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Quantized thermoelectric Hall plateau in the quantum limit of graphite as a nodal-line semimetal
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We performed thermoelectric Hall conductivity αxy measurements on single-crystal graphite in the quantum
limit up to 13 T. Both electrical and thermoelectric transport measurements were performed on the same crystal
to extract pure αxy, avoiding any sample quality dependence. The αxy converges to a plateau in the quantum
limit with a linear dependence on temperature. This behavior is analogous to the quantized thermoelectric Hall
effect (QTHE) observed in three-dimensional Dirac/Weyl nodal-point semimetals, and experimentally confirms
a theoretical proposal on the QTHE in semimetals with nodal lines as in graphite.
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I. INTRODUCTION

Thermoelectric effects in three-dimensional (3D)
Dirac/Weyl semimetals (DWSM) under a high magnetic
field have been theoretically investigated in recent years.
Under a dissipationless condition, the thermoelectric
Hall conductivity αxy was found to converge to a plateau,
proportional to temperature (T ), but independent of carrier
density and magnetic field strength (B) upon entering the
quantum limit (QL) [1]. This phenomenon is known as the
quantized thermoelectric Hall effect (QTHE). Here, αxy is
an off-diagonal element of the thermoelectric conductivity
tensor ←→α defined by j = ←→σ E + ←→α (−∇T ), where j,
E, ←→σ , and −∇T are the current density, electric field,
electrical conductivity tensor, and temperature gradient,
respectively. The Seebeck coefficient Sxx is the diagonal
element of the thermopower tensor

←→
S = ←→σ −1←→α . QTHE

originates from the gapless chiral N = 0 Landau levels (LLs)
in 3D DWSM with an energy-independent density of states
(DOS), which distinguish them from single-band metals.
The QTHE together with the gapless chiral LLs imply Sxx

grows linearly with B without an upper limit [2]. Such
properties make 3D DWSM attractive for realizing a tunable,
high-performance thermoelectricity-based power generation
at low temperatures, where other materials are impractical.
Experimentally, the B-linear increase of Sxx at QL has been
reported in a 3D Dirac semimetal with a small spin-orbit
gap Pb1−xSnxSe and Weyl semimetal TaP [3,4]. A feature
consistent with the αxy plateau has been observed in TaP and
the 3D Dirac semimetal ZrTe5 [4,5]. In ZrTe5, although Sxx

appears to not strictly follow the B-linear behavior, attributed
to a possible variation in the carrier balance, αxy remains
approaching a constant value at high B, in agreement with the
theory that αxy is independent of carrier balance. Therefore,
a quantized αxy plateau can be taken as a signature of a 3D
DWSM [4,5].

However, QTHE is not necessarily unique to 3D
Dirac/Weyl nodal-point semimetals. Our simulation using a
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straight Dirac nodal-line semimetal model, equivalent to a
stack of 2D Dirac fermion layers, yields a similar energy-
independent DOS for its lowest LL. Here, we denote LLs
of DWSM and nodal-line semimetal by N , while those of
graphite by N ′. The LL structure of the nodal-line semimetal
[Fig. 1(c)] shows a nonchiral N = 0 LL, but around the Fermi
level it shows a similar configuration as the chiral N = 0
LLs of a pair of Dirac/Weyl cones in a 3D DWSM shown
in Fig. 1(a) [6]. The calculated B dependence of αxy in the
dissipationless case [Fig. 1(d)] shows qualitatively the same
plateau behavior at the QL as that predicted for DWSMs in
Ref. [1] shown schematically in Fig. 1(b).

Such a straight nodal-line semimetal configuration can be
found in graphite. The LL subband dispersion for graphite
[Fig. 1(e)], calculated using the Slonczewski-Weiss-McClure
model [7,8], with trigonal warping ignored shows the conduc-
tion and valence bands touch along the H-K-H edge in the
k space, forming a straight nodal line [9]. This configuration
is very similar to that of the straight nodal-line semimetal in
Fig. 1(c), except that there are two lowest LLs with N ′ =
0,−1, corresponding to the doubly degenerate lowest LL of
the bilayer graphene stacking unit. Therefore, the QTHE can
be expected in graphite at the quasi-QL where the chemical
potential μ crosses only the N ′ = 0,−1 subbands as shown in
Fig. 1(f) [6].

The electrical resistivities (longitudinal resistivity ρxx and
Hall resistivity ρxy, where ←→ρ = ←→σ −1) and the Seebeck
coefficient Sxx of graphite up to the quasi-QL have been exten-
sively studied [10–12], with their Nernst coefficient Sxy under
a magnetic field explored only recently [13,14]. However, par-
tial measurements on separate crystals are not ideal for αxy(B)
since ρxx, ρxy, Sxx, and Sxy may vary with different crystals. In
this paper, we experimentally confirm QTHE in graphite by
performing transport and thermoelectric measurements on the
same graphite single crystal.

II. EXPERIMENTAL

A bulk graphite sample with a dimension of 37 × 0.8 ×
0.065 mm3 was prepared by cleaving a Kish graphite crys-
tal using an adhesive tape. On the clean surface, six gold
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FIG. 1. Landau subband dispersion and B dependence of αxy for
(a) and (b) Dirac/Weyl nodal-point semimetals [(b) is a schematic,
after Ref. [1]], (c) and (d) a semimetal with straight Dirac nodal lines,
and (e) and (f) bulk graphite (after Ref. [6]). Here, vF, tc, and c are
the in-plane Fermi velocity, interlayer transfer integral, and interlayer
spacing of multilayer semimetals with straight Dirac nodal lines, re-
spectively. The insets of (b), (d), and (f) illustrate the band dispersion
of the Dirac/Weyl nodal-point semimetal, band dispersion of the
semimetal with straight Dirac nodal lines, and band dispersion of
graphite, respectively. (c) was calculated using 2tc/(h̄vF/c) = 0.05
and |Bz|/(h̄/ec2) = 0.002, and (d) was calculated using (n − p)c3 =
1 × 10−4.

wires were attached in a standard Hall configuration. The
sample was placed on a thermoelectric measurement plat-
form (Fig. 2), on which electrical transport measurements
were also performed. For the thermoelectric measurements,
two chromel-constantan thermocouples were attached to the
sample. All measurements were performed with the dc mode
under a magnetic field up to 13 T parallel to the stacking direc-
tion. To eliminate mixing between ρxx(Sxx ) and ρxy(Sxy) sig-
nals that may arise due to contact misalignment, signals were
collected in both positive and negative field directions, then
standard symmetrization and antisymmetrization procedures
were used. The reported Sxx values are relative to the gold
wire electrodes with SAu ≈ 1 µV/K up to 30 T [15,16], so it
should be understood not to deduce the carrier type using Sxx

directly. (See also the Supplemental Material for details [17].)

III. RESULTS AND DISCUSSION

Figure 3 summarizes all of the measured quantities in this
work. As a reference, we consider the electrical current flow

FIG. 2. (a) Photograph of the experimental setup and
(b) schematic of the experimental setup corresponding to (a).
The sample is attached between a heater and copper heat sink.
Two thermocouples (dashed line) measure the temperatures on the
heater side and heat sink side of the sample. The thermocouples
were thermally referenced to the heat sink adjacent to a Cernox
thermometer. The symbols denote electrode connections to the
sample, where (+) and (−) superscripts denote positive and negative
electrodes, respectively.

and temperature gradient directions to be I ‖ −∇T and B ‖ ẑ.
To standardize notation, we report the transverse coefficients
as ρxy and Sxy unless otherwise noted. Magnetic field de-
pendences of ρxx and ρxy taken at several fixed temperatures
are shown in Figs. 3(a) and 3(b), respectively [note −ρxy in
Fig. 3(b)]. Typical Shubnikov–de Haas (SdH) oscillations are
clearly seen with the last oscillation appearing at B ≈ 7.5 T.
As B increases, the SdH oscillation amplitude increases, such
that the last peak anomalously crosses zero. The zero crossing
ρxy has been observed in some experiments, and appears to
be sample dependent with some reports show no sign change
at high field [12,18–20]. The sign change may occur in the
Shubnikov–de Haas regime due to the changing balance be-
tween the number of electrons and holes, and more recently
shown to be related to possible disorder upon doping. Our
Kish graphite sample shows a sign change around B = 6.8 T,
similar to the undoped sample in Refs. [18,20]. Our interests
here are the facts that both ρxx and ρxy appear to be only
weakly dependent on the temperatures within the range con-
sidered and that |ρxy| � |ρxx| throughout the field sweep.

From these data, the conductivities σxx and σxy can be ob-
tained by inverting the resistivity matrix, or explicitly, σxx =
ρxx/(ρ2

xx + ρ2
xy) and σxy = −ρxy/(ρ2

xx + ρ2
xy). Since |ρxy| �

|ρxx| one sees immediately that |σxy| � |σxx|. This is in con-
trast to the dissipationless limit condition σxx = 0, and is
always true for graphite [19,21]. For this reason, the difference
between electron and hole densities cannot be obtained by us-
ing the usual Hall coefficient RH → 1/e(n − p), where n and
p are the electron and the hole density, respectively [19]. As
an alternative, we used the SdH oscillations to obtain n − p. A
Fourier transform of d2ρxx/dB2 yields two dominant compo-
nents with frequencies of 4.72 and 6.42 T. These frequencies
correspond to carrier pockets located near the H and K points,
respectively, in agreement with known results [11,22]. Taking
into account the geometry and the multiplicity of the pock-
ets in the Brillouin zone, we found |n − p| ≈ 6 × 1017/cm3,
about half of the value used in our calculations [6]. (See also
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FIG. 3. Magnetic field dependence at several fixed temperatures for (a) resistivity ρxx , (b) Hall resistivity (note: −ρxy), (c) Seebeck
coefficient Sxx , and (d) Nernst coefficient Sxy.

the Supplemental Material for the temperature dependence of
the SdH frequencies [17].)

Next, we look into the thermoelectric coefficients Sxx and
Sxy shown in Figs. 3(c) and 3(d), respectively. One again sees
a typical SdH-type oscillatory behavior. In contrast to the
transport coefficients where |ρxy| � |ρxx|, here Sxx is dwarfed
by Sxy at all temperatures. Note that while Sxx is not strongly
dependent on T , Sxy is very well resolved with T due to its
strong response at low B. The curves behave as Sxy ∝ T for
T � 5.7 K throughout the magnetic field range. At B � 8 T,
Sxy gains a B-linear behavior. This implies Sxy ∝ (BT ) in the
QL regime, similar to the behavior reported in Refs. [13,14].
At higher temperatures, the curves deviate from the Sxy ∝ T
tendency, but generally remain proportional to B. (See also
the Supplemental Material for the B and T dependences of
Sxy [17].)

Having seen each of ρxx, ρxy, Sxx, and Sxy separately, we
now turn our attention to αxy. Thermoelectric Hall conductiv-
ity αxy relates all the quantities above, and is written explicitly
as

αxy = 1

ρ2
xx + ρ2

xy

(ρxxSxy − ρxySxx ). (1)

The term ρxySxx is overwhelmed by ρxxSxy by 3–4 orders of
magnitude. Assuming a Seebeck coefficient of a gold wire of
SAu ∼ 1 µV/K, its contribution will only change the overall
αxy by about 0.01%, so neglecting its contribution in αxy can
be justified, although not necessarily negligible when consid-
ering only Sxx.

Considering that the coefficients other than Sxy are not
modified significantly by temperature, it is expected that the
T -linear dependence of Sxy is reflected in αxy. Figure 4(a)

shows αxy/T calculated from the experimental data using
Eq. (1). For convenience, here we plot the dimensionless
αxy/(kBe/ch), where kB is the Boltzmann constant, e(>0) is
the elementary charge, c is the c-axis lattice constant (c/2 =
0.337 nm), and h is the Planck constant. The general behavior
follows closely the predicted behavior for graphite illustrated
in Fig. 1(f). At low fields the curves first show a monotonic
decrease with αxy ∝ B−1 dependence as shown in the inset
of Fig. 4(a), consistent with the predicted behavior for the
straight nodal-line semimetal shown in Fig. 1(d). Up to 5.7 K,
the curves follow an overall αxy ∝ T/B behavior. As B is
increased even further beyond the last SdH oscillation, the
system enters the quasi-QL.

Upon entering the quasi-QL region αxy changes slope and
tends to a value independent of B. This plateau extends from
the last SdH peak to the maximum field at each temperature,
which is expected to be a manifestation of the QTHE. To
clearly show its T dependence, αxy points taken at several
fixed B are shown in Fig. 4(b). In a general case of multi-
layer semimetals with straight nodal lines, we have previously
found that the plateau value is given approximately by the
following, including spin and valley degeneracy [6],

αxy/(kBe/ch) = 2πkBT

3tc
. (2)

Here, tc is the interlayer transfer integral. For graphite, Eq. (2)
gains an additional factor of two coming from the doubly de-
generate lowest LL subbands N ′ = 0,−1. The value of tc can
be estimated from the width of the B-independent N ′ = −1
subband given by 4tc ≈ 40 meV, and the same value was
assumed for the N ′ = 0 subband. With this value, one obtains
αxy/(kBe/ch) ≈ 0.036 (K−1) × T . The plateaus followed this
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FIG. 4. (a) Magnetic field dependence of thermoelectric Hall
conductivity (αxy/T )/(kBe/ch) obtained from the transport and ther-
moelectric measurements showing behavior consistent with Ref. [6].
The curves overlap with each other at T � 5.7 K and are quantized
to a value that depends only on tc. Dashed lines are αxy calculated
using transport data taken from Refs. [12,13,26] combined with Sxy

data from Ref. [13]. The inset shows the low-field region αxy ∝
B−1 behavior consistent with the behavior shown in Fig. 1(b) for a
semimetal with straight nodal lines. (b) Temperature dependence of
αxy at several fixed magnetic fields, showing a T -linear dependence
as predicted in Eq. (2).

behavior not only qualitatively, but quantitatively as well for
T � 5.7 K. This fact strongly suggests that the observed be-
havior results from the QTHE predicted in graphite. Above
5.7 K the slope becomes steeper, indicating a deviation from
αxy ∝ T although the plateau survives. This is the same de-
viation seen in Sxy. Theoretically, the T -linear behavior is
expected at the low-temperature region defined by kBT � tc,
which corresponds to T � 110 K for graphite. However, it
should be noted that this is based on transport in the clean limit
without phonon scattering. In reality, the phonon drag effect
enhances both Sxx and Sxy [23,24]. Our observation of αxy ∝ T
occurs at T � 15 K, where a peak in Sxx can be observed. This
temperature is similar to the reported Sxx peak temperature
by another group [25], and so is likely a consequence of
the phonon drag effect. (See Supplemental Material for the

temperature dependence of Sxx and measurement results at
extended temperatures [17].)

Here, we compare our result with data published by other
groups. We took the transport data for 0.55, 1.1, and 4.2 K
from Refs. [12,13,26] and Sxy data with the closest match-
ing temperatures from Ref. [13]. As shown in Fig. 4(a),
αxy calculated using these data show a plateau at QL with
the correct order of magnitude, but with values lower than
predicted by Eq. (2). However, differences in the reported
magnitudes of ρxx(B) make it difficult to compare the resulting
αxy. As far as we know similar complete measurements on
one sample have been performed so far only by Zhu et al.
on their sample labeled “HOPG sample 2” [13]. For this
sample, assuming that ρxx does not vary much with tem-
perature, we approximated αxy/(kBe/ch) ≈ 0.023 (K−1) × T .
However, since αxy ≈ Sxy/ρxx and dρxx/dT > 0, their T de-
pendence of αxy likely follows a gentler slope than the
estimate above.

Now, we address the slight deviation from the αxy plateau
predicted by Eq. (2). Using this equation, any deviation from
the plateau can only be introduced via tc, with others being
some fundamental constants. In the case of graphite, however,
it is not perfectly accurate to employ Eq. (2) because the
Fermi velocity (related to the subband width) of the N ′ = 0
LL is slightly different from that of the N ′ = −1 LL. This
difference introduces a deviation of less than 1% compared
with Eq. (2) at T = 5 K. Additionally, whereas the Fermi
velocity of the N ′ = −1 subband has no B dependence, the
N ′ = 0 has a weak B dependence [27,28]. The B dependence
of the N ′ = 0 LL subband is such that its Fermi velocity
decreases with increasing field, consequently αxy tends to rise
on average. This may be the reason why the QTHE plateau of
αxy deviates from 0.036 (K−1) × (kBe/ch)T and show a weak
B dependence.

Next, we comment on the nonappearance of the B-linear
Sxx in graphite despite the αxy plateau. For a chiral LL of
3D DWSM, the DOS is energy independent, which is re-
sponsible for the αxy plateau. In the dissipationless limit
(σxx → 0), Sxx is given by Sxx ≈ αxy/σxy = −αxyBz/e(n − p).
Therefore, the B-linear growth occurs for constant n − p. For
graphite, the DOS is approximately energy independent, but
because the system is dissipative (σxx 
 σxy), the Sxx approx-
imation above does not apply, so the B-linear increase of
Sxx cannot be expected. However, the αxy plateau behavior
survives because it corresponds to the dominant leading term
of αxy in the dissipative system [6].

Finally, the present model can be extended for systems
having multiple straight nodal lines, given that those nodal
lines are parallel to the applied magnetic field. Equation (2)
implicitly already contains a factor of two, originating from
the two valleys shown in the inset of Fig. 1(d). In the case
of multiple straight nodal lines parallel to a magnetic field,
Eq. (2) is modified to include the total number of straight
nodal lines. This specific case is similar to the case of DWSM
with a multiple Dirac nodes discussed in Refs. [1,2].

IV. CONCLUSION

In conclusion, we have demonstrated that graphite shows
QTHE as a straight nodal-line semimetal. Although the

195106-4



QUANTIZED THERMOELECTRIC HALL PLATEAU IN THE … PHYSICAL REVIEW B 107, 195106 (2023)

system is dissipative, the dissipationless leading term of αxy

exhibiting the QTHE plateau becomes dominant. The unlim-
ited B-linear increase of Sxx cannot be expected in this case,
but αxy remains quantized due to an energy-independent den-
sity of states, similar to 3D Dirac/Weyl nodal-point semimet-
als. The present result shows that quantized αxy is a strong
indicator of 3D DWSM, but not their exclusive property.
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