(b) we show the reflection probabilities as a func-

tion of energy. As expected, in the phase N = 1, the zero-bias
AR probability is 1 due to the MF-induced resonant AR.
When N = 2, the zero-bias AR probability is zero, showing a
zero-bias dip. Although the AR is suppressed by the interfer-
ence of the two MFs, a resonant spin-flipped normal reflection
is induced. The spin-flipped reflection probability exhibits a
resonant peak instead of the AR dip at zero energy (see the
red dashed line). In addition, the AR probabilities at the two
nodal lines are also plotted.

The above nontrivial spin transports are the result of MFs,
which are insensitive to material details. In the weak-coupling
limit, we can get the same results with a tunneling Hamilto-
nian description, which makes it easier to see the effect of
MFs. In the tunneling limit, we can use a tunneling Hamilto-
nian to describe the coupling between the MFs and the NM.
The wave functions of MFs γ1,2 are given in Sec. II; one can
find that in the presence of the Zeeman field by substitution

π/4 → ϕ and −ξi → ikzi. The effective Hamiltonian can be
written as

Heff = HL + HT,

HL = ivF

∫ ∞

−∞
[ψ†

k↑(z)∂zψk↑(z) + ψ
†
k↑(z)∂zψk↑(z)]dz,

HT = t1γ1[ie−iϕψk↑ − e−iϕψk↓ + ieiϕψ
†
k↑ + eiϕψ

†
k↓]

+ t2γ2[ieiϕψk↑ − eiϕψk↓ + ie−iϕψ
†
k↑ + e−iϕψ

†
k↓],

(7)

where HL describes the NM with spin-up and spin-down
electrons ψk↑,↓ and Fermi velocity vF and HT describes the
coupling between MFs and the NM, with t1,2 being the cou-
pling amplitudes. The scattering matrix can be calculated
using the equation of motion approach [26]. It can be shown
that the scattering matrices for an incoming electron with
energy E are

ree = Z−1

(
1 − iA1 A1

−A1 1 − iA1

)

and

rhe = Z−1

(−iA2 A2

A2 iA2

)
,

where Z = (E + i2ζ1)(E + i2ζ2) + 4ζ1ζ2 cos2 2ϕ, A1 =
ζ1(E + i2ζ2) + ζ2(E + i2ζ1) − i4ζ1ζ2 cos2 2ϕ, and A2 =
ζ1(E + i2ζ2)e2iϕ + ζ2(E + i2ζ1)e−2iϕ − i4ζ1ζ2 cos 2ϕ, with
ζ1,2 = 2πt2

1,2. At E = 0, we have rhe(E = 0) = 0 and

ree(E = 0) =
(

0 −i
i 0

)

as long as both t1 and t2 are nonvanishing, indicating that the
suppressed ARs and resonant spin-flipped reflection are the
results of interference of two MFs. When t2 = 0 in the N = 1
phase, we have

rhe(E = 0) = 1

2

(
1 −i
i 1

)
,

which is consistent with the result in Eq. (5).
In the above calculation, it is shown that for the N = 1

phase, all the MFs couple to the electrons with spin pointing
in the −y direction and induce the equal-spin AR, resulting
in spin currents with the exact same spin polarization. For the
N = 2 phase, although the ARs are completely suppressed,
the two MFs for a given k‖ induce a resonant spin-flipped
reflection for electrons with spin perpendicular to the y axis.
The polarizations of the spin currents induced by the two
nontrivial phases are different. We can tune the spin currents
with different polarization directions by a Zeeman field.

By the summation of scattering probabilities over k‖, one
can obtain the zero-bias differential spin conductance of the
NM-NLSC junction. The N = 1 states appear in the regime
in which k′

− < |k‖| < k′
+. So the differential spin conductance

is

G−y
s = 2e2

h

∑
k‖

Tr(rher†
he) = 2e2

h

S(k′2
+ − k′2

− )

4π
, (8)

with S being the cross-section area of the NLSC and the
superscript representing the polarization direction of the spin
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FIG. 3. (a) and (c)The setups for probing the equal-spin AR
and resonant spin-flipped reflection, respectively. (b) and (d) The
conductances of setups in (a) and (c), respectively. We take Vz =
−Bk2

0 + � and kF = 1.1k′
+ in (b) and Vz = 0 and kF = 1.1k0 in (d).

Other parameters are set to B = C = 1, � = 1, λ = 0.2, k0 = 2.5,
and Vx = 0. G0 = (Sk2

F /4π )(e2/h̄) is the single conductance of the
electrode.

current. For the transport of the N = 2 phase, we consider
that a ferromagnet is coupled to a section of the NM so that
electrons passing through the magnetic section are strongly
polarized by the ferromagnet. By tuning the magnetization
direction of the ferromagnet, we can control the spin polar-
ization direction of the incident electrons at the NM-NLSC
junction. When the spin polarization direction lies in the x-z
plane, the resonant spin-flipped reflection occurs. The differ-
ential spin conductance is given by

Gn⊥
s = e2

h

∑
k‖

(1 + |r f |2 − |rc|2) = 2e2

h

Sk′2
−

4π
, (9)

where r f and rc are the spin-flipped and spin-conserved re-
flection amplitudes, respectively.

The spin transports in the two nontrivial phases can be
detected by charge currents using ferromagnetic metals (FMs)
as electrodes. In the N = 1 phase only electrons with spin
pointing in the −y direction can undergo equal-spin AR, so
if a ferromagnet is used as an electrode, the conductance
of a NM-NLSC junction depends on the spin polarization
of the lead. For simplicity, we assume that the polarization
direction of the ferromagnet is in the y-z plane and denote the
polarization angle of the ferromagnet with respect to the −y
direction as α. The conductance of the NM-NLSC junction
for different angles α is shown in Fig. 3(b). When α = 0, all
the incident electrons undergo equal-spin AR, so the width
of the conductance peak is wide. As α deviates from zero, the
incident electrons can be decomposed into the AR channel and
total reflection channel. The width of the conductance peak
becomes narrow as α increases owing to the weight of the
total reflection channel becoming more important. The height
of the zero-bias conductance peak is not changed due to the
resonant AR.

The spin-flipped reflection can be probed using the setup in
Fig. 3(c) [43], in which the polarizations of the ferromagnets

FIG. 4. (a) Energy spectrum of a 1D NLSC as a function of kx

at ky = 0 in the presence of a finite potential μ0. (b) The reflection
probabilities as a function of incident energy. The chemical potential
is set to μ0 = 0.5, and other parameters are the same as those in
Fig. 2.

are taken to be antiparallel and transport through the device is
possible only due to spin-flipping processes. The differential
conductance of such a setup can be calculated based on the
lattice model using the KWANT package [49]. From Eq. (6),
it is found that the electrons with spin perpendicular to the y
direction are totally reflected as electrons with opposite spin,
whereas electrons with spin parallel and antiparallel to the
y direction are totally reflected as electrons with unchanged
spin. Thus, when the spin polarization is pointing to the z
axis, the conductance peak is the highest, as shown by the
green line in Fig. 3(d). As the polarization direction deviates
from the z axis, the zero-bias conductance decreases. When
the polarization direction is along the y axis, the zero-bias
conductance is zero.

From the above discussions, one can see that the charge
conductances in the setups in Figs. 3(a) and 3(c) are sen-
sitively dependent on the polarization direction of the FMs.
Therefore, using FMs, we can detect the spin transports and
distinguish the polarization directions of the spin currents in
phases N = 1 and N = 2 from the dependence of charge
conductances on α. Our detection scheme is feasible in exper-
iment. The FM-superconductor junction in Fig. 3(a) is widely
used to detect spin polarization of electrons in metals [50]
and the order parameter of unconventional superconductors
[51,52]. The superconductor-metal junction in Fig. 3(c) is also
a common setup for the study of the AR process [53].

In the above calculation, we considered a special chemi-
cal potential which locates at the sweet point satisfying the
neutrality condition and so guarantees chiral symmetry. Now
we discuss the effect of a finite chemical potential, which
is modeled by μ0τz. This term breaks the time-reversal-like
symmetry T and chiral symmetry C. In this case, the degen-
eracy of the two MFs in phase N = 2 is split, and the zero
modes are gapped [see Fig. 4(a)] since the chemical potential
gives rise to a coupling between the MFs. As a result, the
transport properties of the N = 2 phase are greatly changed.
We show the reflection probabilities as a function of energy
in Fig. 4(b). We can see that the zero-energy resonant peak of
spin-flipped reflection drops because the double degeneracy
of the Majorana zero modes is split. Meanwhile, the complete
interference cancellation of the two MFs is removed, giving a
nonvanishing AR.
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FIG. 5. Probabilities of various tunneling processes as a function
of the transverse wave vector k‖ for (a) spin-up electron incidence
and (b) spin-down electron incidence. The incident energy is set to
E = 2, and other parameters are B=C =1, �=1, kF = 1.25k0 = 5,
λ = 0.2, and L = 10.

IV. CROSSED ANDREEV REFLECTION

Next, we consider a NM-NLSC-NM junction where the
crossed Andreev reflection (CAR) process can occur, in which
the incident electron and the Andreev reflected hole are in
different terminals. The zero-bias transport of a NM-NLSC-
NM was investigated in Refs. [19,31], which found that in the
N = 2 phase, the two MFs can strongly enhance the CAR.
Nevertheless, the sum of the CAR probabilities of the two spin
channels is always less than 1, because at zero bias the spin
state |+〉 is decoupled from the MF and is totally reflected as
an electron. This spin transport property is determined by the
wave function of the NLSC, which is energy dependent. We
expect that when the incident energy is not zero, the CAR can
be enhanced because both spin states |+〉 and |−〉 participate
in it.

Here, we concentrate instead on the CAR under finite bias.
In such a junction, the wave function in the NLSC is

ψSC(z) =
8∑

i=1

si|φi〉eikziz, (10)

where |φi〉 are the same as those in Eq. (3) and kzi are the
eight roots of the eigenequation |H − E | = 0. Note that all
eight roots are needed because the NLSC is in the middle of
the junction and is finite. The incident wave function in the
left lead is the same as in the NM-NLSC, and the outgoing
wave function in the right lead is �R(z) = t e↑

e↑ e−ikFz|e1〉 +
t e↓
e↑ e−ikFz|e2〉 + t h↑

e↑ eikFz|h1〉 + t h↓
e↑ eikFz|h2〉, where t e↑

e↑ and t e↓
e↑

are the transmission amplitudes and t h↓
e↑ and t h↓

e↑ are the CAR
amplitudes. One can obtain the transport coefficients using the
boundary conditions at z = 0 and L.

There are four tunneling processes, consisting of
normal reflection, elastic cotunneling, local AR, and
CAR, with the probabilities given by Re

eσ = |reσ
eσ |2 + |reσ̄

eσ |2,

FIG. 6. The total nonlocal conductance as a function of voltage
bias. Other parameters are the same as those in Fig. 5.

T e
eσ = (|t eσ

eσ |2 + |t eσ̄
eσ |2)ve

R/ve
L, Rh

eσ = (|rhσ
eσ |2 + |rhσ̄

eσ |2)vh
R/ve

L,
and T h

eσ = (|t hσ
eσ |2 + |t hσ̄

eσ |2)vh
R/ve

L, respectively, where ve,h
L,R are

the velocities of the quasiparticles. The current conservation
requires Re

eσ + T e
eσ + Rh

eσ + T h
eσ = 1. We plot the probabilities

of the four processes as a function of k‖ for both spin-up and
spin-down electron incidences in Fig. 5. In the N = 2 region,
the CAR dominates. Both spin channels participate in CAR;
the sum of the CAR probabilities is greater than 1 or even
close to 2, far greater than that under zero bias, as shown in
the inset in Fig. 5(a). In the phases N = 0 and N = 1, AR
and CAR are suppressed; the normal reflection and elastic
cotunneling processes determine the transport. In Fig. 6, we
plot the nonlocal conductance of the NM-NLSC-NM junction
as a function of the bias. We can see that in the large-bias
range, the conductance is much larger than the zero-bias
conductance.

V. SUMMARY

In conclusion, we investigated the AR in a NLSC, in-
cluding local AR in a NM-NLSC junction and CAR in a
NM-NLSC-NM junction. Mapping the 3D NLSC to a 1D BDI
class topological superconductor, two nontrivial phases, N =
1 and 2, exist in the surface Brillouin zone. We showed that in
both the nontrivial phases the MFs can lead to interesting spin
transport. For the N = 1 phase, a single MF couples to the
electron with spin pointing in the −y direction, independent
of the wave vectors and other parameters, inducing equal-spin
AR. For the N = 2 phase, the two MFs induce resonant spin-
flipped reflection, although they suppress ARs. Namely, when
an electron is incident with spin n perpendicular to the y di-
rection, a −n electron will be totally reflected. Both nontrivial
phases can generate spin currents, but their spin polarizations
are different. The polarizations of the spin currents induced
in phases N = 1 and 2 are antiparallel and perpendicular to
the y axis, respectively. By using Zeeman fields, we can tune
the spin currents with the two polarizations. We also studied
transport in a NM-NLSC-NM junction and found that under
finite bias, the fraction of CAR is greatly enhanced, far greater
than in the zero-bias case, because all electrons participate in
ARs.
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