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Quality factor scaling of resonances related to bound states in the continuum
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In real samples, bound states in the continuum (BICs) are manifested as resonances with a finite, although
significantly high, quality (Q) factor. Control over the Q factor through an asymmetry parameter (i.e., an
intentional defect of the structure, allowing structural imperfections to be introduced on purpose) allows tailoring
the coupling strength with the modes of the free space. In most systems, Q has an inverse quadratic dependence
on the asymmetry parameter. However, various applications require different scaling laws. For instance, sensors
require a steeper dependence, whereas light generation needs a less steep one for robustness. Here, we consider
a metasurface consisting of dielectric rods with air holes inside of them, obtaining several different scaling laws.
Our analysis reveals that BIC has dominant and asymmetry-induced multipole terms. Depending on the radiation
properties of the induced multipoles and their amplitude in the case of vanishing asymmetry, the exponent in the
scaling law lies in the range from −4 to −1.75, including the common case of −2.
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I. INTRODUCTION

Bound states in the continuum (BICs) were discovered a
century ago in quantum mechanics [1], although they are a
general phenomenon related to destructive interference oc-
curring due to wave nature [2]. Over the last decade, they
have attracted significant interest after the shift to optics
[3–6]. Unlike electrons, the photon energy always lies in the
continuum, and light trapping is a challenging fundamental
problem. A solution to this problem promises many opportu-
nities for various applications, and BICs can be considered as
a way to engineer a perfect resonator with an infinite quality
(Q) factor. However, reality permits no unlimited singulari-
ties. To begin with, a perfect BIC requires an infinite length
sample; further, inevitable fabrication roughness and material
absorption spoil the ideal destructive interference condition.
Moreover, a perfect BIC decoupled from the continuum is
useless, since it does not interact with other waves. In real
samples, BICs manifest themselves as supercavity modes, the
so-called quasi-BICs, which are inherently noninfinite, but
have high values of the Q factor [7].

High-Q BIC-related resonances are used to enhance
light-matter interactions [8,9]. Among other applications,
laser [10–16] and harmonic generation [17–21] and sensing
[22–26] were reported. For the former, the resonator Q-factor
dependence on imperfections should be weak to improve ro-
bustness, while for the latter, it should be strong to increase
the sensibility. Thus, for different applications, different de-
pendences are needed.

The Q factor has a cubic and even higher-order dependence
on the sample size [27–29]; however, this property is hard to
use, as an electromagnetic field radiates at the boundaries of
the structure, in contrast to the asymmetry-related radiation in
the normal direction, which is much more suitable for prac-
tical applications of BIC [10,22]. Recently, fourth- or even
sixth-order power laws were predicted for two or even three

BICs merged in a many-parameter space [30]. Koshelev et al.
derived a formula for the Q factor as an inverse quadratic
function of an asymmetry parameter and demonstrated that
systems with symmetry-protected BICs do obey this scaling
law [31]. However, to the best of our knowledge, reports on
exponent values below 2 are lacking.

Here, we study a high-symmetry system that allows us
to remove symmetry elements independently. The system
comprises cylindrical rods supporting Mie-type modes that
facilitate the theoretical analysis of the system. We show that
the Q factor scaling law is not restricted by the reported
dependence Q ∝ α−2, where α is an asymmetry parameter,
but other values of the exponent are possible as well. We carry
out a multipole decomposition analysis, which reveals two
multipole contributions to the supercavity mode: a dominant
one and one induced due to the asymmetry of the system. The
scaling behavior of the Q factor is governed by the interplay
of the dominant and induced contributions. Such a simple toy
model reveals the underlying physics, which is useful for the
further design of devices.

II. RESULTS

Figure 1 shows a metasurface consisting of parallel rods,
the lattice constant a, rod radius R = 0.25a, and permittivity
ε = 12. Each cylinder has a small round hole with a radius
r = 0.2R. We study transverse electric (TE)-polarized waves
(the magnetic field oscillates along the rod axis). The sym-
metry elements are translational symmetry Ta, and mirror
symmetries σx1, σx2, and σy, which correspond to the y and x
coordinates, respectively. For σx1, the mirror plane is located
in the middle between neighboring rods, and for σx2, the plane
passes through the rod center.

We simulated the metasurface photonic band structure with
COMSOL (Fig. 2). We consider a subwavelength regime below
the second-order light cones with two eigenmodes, mode 1
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FIG. 1. Schematic view of the metasurface supporting different
regimes of radiation leakage rate. Inset: Doubled unit cell composed
of a pair of rods labeled A and B. In each rod, the air hole is displaced
from the center.

and mode 2. Both modes are guided, since they lie below the
light line. The low-frequency mode 1 has a dipolelike distribu-
tion of the magnetic field, and the high-frequency mode 2 has
a quadrupolelike profile. The fields of neighboring rods have
opposite phases, according to the wave vector at the Brillouin
zone edge π/a. Note that the profile of mode 1 is an odd

FIG. 2. Photonic band structure of the metasurface. Solid curves
show eigenmodes of the initial structure with no hole displacement
(doubling with a single unit cell). The area above the light cone
(shown with solid lines) is shaded. For the double-unit-cell meta-
surface, dashed curves and lines appear due to the different offsets of
the holes in the A and B rods. The insets show the profiles of modes
1 and 2. The intensity of color indicates the magnetic field amplitude
(red for positive, blue for negative).

FIG. 3. Scaling of the Q factor with the asymmetry parameter for
seven configurations shown schematically at the top. Solid symbols
are the values obtained from complex eigenfrequencies simulated
with COMSOL, and solid lines are fitting. Open symbols indicate the
values obtained from the value of the Poynting vector of the outgoing
wave evaluated by the multipole analysis. For each displacement
configuration, the Q factor dependence is shifted along the vertical
axis so that dependences with the same exponent start at the same Q
value.

function with respect to σx1, and the profile of mode 2 is an
even one; these modes also have opposite parities with respect
to σx2. Further, we consider modes at the � point, having the
highest symmetry.

Now, we study the hole displacement that can break each
of the symmetry elements listed above. To reduce the trans-
lational symmetry, we choose a new unit cell, comprising
two rods, A and B, with holes independently shifted by a
vector (xA,B, yA,B) away from the rod centers (see the inset
in Fig. 1). Due to this period doubling, the Brillouin zone
shrinks by a factor 2, down to the interval [−π/2a . . . π/2a],
and additional light cones appear, with the origin at ±π/a.
Modes 1 and 2 are duplicated in the center of the Brillouin
zone above the initial light cone, thus they are no longer
guided. However, they might be symmetry-protected BICs.
In some respects, a guided mode can be considered a BIC
protected by translational symmetry. In this case, when the
symmetry is broken, typical supercavity mode behavior [7]
will be observed.

We collect seven displacement configurations that differ by
the initial and final positions of the holes, illustrated in Fig. 3.
This set covers all the possible combinations of reductions of
the symmetry elements in the metasurface [32]. Each small
hole is treated as a perturbation to the system. In particular,
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the mode eiqenfrequency is negligibly shifted, and the Q
factor becomes finite. We aim to analyze the dependence of
the Q factor on the hole displacements. As a dimensionless
parameter of asymmetry α, we choose the hole displacement
value normalized to the rod radius.

Figure 3 shows different scaling laws between the Q factor
and the asymmetry parameter (the hole displacement), re-
vealing that different configurations correspond to their own
values of the exponent. Four of the seven configurations
demonstrate an exponent value of −2, which matches the law
Q ∝ α−2 often reported in the literature [31]. Surprisingly,
one configuration shows the exponent −4, describing a faster
degradation of the BIC, and there are also configurations
corresponding to a less than two power law Q ∝ α−1.75 with
a lower slope of the curve. We notice that if one takes into
account the four-mode effective Hamiltonian corresponding
to the quartic equation (see below) the value 1.75 can be
written in fractional form as 7/4, however, it is likely just a
coincidence, so we use the decimal form.

Let us illustrate the three possible Q factor dependences,
using representative displacement configurations. First, for
the exponent value −2, we consider the quadrupole mode
2: In the initial state, both holes are at the centers of the
rods, and then the hole in rod A is shifted along the y axis
(configuration V). In the initial state, there are all the sym-
metry elements described above, and the displacement keeps
σy only. Thus, initially, mode 2 is a guided mode under the
light cone, symmetry protected by σx1. The hole displacement
reduces both symmetries responsible for the electromagnetic
field confinement. Unlike the other dependences, Q ∝ α−2

is common, and it is not restricted to the quadrupole-type
mode 2.

Second, configuration I exhibits Q ∝ α−4 scaling for the
same displacement configuration V, but for the dipole-type
mode 1. Despite the same symmetry breaking, the exponent is
twice as large compared to that of mode 2. Finally, a exponent
of −1.75 is observed for mode 1. We consider configuration
II as an example: In the initial state, both holes are equally
shifted from the rod center along the y axis, so the translational
symmetry Ta is preserved, and σx1 and σx2 are broken. In this
case, initially, mode 1 is a guided mode, and the displacement
reduces only one element of the metasurface symmetry group.
However, exactly the same Q factor dependence is observed
for configuration III, with the holes shifted in opposite di-
rections in the initial state, so that the structure has no Ta

symmetry, but has σx1 instead. This mode is a BIC protected
by the mirror symmetry.

For analysis, we apply the multipole expansion technique
[33]. The eigenmodes are normalized by the electromagnetic
energy of the induced fields, estimated as

∫
dr[ε(r) − 1] ·

|E|2. The field outside the rod is expanded over the outgoing
waves described by the Hankel functions and the incident
waves described by the Bessel functions with no singularities
at the origin. We study the lowest dipolar and quadrupolar
terms of the outgoing waves, since they are radiated from the
mode supported by the rod. The contribution of the higher-
order multipoles is negligible. The Poynting vector evaluated
from the interference of the multipoles depends on the asym-
metry parameter almost as much as the Q factor does, which
proves the applicability of our approach.

Figure 4 shows the multipole amplitudes of rods A and
B for three considered configurations. For the exponent −2,
initially, mode 2 is a quadrupole with no dipole components
in the rods [Fig. 4(a)]. Note that in all the considered con-
figurations, there is a multipole that dominates for any value
of the asymmetry parameter, and another multipole has a
smaller amplitude, which we refer to as the induced one. The
quadrupole lobes are oriented along the x axis, which leads
to zero radiation in the y direction (we consider the modes
at the � point). In the subwavelength regime, radiation to
any other direction is prohibited by the lattice arrangement
of the rods, thus the quadrupoles take no part in the radiative
leakage. Increasing displacement results in increasing dipole
amplitudes of the rods; moreover, for the dipole mode of rod B
with a nondisplaced hole, the effect is even stronger. Although
the dipoles oscillate out of phase, their radiation is not mutu-
ally canceled in the far-field zone because of the amplitude
mismatch. The same hole displacement results in a Q ∝ α−4

scaling for mode 1. In the initial state, the excitation in each
rod is described by a dipole term only [Fig. 4(b)]. As the
asymmetry parameter increases, the quadrupole contribution
grows linearly. Similar to the case of mode 2, the induced am-
plitude becomes weaker in rod A with perturbation. Besides,
the amplitudes of the dominant dipole modes of different rods
split, and as a result, the amplitude mismatch allows radiative
leakage.

Figure 4(c) shows the multipole amplitudes for the ex-
ponent value −1.75. Initially, the holes in both rods are
displaced. Here, two terms contribute to the mode: the dom-
inant dipole and induced quadrupole. An increase of the
asymmetry parameter corresponds to a decreasing hole dis-
placement in rod A. As a result, the induced quadrupole
amplitudes decrease almost linearly. The quadrupole ampli-
tude in the opposite rod B decreases more strongly than in the
other cases. Moreover, the dipole amplitudes become slightly
different, which leads to a Q-factor decrease.

To analyze the differences in the Q-factor dependences
on the asymmetry parameter, we use the multipole approach.
At the � point, each unit cell comprising two rods has
the same multipole amplitudes: two for dipoles and two
for quadrupoles. We notice that the dipole-quadrupole in-
teraction between different rods is forbidden due to the
parity mismatch. Thus, the model considers dipole-dipole κ

and quadrupole-quadrupole ξ couplings between rods and a
dipole-quadrupole coupling χA,B within each rod, which is
assumed to be linear in the asymmetry parameter α (hole
displacement).

First, we make a simplified assessment of the multipole
interaction in the system. The case of exponent −2 is usually
considered within the perturbation theory. Indeed, a linear
change of the dipole-quadrupole coupling χA leads to a lin-
ear growth of the dipole mode in rod A, which exchanges
its energy with the dipole term in rod B. Thus, for a small
displacement, the difference between the dipole amplitudes in
different rods grows linearly too. As a result, the amplitude of
the radiated wave also grows linearly, and the Poynting vector
has a quadratic dependence on α.

Mode 1 with the dependence Q ∝ α−4 can be treated
similarly, but in this case, there is an underlying two-step pro-
cess. Linear dipole-quadrupole coupling causes quadrupole
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FIG. 4. Dipole and quadrupole amplitudes vs asymmetry parameter. Displacement configurations (a) V, (b) I, and (c) II demonstrate
Q ∝ α−2, α−4, and α−1.75 scaling laws, respectively. Insets: Schemes of the hole displacement with the corresponding dipole and quadrupole
phases. In all panels, dominant/induced multipole amplitudes are shown in black/gray; solid curves are for rod A, and dashed curves are for
rod B. The amplitudes of induced multipoles are scaled by a factor of 10.

amplitudes to grow linearly; these quadrupoles do not radi-
ate, as their lobes are oriented along the x axis. In turn, the
quadrupole affects the amplitude of the dipole according to the
linear law as well. Consequently, the total backaction effect on
the dipole terms, which radiate to the far zone, provides their
quadratic dependence. Thus, here we consider the leakage as
a second-order process.

The exponent 1.75 cannot be described with a similar per-
turbation theory. For simplicity, we assume the quadrupole
amplitudes in both rods to have the same dependence
QA,B(1 − α), and the dipole-quadrupole coupling coefficients
are χA = χA,B and χB = χA,B(1 − α). We evaluate the change
in the dipole amplitude as a product of the quadrupole am-
plitude and the coupling coefficient. Thus, the difference
between the dipoles in rods A and B is a sublinear function
χA,BQA,B(α − α2), which leads to a subquadratic dependence
of the radiation flow.

To verify that the exponent values −1.75, −2, and −4
are permitted, we consider an effective Hamiltonian, a 4 × 4
matrix defining a four-dimensional eigenvector of the dipole
and quadrupole amplitudes in two rods,

Ĥeff =

⎛
⎜⎜⎝

ωd κ χA 0
κ ωd 0 χB

χA 0 ωq ξ

0 χB ξ ωq

⎞
⎟⎟⎠. (1)

We use phenomenological coupling coefficients that qualita-
tively describe the multipole amplitudes obtained numerically
for all seven configurations [32]. Then, the eigenproblem is
reduced to a fourth-order equation. The obtained eigenvector
is normalized to the dominant multipole amplitude in rod A,
retrieved from the numerical simulations for the same parame-
ter α. The amplitude of the radiation field depends linearly on
the difference between the dipoles in two rows. That allows us
to assess the dependence of the Poynting vector of the leakage
radiation on the asymmetry, which for small values of α obeys
power laws with indices 1.75, 2, and 4.

III. DISCUSSION AND CONCLUSIONS

Indeed, we have found that the Q-factor dependence on the
asymmetry parameter can obey a power law with an exponent

of −4 and even below two −1.75 values, in addition to the
common exponent −2. The main reason for this variety is that
the structure supports several multipoles decoupled from the
free-space continuum (see Table I). Among these multipoles,
we select the dominant one, while the other multipoles with
smaller amplitudes are the induced ones. These modes stem
from the high symmetry of the system in the initial state.
A perturbation removes one or several symmetry elements,
leading to coupling between the multipoles. What matters is
that the asymmetry parameter enables an interaction with a
nonradiative mode, which, in our case, is a quadrupole, and
the energy leakage to the free-space modes involves a two-
step process. In the common case, when induced multipoles
are coupled to the free space, there is a single-step process,
resulting in an exponent of −2. If there is no excitation of the
induced multipoles in the initial state, an effective two-step
process appears, and each step has the amplitude efficiency
linear in α, which results in a fourth-order law for the energy
leakage. However, when the initial state supports an essential
amplitude of the induced multipole contribution, a more com-
plicated process occurs, and the energy interchange between
the multipoles is strongly affected by the initial multipole
phase. As a result, a less than two exponent −1.75 is ob-
served.

We have considered circular rods, which allowed us to ana-
lyze the problem using a multipole-based approach and reveal
the complex mechanisms governing the system’s response to
the variation of the asymmetry parameter. Our simple initial
system is convenient for multipole calculations; in real sample
fabrication, the shape of the rods can be changed to obtain an
exponent value approximately in the range of [−4 . . . − 1.75].
Another possible realization is a high-symmetry metasurface
with a large number of representations, supporting counter-
parts of the dominant and induced modes in our system.

TABLE I. Q-factor scaling laws depending on the induced mul-
tipoles.

Zero amplitude in the initial state Yes Yes No
Radiates to free space Yes No No

Scaling law Q ∝ α−2 α−4 α−1.75
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We anticipate that our results (summarized in Table I) will
pave the way for the design of photonic structures with
application-tailored dependence of the Q factor on an asym-
metry parameter, with exponent values either larger or smaller
than the common quadratic law implies.
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